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Abstract

A sigma coloring of a non-trivial connected graph G is a col-
oring c : V (G) → N such that σ(u) 6= σ(v) for every two adjacent
vertices u, v ∈ V (G), where σ(v) is the sum of the colors of the
vertices in the open neighborhood N(v) of v ∈ V (G). The min-
imum number of colors required in a sigma coloring of a graph
G is called the sigma chromatic number of G, denoted σ(G). A
coloring c : V (G) → {1, 2, · · · , k} is said to be a magic sigma
coloring of G if the sum of colors of all the vertices in the open
neighborhood of each vertex of G is the same. In this paper, we
study some of the properties of magic sigma coloring of a graph.
Further, we define the magic sigma chromatic number of a graph
and determine it for some known families of graphs.

Keywords: Sigma Coloring, open neighborhood sum, magic
sigma coloring, sigma chromatic number.
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1 Introduction and preliminaries

Graph coloring is a very important branch of graph theory which has
been studied by various authors. While the most commonly studied
type of vertex coloring is proper coloring, several of its variations have
been introduced and extensively studied. For related work on graph
coloring, we refer [11]–[13]. Many of these colorings have been in-
troduced so as to ensure vertex-distinguishing, edge-distinguishing or
neighbor-distinguishing properties in a graph. One such coloring is a
neighbor-distinguishing coloring, named the sigma coloring of a graph.
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As introduced by Chartrand et al. in the year 2010, a k-vertex
coloring c : V (G) → N of a non-trivial graph G is said to be sigma
coloring of G if σc(u) 6= σc(v) for every two adjacent vertices u, v ∈
V (G), where σc(v) =

∑

w∈N(v)

c(w), called the open neighborhood sum of

v, is the sum of the colors of all the vertices in the open neighborhood
N(v) of v ∈ V (G). The sigma chromatic number of a graph G, denoted
σ(G), is the minimum number of colors required in a sigma coloring of
G. In the paper, it has been proved that the sigma chromatic number
of a graph G is bounded by its chromatic number χ(G). Also, many
characterizations of the sigma chromatic number have been established.
It is worth mentioning here that the sigma coloring of a graph has been
independently studied as lucky labeling by Czerwinski et al. [3] and
additive labeling of a graph by Bartnicki et al. [1].

Since its introduction, several studies on the sigma chromatic num-
ber have been carried out. In particular, the complexity of sigma par-
titioning and sigma chromatic number has been discussed by Dehghan
et al. [4], [5]. Further, the sigma chromatic number of some particular
families of graphs has been obtained by various authors [6], [7].

One interesting question pertaining to graphs G that are not sigma
colorable is whether there exists a coloring c of G such that all its ver-
tices receive the same open neighborhood sum, i.e., σc(u) = σc(v) for
all u, v ∈ V (G). We introduce the notion of magic sigma coloring to
answer this question. Further, we study some of its properties and iden-
tify certain families of graphs that admit magic sigma coloring. Also,
we obtain the magic sigma chromatic number of some such families of
graphs. For standard graph related terminologies, we refer [2], [8], [9].

Definition 1. Given a simple connected graph G = (V,E), a coloring
c : V (G) → {1, 2, · · · , k} is said to be a magic sigma coloring of G if
σc(u) = σc(v) for all u, v ∈ (G). Further, a graph G which admits a
magic sigma coloring is said to be magic sigma colorable and σc(G) =
σc(v), v ∈ V (G), is called the open neighborhood sum of G w. r. t. the
coloring c. Further, a disconnected graph G is said to be magic sigma
colorable if each of its components is magic sigma colorable.

Here, it has to be noted that the magic sigma coloring of a graph
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need not be surjective. That is, all the elements in the co-domain, called
colors, need not be used in a magic sigma coloring.

