Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system

Andrei Perjan, Galina Rusu*

Abstract

We study the behavior of solutions to the problem $$
\left\{\begin{array}{l} \varepsilon u_{\varepsilon}^{\prime \prime}(t)+u_{\varepsilon}^{\prime}(t)+A(t) u_{\varepsilon}(t)=f_{\varepsilon}(t), \quad t \in(0, T) \\ u_{\varepsilon}(0)=u_{0 \varepsilon}, \quad u_{\varepsilon}^{\prime}(0)=u_{1 \varepsilon} \end{array}\right.
$$ in the Hilbert space H as $\varepsilon \rightarrow 0$, where $A(t), t \in(0, \infty)$, is a family of linear self-adjoint operators.

Mathematics subject classification: 35B25, 35K15, 35L15, 34G10. Keywords and phrases: Singular perturbation, abstract second order Cauchy problem, boundary layer function, a priori estimate.

1 Introduction

Let H be a real Hilbert space endowed with the scalar product (\cdot, \cdot) and the norm $|\cdot|$, and V is also a real Hilbert space endowed with the norm $\|\cdot\|$. Let $A(t): V \subset H \rightarrow H, t \in[0, \infty)$, be a family of linear self-adjoint operators. Consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
\varepsilon u_{\varepsilon}^{\prime \prime}(t)+u_{\varepsilon}^{\prime}(t)+A(t) u_{\varepsilon}(t)=f_{\varepsilon}(t), \quad t \in(0, T), \\
u_{\varepsilon}(0)=u_{0 \varepsilon}, \quad u_{\varepsilon}^{\prime}(0)=u_{1 \varepsilon},
\end{array}\right.
$$

where $\varepsilon>0$ is a small parameter $(\varepsilon \ll 1), u_{\varepsilon}, f_{\varepsilon}:[0, T) \rightarrow H$.
We investigate the behavior of solutions u_{ε} to the problems $\left(P_{\varepsilon}\right)$ when $u_{0 \varepsilon} \rightarrow u_{0}$, $f_{\varepsilon} \rightarrow f$ as $\varepsilon \rightarrow 0$. We establish a relationship between solutions to the problems $\left(P_{\varepsilon}\right)$ and the corresponding solution to the following unperturbed problem:

$$
\left\{\begin{array}{l}
v^{\prime}(t)+A(t) v(t)=f(t), \quad t \in(0, T), \tag{0}\\
v(0)=u_{0} .
\end{array}\right.
$$

If in some topology the solutions u_{ε} to the perturbed problems $\left(P_{\varepsilon}\right)$ tend to the corresponding solution v to the unperturbed problem $\left(P_{0}\right)$ as $\varepsilon \rightarrow 0$, then the problem $\left(P_{0}\right)$ is called regularly perturbed. In the opposite case the problem $\left(P_{0}\right)$ is called singularly perturbed. In the last case a subset of $[0, \infty)$ arises in which solutions u_{ε} have a singular behavior relative to ε. This subset is called the boundary layer. The function which defines the singular behavior of solution u_{ε} within the boundary layer is called the boundary layer function.

[^0]In Theorems 5.1 and 5.2 we prove that solutions u_{ε} to the perturbed problem $\left(P_{\varepsilon}\right)$ tend to the solution v to the unperturbed problem P_{0} in the norm of the space $C([0, T] ; H)$, as $\varepsilon \rightarrow 0$. At the same time in the space $C^{1}([0, T] ; H)$ the solution u_{ε} has a singular behavior relative to parameter ε in the neighbourhood of $t=0$.

The problem $\left(P_{\varepsilon}\right)$ is an abstract model of singularly perturbed problems of hyperbolic-parabolic type. Such kind of problems arises in the mathematical modeling of elasto-plasticity phenomena.

