Authors: Andrei Perjan, Galina Rusu
Abstract
We study the behavior of solutions to the problem
$$ \left\{ \begin{array}{l} \varepsilon u''_{\varepsilon}(t)+u'_{\varepsilon}(t)+ A(t)u _{\varepsilon}(t)=f_{\varepsilon}(t),\quad t \in (0,T), \\ u_{\varepsilon}(0)=u_{0\varepsilon},\quad u'_{\varepsilon}(0)=u_{1\varepsilon},\
\end{array}
\right.
$$ in the Hilbert space H as $\varepsilon\to0$, where $A(t), t \in (0,\infty),$ is a family of linear self-adjoint operators.
Department of Mathematics and Informatics
Moldova State University
A.Mateevici str. 60, MD 2009, Chisinau
Moldova
E-mail: ,
Fulltext

–
0.18 Mb