Definition 2. Let G be a graph with c being a magic sigma coloring
of G. The c-color sum of G, denoted Sc(G), is the sum of the colors of
all the vertices in G, i.e., Sc(G) =

∑

v∈V (G)

c(v).

v1

v2 v3 v5v4

5

2 4 12

9

5 5 5 5
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9

9 9 9 9

The graph K1, 4 A coloring c1 of K1, 4 A coloring c2 of K1, 4

Figure 1. The graph K1,4 and its two colorings

To illustrate, consider the graph K1,4 and its two colorings c1 and
c2 in Fig. 1. Since σc1(v1) = 9 6= 5 = σc1(v4), c1 is not a magic sigma
coloring of K1,4. However, c2 is a magic sigma coloring of K1,4 as the
open neighborhood sum of each vertex w. r. t. c2 is the same.

It is easy to observe that some graphs are magic sigma colorable and
some others are not. For instance, consider the path P4 with V (P4) =
{v1, v2, v3, v4} and E(P4) = {v1v2, v2v3, v3v4}. Further, for a coloring
c to be a magic sigma coloring of P4, we must have Nc(v1) = Nc(v2) =
Nc(v3) = Nc(v4). However, Nc(v1) = c(v2) and Nc(v3) = c(v2) + c(v4).
Consequently, we need to have c(v2) + c(v4) = c(v2), i.e., c(v4) = 0.
This is not feasible as each color in a magic sigma coloring has to be
positive. Thus, P4 is not magic sigma colorable.
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2 Magic colorable graphs

We begin this section with some fundamental results pertaining to the
magic sigma colorability of a graph. Further, we discuss about some
particular families of graphs which are/are not magic sigma colorable.

Lemma 1. If a graph G has two vertices such that the open neighbor-
hood of one vertex is a proper subset of the other, then G is not magic
sigma colorable.

Proof. Let G be a graph having two vertices, say u and v, such that
N(u) ⊂ N(v). Then, σc(u) < σc(v) in any coloring c of G. Hence, G
is not magic sigma colorable.

Remark 1. The converse of the above lemma is not true. That is, it
is not necessary that, if the graph is not magic sigma colorable, then
there exist two of its vertices such that the open neighborhood of one
vertex is a proper subset of the other.

Proof. Consider the graph G1 in Figure 2. Suppose G1 is magic sigma

u r

st

qp

Figure 2. The graph G1

colorable. Then, there exists a magic sigma coloring, say c of G1 so that
σc(v) to be the same for all v ∈ V (G1). In particular, σc(w) = σc(p) =
σc(q) = σc(s) = σc(t) implies c(q) = c(r) = c(s) and c(p) = c(t) = c(u).

Similarly, σc(u) = σc(r) gives c(p) + c(t) = c(q) + c(s) so that
c(q) = c(r) = c(s) = c(p) = c(t) = c(u).
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Now, σc(u) = σc(w) gives c(t) + c(w) = c(r) which implies that
c(w) = 0, a contradiction since each color in a magic sigma coloring is
positive. Hence, G1 is not magic sigma colorable.

However, it is easy to observe that no two vertices of G1 are such
that the open neighborhood of one vertex is a proper subset of the
other.

Theorem 2. The star graph K1,n, n ≥ 1, is magic sigma colorable.

Proof. Consider a star graphK1,n with V (K1,n) = {v0, v1, · · · , vn} such
that v0 is the central vertex. Define a coloring c : V (K1,n) → {1, n} as

c(vi) =

{

n if i = 0
1 otherwise

.

It is easy to observe that σc(v0) = σc(v1) = · · · = σc(vn) = n. Hence,
K1,n is magic sigma colorable.

Lemma 2. A graph with a pendant vertex has a path of length three if
and only if it is not magic sigma colorable.

Proof. Consider a graph G with a pendant vertex v. Suppose G has a
path of length three. Since G is connected, there is a path of length
three starting from v. Let the path be v − w − x − u. Then, we have
N(v) ⊂ N(x). Therefore, by Lemma 1, G is not magic sigma colorable.

In order to prove the converse, we use the method of contraposition.
Suppose G has no path of length three. Then, diam(G) ≤ 2. Further,
G has no cycle. This implies that G is isomorphic to the star graph
K1,n, n ≥ 1 so that it is magic sigma colorable from Theorem 2.

Corollary 3. A graph G with diam(G) ≥ 3 and having a pendant
vertex is not magic sigma colorable.

As a direct consequence of Lemma 2, we have the following result.