A large class of works is dedicated to the study of singularly perturbed Cauchy problems for differential equations of second order. Without pretending to a complete analysis of these works, we will mention some of them, which contain a rich bibliography. In $[9,10,17]$, some asymptotic expansions of the solutions to linear wave equations and their derivatives have been obtained. In $[1,2,4,8,15,16]$ nonlinear problems of hyperbolic-parabolic type have been studied. Nonlinear abstract problems of hyperbolic-parabolic type have been studied in [5-7,12].

Unlike other methods, our approach is based on two key points. The first one is the relationship between solutions to the problems $\left(P_{\varepsilon}\right)$ and $\left(P_{0}\right)$ in the linear case. The second key point consists of a priori estimates of solutions to the unperturbed problem, which are uniform with respect to small parameter ε. Moreover, the problem $\left(P_{\varepsilon}\right)$ is studied for a larger class of functions f_{ε}, i. e. $f_{\varepsilon} \in W^{1, p}(0, T ; H)$. Also we obtain the convergence rate, as $\varepsilon \rightarrow 0$.

In what follows we will need some notations. Let $k \in N^{*}, 1 \leq p \leq+\infty$, $(a, b) \subset(-\infty,+\infty)$ and X be a Banach space. By $W^{k, p}(a, b ; X)$ denote the Banach space of vectorial distributions $u \in D^{\prime}(a, b ; X), u^{(j)} \in L^{p}(a, b ; X), j=0,1, \ldots, k$, endowed with the norm

$$
\begin{gathered}
\|u\|_{W^{k, p}(a, b ; X)}=\left(\sum_{j=0}^{k}\left\|u^{(j)}\right\|_{L^{p}(a, b ; X)}^{p}\right)^{\frac{1}{p}} \quad \text { for } \quad p \in[1, \infty), \\
\|u\|_{W^{k, \infty}(a, b ; X)}=\max _{0 \leq j \leq k}\left\|u^{(j)}\right\|_{L^{\infty}(a, b ; X)} \quad \text { for } \quad p=\infty .
\end{gathered}
$$

In the particular case $p=2$ we put $W^{k, 2}(a, b ; X)=H^{k}(a, b ; X)$. If X is a Hilbert space, then $H^{k}(a, b ; X)$ is also a Hilbert space with the scalar product

$$
(u, v)_{H^{k}(a, b ; X)}=\sum_{j=0}^{k} \int_{a}^{b}\left(u^{(j)}(t), v^{(j)}(t)\right)_{X} d t .
$$

For $s \in \mathbb{R}, k \in \mathbb{N}$ and $p \in[1, \infty]$ define the Banach spaces

$$
W_{s}^{k, p}(a, b ; H)=\left\{f:(a, b) \rightarrow H ; f^{(l)}(\cdot) e^{-s t} \in L^{p}(a, b ; X), l=0, \ldots, k\right\},
$$

with the norms

$$
\|f\|_{W_{s}^{k, p}(a, b ; X)}=\left\|f e^{-s t}\right\|_{W^{k, p}(a, b ; X)} .
$$

The framework of our paper will be determined by the following conditions:
(H1) V is separable and $V \subset H$ densely and continuously, i.e.

$$
|u|^{2} \leq \gamma\|u\|^{2}, \quad \forall u \in V
$$

(H2) For each $u, v \in V$ the function $t \mapsto(A(t) u, v)$ is continuously differentiable on $(0, \infty)$ and

$$
\left|\left(A^{\prime}(t) u, v\right)\right| \leq a_{0}|u||v|, \quad \forall u, v \in V, \quad \forall t \in[0, \infty) ;
$$

(H3) The operators $A(t): V \subset H \rightarrow H, t \in[0, \infty)$ are linear, self-adjoint and positive definite, i.e. there exists $\omega>0$ such that

$$
(A(t) u, u) \geq \omega\|u\|^{2}, \quad \forall u \in V, \quad \forall t \in[0, \infty) .
$$

(H4) For each $u, v \in V$ the function $t \mapsto(A(t) u, v)$ is twice continuously differentiable on $(0, \infty)$ and

$$
\left|\left(A^{\prime \prime}(t) u, v\right)\right| \leq a_{1}|u||v|, \quad \forall u, v \in V, \quad \forall t \in[0, \infty)
$$

2 Existence of solutions to problems ($\boldsymbol{P}_{\varepsilon}$) and (\boldsymbol{P}_{0})

In [11] the following results concerning the solvability of problems $\left(P_{\varepsilon}\right)$ and $\left(P_{0}\right)$ are proved.

