RO  EN
IMCS/Publications/BASM/Issues/BASM n.1 (7), 1992/

On a class of nonlocal generalized splines. (Russian)

Authors: Verlan Igor

Abstract

The interpolation problem of $f_i$, $i=0, (1),n$ on the mech $\bigtriangleup : a=x_0 $$
\gather
S(x,u)=f_{i+1}\nu (t,u)+f_i(1-\nu (t,u))+h_im_i(2t-t^2-\nu (t,u))
\bigm / 2+ \\
+h_im_{i+1}(t^2-\nu(t,u))\bigm /2,
\endgather
$$
or
$$
\gather
S(x,u)=f_{i+1}t+f_i(1-t)+h^2_i\{M_i(2t-2\nu (t,u_i)-t\nu'' (1,u_i)+
t^2\nu'' (1,u_i))- \\
- M_{i+1}(2t-2\nu (t,u_i)-t\nu'' (0,u_i)+
t^2\nu'' (0,u_i)) \} \bigm /2(\nu'' (1,u_i)-\nu''(0,u_i)),
\endgather
$$
where $t=(x-x_{i-1})/h_i$, $h_i=x_{i+1}-x_i$, $u$ -- the free parametrs vector. $s'(x_i)=m_i$, $s''(x_i)=M_i$, $i=0,(1),n$ and $\nu(t,u)\in \Cal L$, where $\Cal L=\{\varphi (t,u):\varphi (t,u)\in c^2[a,b]; \ \varphi (1,u)=1, \ \varphi (0,u)=\varphi' (1,u)=0\}$. Different interpolation splynes can be obtained by the chose of function $\nu (t,u)$. The determination of unknow coefficients systems are presented.