Theorem 4. A non-trivial tree T is magic sigma colorable if and only
if T ∼= K1,n, n ≥ 1.
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Theorem 5. Every k-regular graph with k ≥ 1 is magic sigma col-
orable.

Theorem 6. The wheel graph Wn is magic sigma colorable.

Proof. Let Wn be wheel on n vertices v1, v2, · · · , vn, with v1 as the
central vertex and the vertices v2− v3−· · ·− vn− v2 forming the cycle.
Define a coloring c : V (Wn) → {1, n − 3} as

c(vi) =

{

n− 3, if i = 1
1, otherwise

.

It is easy to verify that c is a magic sigma coloring of Wn so that it is
magic sigma colorable.

Theorem 7. The complete k-partite graph Kn1,n2,··· ,nk
, k ≥ 2, is magic

sigma colorable, where each ni ≥ 1.

Proof. Consider the complete k-partite graph Kn1,n2,··· ,nk
, where each

ni ≥ 1. Without loss in generality, let n1 ≥ n2 ≥ · · · ≥ nk−1 ≥
nk. Let V1 = {v11, v12, · · · , v1n1

}, V2 = {v21, v22, · · · , v2n2
}, · · · , Vk =

{vk1, vk2, · · · , vknk
} be the k-partite sets of V (Kn1,n2,...,nk

).

Define a coloring c : V (Kn1,n2,··· ,nk
) → {1, 2, · · · , n1+n2+ · · ·+nk}

as

c(vij) =

{

n1 − j + 1 if j = ni

1 otherwise

for each i = 1, 2, · · · , k and j = 1, 2, · · · , ni.

By the definition of c, it follows that

σc(vij) =

k
∑

l(6=i)=1

nl
∑

m=1

c(vlm)

for each i = 1, 2, · · · , k and j = 1, 2, · · · , ni.

In particular, we have the following:
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i) For each j = 1, 2, · · · , n1,

σc(v1j) =
k
∑

l=2

nl
∑

m=1
c(vlm)

=
k
∑

l=2

nl−1
∑

m=1
c(vlm) +

k
∑

l=2

c(vlnl
)

=
k
∑

l=2

(nl − 1) +
k
∑

l=2

(n1 − nl + 1)

=
k
∑

l=2

n1 = (k − 1)n1.

ii) For each i = 2, 3, · · · , k and j = 1, 2, · · · , ni,

σc(vij) =
k
∑

l( 6=i)=1

nl
∑

m=1
c(vlm)

= n1 +
k
∑

l( 6=i)=2

nl−1
∑

m=1

c(vlm) +
k
∑

l( 6=i)=2

c(vlnl
)

= n1 +
k
∑

l( 6=i)=2

(nl − 1) +
k
∑

l( 6=i)=2

(n1 − nl + 1)

= n1 +
k
∑

l( 6=i)=2

n1

= n1 + (k − 2)n1 = (k − 1)n1.

Thus, we see that the open neighborhood sum of all vertices is the same
and is equal to (k−1)n1. As a result, the complete k-partite graphKn1,n2,··· ,nk

is magic sigma colorable.

Corollary 8. [10] If a graph G is such that a set consisting of any
two adjacent vertices in G forms a minimal dominating set of G, then
G is magic sigma colorable.

Theorem 9. The kth power graph P k
n of a path on n ≥ 3 vertices is

magic sigma colorable if and only if k = n− 2 or n− 1.

Proof. Consider the graph P k
n with V (P k

n ) = {v1, v2, · · · , vn}. Since
diam(Pn) = n− 1, we have k ≤ n− 1.

We prove the necessary part by the method of contraposition. Sup-
pose k ≤ n − 3. Then, we see that in the graph P k

n , N(v1) =
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{v2, v3, · · · , vk+1} and N(vk+2) = {v2, v3, · · · , vk+1, vk+3, vk+4, · · · ,
v2k+2} so that N(v1) ⊂ N(vk+2). Hence, by Lemma 1, P k

n is not
magic sigma colorable.

We prove the converse considering two cases as follows.

Case (1): k = n − 1. In this case, P k
n
∼= Kn so that by Theorem 5,

P k
n is magic sigma colorable.

