IMCS/Publications/BASM/Issues/BASM n.2(93), 2020/

Inequalities of Hermite-Hadamard Type for K-Bounded Modulus Convex Complex Functions

Authors: Silvestru Sever Dragomir


Let $D\subset \mathbb{C}$ be a convex domain of complex numbers and $K>0.$ We say that the function $f:D\subset \mathbb{C\rightarrow C}$ is called $K$% -bounded modulus convex, for the given $K>0,$ if it satisfies the condition% \begin{equation*} \left\vert \left( 1-\lambda \right) f\left( x\right) +\lambda f\left( y\right) -f\left( \left( 1-\lambda \right) x+\lambda y\right) \right\vert \leq \frac{1}{2}K\lambda \left( 1-\lambda \right) \left\vert x-y\right\vert ^{2} \end{equation*}% for any $x,$ $y\in D$ and $\lambda \in \left[ 0,1\right] .$ In this paper we establish some new Hermite-Hadamard type inequalities for the complex integral on $\gamma ,$ a smooth path from $\mathbb{C}$, and $K$% -bounded modulus convex functions. Some examples for integrals on segments and circular paths are also given.

College of Engineering and Science Victoria University
PO Box 14428 Melbourne City, MC 8001


Adobe PDF document0.13 Mb