Theorem 2.1. Let $T>0$. Let us assume that the conditions $\mathbf{(H 1) , ~ (H 2) ~ a n d ~ (H 3) ~}$ are fulfilled. If $u_{0 \varepsilon} \in V, u_{1 \varepsilon} \in H$ and $f_{\varepsilon} \in L^{2}(0, T ; H)$, then there exists the unique function $u_{\varepsilon} \in W^{2,2}(0, T ; H) \bigcap L^{2}(0, T ; V), A(\cdot) u_{\varepsilon} \in L^{2}(0, T ; H)$ (strong solution) which satisfies the equation a.e. on $(0, T)$ and the initial conditions from $\left(P_{\varepsilon}\right)$.

If, in addition, $u_{1 \varepsilon} \in V, f_{\varepsilon}(0)-A(0) u_{0 \varepsilon} \in V, f_{\varepsilon} \in W^{2,1}(0, T ; H)$, then $A(\cdot) u_{\varepsilon} \in W^{1,2}(0, T ; H)$ and $u_{\varepsilon} \in W^{3,2}(0, T ; H) \bigcap W^{1,2}(0, T ; H)$.

Theorem 2.2. Let $T>0$. Let us assume that the conditions (H1), (H2) and (H3) are fulfilled. If $u_{0 \varepsilon} \in H$, and $f_{\varepsilon} \in L^{2}(0, T ; H)$, then there exists the unique function $u_{\varepsilon} \in W^{2,2}(0, T ; H) \bigcap L^{2}(0, T ; V)$ which satisfies a.e. on $(0, T)$ the equation and the initial conditions from $\left(P_{0}\right)$.

3 A priori estimates for solutions to the problem ($\boldsymbol{P}_{\varepsilon}$)

In what follows, we will give some a priori estimates of solutions to the problem $\left(P_{\varepsilon}\right)$.

Lemma 3.1. Let us assume that conditions (H1), (H2) and (H3) are fulfilled. If $u_{0 \varepsilon} \in V, u_{1 \varepsilon} \in H$ and $f_{\varepsilon} \in L^{2}(0, \infty ; H)$, then there exists a constant $C=C\left(\gamma, a_{0}, \omega\right)>0$ such that for every solution u_{ε} to the problem $\left(P_{\varepsilon}\right)$ the estimate

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{C([0, t] ; H)}+\left\|A^{1 / 2}(\cdot) u_{\varepsilon}\right\|_{L^{2}([0, t] ; H)} \leq C M_{0 \varepsilon}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{3.1}
\end{equation*}
$$

is valid, where

$$
M_{0 \varepsilon}=\left|A^{1 / 2}(0) u_{0 \varepsilon}\right|+\varepsilon\left|u_{1 \varepsilon}\right|+\left\|f_{\varepsilon}\right\|_{L^{2}(0, \infty ; H)}, \quad \varepsilon_{0}=\min \left\{1, \frac{\omega}{2 \gamma a_{0}}\right\} .
$$

If, in addition, $u_{1 \varepsilon} \in V$ and $f_{\varepsilon} \in W^{1,2}(0, \infty ; H)$ then

$$
\begin{gather*}
\left\|u_{\varepsilon}^{\prime}\right\|_{C([0, t] ; H)}+\left\|A^{1 / 2}(\cdot) u_{\varepsilon}^{\prime}\right\|_{L^{2}([0, t] ; H)} \leq C M_{\varepsilon}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{3.2}\\
M_{\varepsilon}=\left|A(0) u_{0 \varepsilon}\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+\left\|f_{\varepsilon}\right\|_{W^{1,2}(0, \infty ; H)}
\end{gather*}
$$