Case (2): k = n− 2. Define a coloring c : V (P k
n ) → {1, 2} as

c(vi) =

{

1 if i = 1, n
2 otherwise

.

Since k = n− 2 = diam(Pn)− 1, v1 is adjacent to all the vertices
except vn and vice-versa. Further, each of the other vertices
is adjacent to all the vertices in P k

n . Thus, we have N(v1) =
N(vn) = {v2, v3, · · · , vn−1} so that σc(v1) = σc(vn) = 2(n − 2)
and N(vi) = V (P k

n ) so that σc(vi) = 1 + 2(n − 3) + 1 = 2(n− 2)
for each i = 2, 3, · · · , n− 1.

Consequently, P k
n is magic sigma colorable.

Theorem 10. Two graphs G and H are magic sigma colorable if and
only if G+H is magic sigma colorable.

Proof. Let G and H be magic sigma colorable with c1 and c2 be-
ing the magic sigma colorings of G and H respectively. Let k

and m be any non-negative integers such that k (Sc1(G)− σc1(G)) =
m (Sc2(H)− σc2(H)).

Let c be a coloring of G+H defined by

c(v) =

{

kc1(v) if v ∈ V (G)
mc2(v) if v ∈ V (H)

.

Then, we have, for any vertex v ∈ V (G+H), the following:

Case (1): If v ∈ V (G), then σc(v) = kσc1(G) +mSc2(H).

Case (2): If v ∈ V (H), then σc(v) = mσc2(G) + kSc1(G).
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It is easy to verify that the open neighborhood sum of every vertex in
G+H, w. r. t. c, is the same so that G+H is magic sigma colorable.

Conversely, suppose G +H is magic sigma colorable, with c being
a magic sigma coloring of G+H. Then, for two vertices u, v ∈ V (G),
we have σc(u) = σc(v).

This implies that

∑

x∈V (G)
(x,u)∈E(G)

c(x) + Sc(H) =
∑

y∈V (G)
(y,v)∈E(G)

c(y) + Sc(H)

so that
∑

x∈V (G)
(x,u)∈E(G)

c(x) =
∑

y∈V (G)
(y,v)∈E(G)

c(y)

which implies that σc(u)∣
∣G

= σc(v)∣
∣G

.

Thus, G is magic sigma colorable with the coloring c restricted to its
vertices. The magic sigma colorability of H follows similarly.

Theorem 11. A graph G is magic sigma colorable if and only if its
complement Ḡ is magic sigma colorable.

Proof. SupposeG is magic sigma colorable with c being its magic sigma
coloring.
Based on the fact that any graph G or its complement Ḡ is connected,
we consider the following cases:

Case (1): Suppose G and Ḡ are both connected.
Since G is magic sigma colorable, σc(u) = σc(v) ∀ u, v ∈ V (G)
so that
Sc(G) − σc(u) = Sc(G)− σc(v) ∀ u, v ∈ V (G).
This implies that c is a magic sigma coloring of Ḡ with Sc(G) −
σc(G) as its open neighborhood sum. Hence, Ḡ is magic sigma
colorable.

Case (2): Suppose G is connected, but Ḡ is disconnected.
LetH be an arbitrary component in Ḡ. Then, there exists an edge
between every vertex in V (H) and every vertex in V (G)− V (H)
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in G since H is a disconnected component of Ḡ.
Let u, v ∈ V (H) be arbitrary.
Then σc(u)∣

∣G
= σc(v)∣

∣G
so that Sc(G) − σc(u)∣

∣G
= Sc(G) −

σc(v)
∣

∣G
.

Choosing a coloring c1 of H such that σc1(v) = Sc(G)− σc(v)∣
∣G

,

for each v ∈ H, ensures that H is magic sigma colorable, which
in turn, implies that Ḡ is also magic sigma colorable.

Case (3): SupposeG is disconnected, but Ḡ is connected, andH1,H2,

· · · ,Hk are the components of G. Then, each Hi is trivial or
connected and is magic sigma colorable so that, from cases (1)
and (2), its complement H̄i is magic sigma colorable too. Further,
Ḡ = H1 + H2 + · · · + Hk, so that, by Theorem 10, Ḡ is magic
sigma colorable.

