RO  EN
IMI/Publicaţii/CSJM/Ediţii/CSJM v.29, n.2 (86), 2021/

Magic Sigma Coloring of a Graph

Authors: Narahari Narasimha Swamy, Badekara Sooryanarayana, Akshara Prasad S. P.
Keywords: Sigma Coloring, open neighborhood sum, magic sigma coloring, sigma chromatic number.

Abstract

A sigma coloring of a non-trivial connected graph $G$ is a coloring $c:V(G)\rightarrow\mathbb{N}$ such that $\sigma(u)\ne\sigma(v)$ for every two adjacent vertices $u,v\in V(G)$, where $\sigma(v)$ is the sum of the colors of the vertices in the open neighborhood $N(v)$ of $v\in V(G)$. The minimum number of colors required in a sigma coloring of a graph $G$ is called the sigma chromatic number of $G$, denoted $\sigma(G)$. A coloring $c:V(G)\rightarrow \{1, 2, \cdots, k\}$ is said to be a magic sigma coloring of $G$ if the sum of colors of all the vertices in the open neighborhood of each vertex of $G$ is the same. In this paper, we study some of the properties of magic sigma coloring of a graph. Further, we define the magic sigma chromatic number of a graph and determine it for some known families of graphs.

Narahari Narasimha Swamy
Department of Mathematics
University College of Science
Tumkur University, Tumakuru - 572103
Karnataka, India
Phone:+919739482878
E-mail:

Badekara Sooryanarayana
Department of Mathematical and Computational Studies
Dr. Ambedkar Institute of Technology, Bengaluru - 560056
Karnataka, India
Phone:+919844236450
E-mail:

Akshara Prasad S. P.
Department of Mathematics
University College of Science
Tumkur University, Tumakuru - 572103
Karnataka, India
Phone:+9190355 83206
E-mail:

Fulltext

Adobe PDF document0.18 Mb