Proof. Proof of estimate (3.1). Denote by

$$
\begin{gather*}
E(u, t)=\varepsilon^{2}\left|u^{\prime}(t)\right|^{2}+\frac{1}{2}|u(t)|^{2}+\varepsilon(A(t) u(t), u(t))+\varepsilon \int_{0}^{t}\left|u^{\prime}(\tau)\right|^{2} d \tau \\
+\varepsilon\left(u(t), u^{\prime}(t)\right)+\int_{0}^{t}(A(\tau) u(\tau), u(\tau)) d \tau \tag{3.3}
\end{gather*}
$$

For every strong solution u_{ε} to problem $\left(P_{\varepsilon}\right)$ we have

$$
\begin{gathered}
\frac{d}{d t} E\left(u_{\varepsilon}, t\right)=2 \varepsilon^{2}\left(u_{\varepsilon}^{\prime \prime}(t), u_{\varepsilon}^{\prime}(t)\right)+\left(u_{\varepsilon}^{\prime}(t), u_{\varepsilon}(t)\right)+2 \varepsilon\left(A(t) u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right) \\
+\varepsilon\left(A^{\prime}(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right)+\varepsilon\left|u_{\varepsilon}(t)\right|^{2}+\varepsilon\left|u_{\varepsilon}^{\prime}(t)\right|^{2}+\varepsilon\left(u_{\varepsilon}^{\prime \prime}(t), u_{\varepsilon}(t)\right)+\left(A(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right) \\
=2 \varepsilon\left(u_{\varepsilon}^{\prime}(t), f_{\varepsilon}(t)-u_{\varepsilon}^{\prime}(t)-A(t) u_{\varepsilon}(t)\right)+\left(u_{\varepsilon}^{\prime}(t), u_{\varepsilon}(t)\right) \\
+2 \varepsilon\left(A(t) u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)+\varepsilon\left(A^{\prime}(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right)+2 \varepsilon\left|u_{\varepsilon}^{\prime}(t)\right|^{2}+\left(A(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right) \\
+\left(u_{\varepsilon}(t), f_{\varepsilon}(t)-u_{\varepsilon}^{\prime}(t)-A(t) u_{\varepsilon}(t)\right) \\
=\left(f_{\varepsilon}(t), u_{\varepsilon}(t)+2 \varepsilon u_{\varepsilon}^{\prime}(t)\right)+\varepsilon\left(A^{\prime}(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right), \quad \forall t \geq 0 .
\end{gathered}
$$

Thus

$$
\frac{d}{d t} E\left(u_{\varepsilon}, t\right)=\left(f_{\varepsilon}(t), u_{\varepsilon}(t)+2 \varepsilon u_{\varepsilon}^{\prime}(t)\right)+\varepsilon\left(A^{\prime}(t) u_{\varepsilon}(t), u_{\varepsilon}(t)\right), \quad \forall t \geq 0
$$

Integrating on $(0, t)$ we get

$$
\begin{aligned}
E\left(u_{\varepsilon}, t\right) & =E\left(u_{\varepsilon}, 0\right)+\int_{0}^{t}\left(f_{\varepsilon}(\tau), u_{\varepsilon}(\tau)+2 \varepsilon u_{\varepsilon}^{\prime}(\tau)\right) d \tau \\
& +\varepsilon \int_{0}^{t}\left(A^{\prime}(\tau) u_{\varepsilon}(\tau), u_{\varepsilon}(\tau)\right) d \tau, \quad \forall t \geq 0
\end{aligned}
$$