3 Magic sigma chromatic number of some

graphs

In this section, we define the magic sigma chromatic number of a graph
which is magic sigma colorable. Further, we determine this parameter
for some classes of graphs.

Definition 3. Suppose a graph G is magic sigma colorable. Then, the
least k for which G admits a magic sigma coloring is called the magic
sigma chromatic number of G, denoted by σm(G).

Observation 12. If a graph G is magic sigma colorable, then σm(G) ≥
1.

Theorem 13. A graph G is regular if and only if σm(G) = 1.

Proof. Suppose G is a regular graph. Then, by Theorem 5, G is magic
sigma colorable. Further, the coloring c : V (G) → {1} is a magic sigma
coloring of G so that σm(G) = 1.

266



Magic Sigma Coloring of a Graph

Conversely, let G be a graph with σm(G) = 1. Then, there exists a
magic sigma coloring, say c : V (G) → {1} i. e., every vertex is given
the same color 1 in G. Suppose G is not regular. Then, there exist
at least two vertices, say u and v, such that deg(u) 6= deg(v). Then,
σc(u) 6= σc(v), a contradiction to the fact that c is a magic sigma
coloring of G. Thus, G is a regular graph.

Lemma 3. For a star graph K1,n, n ≥ 1, σm(K1,n) = n.

Proof. Let V (K1,n) = {v0, v1, · · · , vn} such that v0 is the central vertex.
By Theorem 2, K1,n is magic sigma colorable and uses n colors. Thus,
σm(K1,n) ≤ n.

For n = 1, we have K1,1
∼= P2 so that σm(K1,1) = 1 by Theorem 7.

Consider the case n ≥ 2. For a coloring c of K1,n to be a magic sigma
coloring, we must have σc(vi) = σc(vj) for all i, j = 0, 1, · · · , n. Also,

we have σc(v0) =
n
∑

i=1
c(vi) and σc(vi) = c(v0) for each i = 1, 2, · · · , n.

Thus, c(v0) =
n
∑

i=1
c(vi) ≥ n since each color is positive. Consequently,

σm(K1,n) ≥ n. Therefore, σm(K1,n) = n.

Theorem 14. The magic sigma chromatic number of the complete k-
partite graph Kn1,n2,··· ,nk

with k ≥ 2 and ni ≥ ni+1 ≥ 1, i = 1, 2, · · · k−
1, is ⌈n1

nk
⌉.

Proof. Consider the complete k-partite graph Kn1,n2,··· ,nk
with 1 ≥

ni ≥ ni+1, i = 1, 2, · · · k − 1. Let V be the vertex set of Kn1,n2,··· ,nk

with V1 = {v11, v12, · · · , v1n1
}, V2 = {v21, v22, · · · , v2n2

}, . . ., Vk =
{vk1, vk2, · · · , vknk

} being its k-partite sets.

By Theorem 7, Kn1,n2,··· ,nk
is magic sigma colorable. For a coloring

c to be a magic sigma coloring of Kn1,n2,··· ,nk
, we should have σc(u) =

σc(v) for all u, v ∈ V . In particular, σc(u) = σc(v) for all u ∈ V1 and
v ∈ Vk. This implies that

∑

vij∈V (i 6=1)

c(vij) =
∑

vij∈V (i 6=k)

c(vij).
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Simplifying, we get
nk
∑

l=1

c(vkl) =
n1
∑

m=1
c(v1m) ≥ n1 since each color is

positive. Thus, by the generalized pigeon hole principle, we see that
there exists at least one vertex v ∈ Vk with c(v) ≥ ⌈n1

nk
⌉. We therefore

conclude that σm(Kn1,n2,··· ,nk
) ≥ ⌈n1

nk
⌉.

To prove the reverse inequality, define c : V → {1, 2, · · · , ⌈n1

nk
⌉} as

c(vij) =



















⌈n1

ni
⌉, if j = 1











n1−
j−1∑

m=1

c(vim)

ni−j+1











, otherwise

for each i = 1, 2, · · · , k.
By the definition of c, we see that c(vk1) = ⌈n1

nk
⌉ ≥ c(vij) for all i, j

so that the greatest color used in c is ⌈n1

nk
⌉. Further, it is easy to

observe that c is a magic sigma coloring of Kn1,n2,··· ,nk
. Consequently,

σm(Kn1,n2,··· ,nk
) ≤ ⌈n1

nk
⌉.

