RO  EN
IMCS/Publications/CSJM/Issues/CSJM v.24, n.2 (71), 2016/

Numerical solutions of Kendall and Pollaczek-Khintchin equations for exhaustive polling systems with semi-Markov delays

Authors: Mişcoi Gheorghe, Diana Bejenari, Mitev Lilia, Ionela R. Ticu
Keywords: Polling systems with semi-Markov delays, \linebreak Pollaczek-Khintchin formula, Kendall equation, \emph{k}-busy period, \linebreak probability of states, queue length, numerical algorithms.

Abstract

Some analytical results for exhaustive polling systems with semi-Markov delays, such as Pollaczek-Khintchin virtual and steady state analog are presented. Numerical solutions for \emph{k}-busy period, probability of states and queue length distribution are obtained. Numerical examples are presented.

Gh. Mishkoy
Academy of Science of Moldova, Free International University of Moldova
Chisinau, Republic of Moldova
E-mail:

D. Bejenari
Free International University of Moldova
Chisinau, Republic of Moldova
E-mail:

L. Mitev
Institute of Mathematics and Computer Science of Academy of Science of Moldova,
Free International University of Moldova
Chisinau, Republic of Moldova
E-mail:

I. R. Ticu
Constanta Maritime University Constanta, Romania
E-mail:

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Fulltext

Adobe PDF document0.14 Mb