Let us observe that

$$
\int_{0}^{t}\left|f_{\varepsilon}(\tau) \| u_{\varepsilon}(\tau)\right| d \tau \leq \frac{1}{2} \int_{0}^{t}\left(A(\tau) u_{\varepsilon}(\tau), u_{\varepsilon}(\tau)\right) d \tau+\frac{\gamma}{2 \omega} \int_{0}^{t}\left|f_{\varepsilon}(\tau)\right|^{2} d \tau
$$

$$
\begin{gathered}
2 \varepsilon \int_{0}^{t}\left|f_{\varepsilon}(\tau)\right|\left|u_{\varepsilon}^{\prime}(\tau)\right| d \tau \leq \varepsilon^{2} \int_{0}^{t}\left|u_{\varepsilon}^{\prime}(\tau)\right|^{2} d \tau+\int_{0}^{t}\left|f_{\varepsilon}(\tau)\right|^{2} d \tau \\
\varepsilon \int_{0}^{t}\left|\left(A^{\prime}(\tau) u_{\varepsilon}(\tau), u_{\varepsilon}(\tau)\right)\right| d \tau \leq \frac{a_{0} \gamma}{\omega} \varepsilon \int_{0}^{t}\left(A(\tau) u_{\varepsilon}(\tau), u_{\varepsilon}(\tau)\right) d \tau, \quad \forall t \geq 0
\end{gathered}
$$

Thus
$E\left(u_{\varepsilon}, t\right) \leq C\left(\gamma, a_{0}, \omega\right)\left[E\left(u_{\varepsilon}, 0\right)+\left\|f_{\varepsilon}\right\|_{L^{2}(0, t ; H)}^{2}\right], \forall t \geq 0, \forall 0<\varepsilon<\varepsilon_{0}=\min \left\{1, \frac{\omega}{2 \gamma a_{0}}\right\}$.
Using the Brézis' Lemma (see, e. g., [13]), the estimate (3.1) is a simple consequence of the last inequality.

The proof of estimate (3.2) is similar to the proof of (3.1) if we denote by $y_{\varepsilon}=u_{\varepsilon}^{\prime}$, which is the solution to the problem

$$
\left\{\begin{array}{l}
\varepsilon y_{\varepsilon}^{\prime \prime}(t)+y_{\varepsilon}^{\prime}(t)+A(t) y_{\varepsilon}(t)=f_{\varepsilon}^{\prime}(t)-A^{\prime}(t) u_{\varepsilon}(t), \quad t \in(0, \infty) \\
y_{\varepsilon}(0)=u_{1 \varepsilon}, \quad y_{\varepsilon}^{\prime}(0)=\frac{1}{\varepsilon}\left(f_{\varepsilon}(0)-u_{1 \varepsilon}-A(0) u_{0 \varepsilon}\right)
\end{array}\right.
$$

Let u_{ε} be the strong solution to the problem $\left(P_{\varepsilon}\right)$ and let us denote by

$$
\begin{equation*}
z_{\varepsilon}(t)=u_{\varepsilon}^{\prime}(t)+h_{\varepsilon} e^{-t / \varepsilon}, \quad h_{\varepsilon}=f_{\varepsilon}(0)-u_{1 \varepsilon}-A(0) u_{0 \varepsilon} . \tag{3.4}
\end{equation*}
$$

Similarly to Lemma 3.1, for the function z_{ε} we obtain the following result:
Lemma 3.2. Let us assume that conditions (H1)-(H4) are fulfilled. If $f_{\varepsilon}(0)-A(0) u_{0 \varepsilon}, u_{1 \varepsilon} \in V$ and $f_{\varepsilon} \in W^{1,2}(0, \infty ; H)$, then there exist constants $C=C\left(\gamma, \omega, a_{0}, a_{1}\right)>0$ and $\varepsilon_{0}=\varepsilon_{0}\left(\gamma, \omega, a_{0}, a_{1}\right) \in(0 ; 1)$ such that for z_{ε}, defined by (3.4), the estimate