Therefore, σm(Kn1,n2,··· ,nk
) = ⌈n1

nk
⌉.

Conclusion The concept of magic sigma coloring of graphs has
been introduced in this paper. Some families of graphs which are/are
not magic sigma colorable have been identified. Further, the magic
sigma chromatic number of some such graphs have been established. As
a continuation of the work carried out in the paper, one can attempt to
characterize magic sigma colorable graphs. Also, graphs with a specific
magic sigma chromatic number can be constructed. Further, forbidden
graphs pertaining to magic sigma coloring can be identified.
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[3] S. Czerwiński, J. Grytczuk, and W. Zelazny, “Lucky labelings of
graphs,” Inform. Process. Lett., vol. 109, no. 18, pp. 1078–1081,
2009.

[4] A. Dehghan, M. R. Sadeghi, and A. Ahadi, “The Complexity of
the Sigma Chromatic Number of Cubic Graphs,” 2014, ArXiv
abs/1403.6288.

[5] A. Dehghan, M. R. Sadeghi, and A. Ahadi, “Sigma Partition-
ing: Complexity and Random Graphs,” Discrete Mathematics and
Theoretical Computer Science, vol. 20, no. 2, 2018, #19.

[6] A. D. Garciano, M. C. T. Lagura, and R. M. Marcelo, “On the
sigma chromatic number of the join of a finite number of paths and
cycles,” Asian-European Journal of Mathematics, 2021, Article no.
2150019.

[7] L. G. S. Gonzaga and S. M. Almeida, “Sigma Coloring on Pow-
ers of Paths and Some Families of Snarks,” Electronic Notes in
Theoritical Computer Science, vol. 346, pp. 485–496, 2019. DOI:
10.1016/j.entcs.2019.08.043.

[8] F. Harary, Graph theory, Avalon Publishing, 1969, 274 p. ISBN-10:
0201410338, ISBN-13: 9780201410334.

[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Com-
prehensive Introduction, Revised, Subsequent Edition, Academic
Press, 1994, 249 p. ISBN-10: 0123285534, ISBN-13: 978-
0123285539.

269



N. N. Swamy, B. Sooryanarayana, S. P. A. Prasad

[10] S. R. Jayaram, “Minimal dominating sets of cardinality two in a
graph,” Ind. J. of Pure and App. Math., vol. 28, no. 1, pp. 43–46,
1997.

[11] N. Narahari, B. Sooryanarayana, and K. N. Geetha, “Open Neigh-
borhood Chromatic Number of an Antiprism graph,” Appl. Math.
E-Notes, vol. 15, pp. 54–62, 2015.

[12] N. Narahari and B. Sooryanarayana, “Open Neighbourhood Col-
oring of some Path related graphs,” Eurasian Math. Journal, vol.
6, no. 4, pp. 77–91, 2015.

[13] B. Sooryanarayana and N. Narahari, “The Neighborhood Pseu-
dochromatic Number of a Graph,” Int. J. Math. Comb., vol. 4,
pp. 92–99, 2014.

Narahari Narasimha Swamy, Badekara Sooryanarayana, Received May 31, 2020

Akshara Prasad S. P. Accepted April 27, 2021

Narahari Narasimha Swamy

Department of Mathematics

University College of Science

Tumkur University, Tumakuru - 572103

Karnataka, India

Phone:+919739482878

E–mail: narahari nittur@yahoo.com

Badekara Sooryanarayana

Department of Mathematical and Computational Studies

Dr. Ambedkar Institute of Technology, Bengaluru - 560056

Karnataka, India

Phone:+919844236450

E–mail: dr bsnrao@yahoo.co.in

Akshara Prasad S. P.

Department of Mathematics

University College of Science

Tumkur University, Tumakuru - 572103

Karnataka, India

Phone:+9190355 83206

E–mail: akshara.prasad.sp@gmail.com

270