$$
\begin{equation*}
\left\|A^{1 / 2}(\cdot) z_{\varepsilon}\right\|_{C(0, t ; H)}+\left\|z_{\varepsilon}^{\prime}\right\|_{L^{2}(0, t ; H)} \leq C M_{1 \varepsilon}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{3.5}
\end{equation*}
$$

is valid, where
$M_{1 \varepsilon}=\left|A^{1 / 2}(0)\left(f_{\varepsilon}(0)-A(0) u_{0 \varepsilon}\right)\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+| | A(t) h_{\varepsilon}\left\|_{L^{2}(0, \infty ; H)}+\right\| f_{\varepsilon} \|_{W^{2,2}(0, \infty ; H)}$.

4 The relationship between the solutions to the problems $\left(P_{\varepsilon}\right)$ and (P_{0}) in the linear case

Now we are going to present the relationship between solutions to the problem $\left(P_{\varepsilon}\right)$ and the corresponding solutions to the problem $\left(P_{0}\right)$. This relationship was established in the work [14]. To this end we define the kernel of the transformation which realizes this relationship.

For $\varepsilon>0$ denote

$$
K(t, \tau, \varepsilon)=\frac{1}{2 \sqrt{\pi} \varepsilon}\left(K_{1}(t, \tau, \varepsilon)+3 K_{2}(t, \tau, \varepsilon)-2 K_{3}(t, \tau, \varepsilon)\right),
$$

where

$$
\begin{gathered}
K_{1}(t, \tau, \varepsilon)=\exp \left\{\frac{3 t-2 \tau}{4 \varepsilon}\right\} \lambda\left(\frac{2 t-\tau}{2 \sqrt{\varepsilon t}}\right), \\
K_{2}(t, \tau, \varepsilon)=\exp \left\{\frac{3 t+6 \tau}{4 \varepsilon}\right\} \lambda\left(\frac{2 t+\tau}{2 \sqrt{\varepsilon t}}\right), \\
K_{3}(t, \tau, \varepsilon)=\exp \left\{\frac{\tau}{\varepsilon}\right\} \lambda\left(\frac{t+\tau}{2 \sqrt{\varepsilon t}}\right), \quad \lambda(s)=\int_{s}^{\infty} e^{-\eta^{2}} d \eta .
\end{gathered}
$$

The properties of kernel $K(t, \tau, \varepsilon)$ are collected in the following lemma.
Lemma 4.1. The function $K(t, \tau, \varepsilon)$ possesses the following properties:
(i) $K \in C([0, \infty) \times[0, \infty)) \cap C^{2}((0, \infty) \times(0, \infty))$;
(ii) $K_{t}(t, \tau, \varepsilon)=\varepsilon K_{\tau \tau}(t, \tau, \varepsilon)-K_{\tau}(t, \tau, \varepsilon), \quad \forall t>0, \quad \forall \tau>0$;
(iii) $\varepsilon K_{\tau}(t, 0, \varepsilon)-K(t, 0, \varepsilon)=0, \quad \forall t \geq 0$;
(iv) $K(0, \tau, \varepsilon)=\frac{1}{2 \varepsilon} \exp \left\{-\frac{\tau}{2 \varepsilon}\right\}, \quad \forall \tau \geq 0$;
(v) For every $t>0$ fixed and every $q, s \in \mathbb{N}$ there exist constants $C_{1}(q, s, t, \varepsilon)>0$ and $C_{2}(q, s, t)>0$ such that

$$
\left|\partial_{t}^{s} \partial_{\tau}^{q} K(t, \tau, \varepsilon)\right| \leq C_{1}(q, s, t, \varepsilon) \exp \left\{-C_{2}(q, s, t) \tau / \varepsilon\right\}, \quad \forall \tau>0
$$

Moreover, for $\gamma \in \mathbb{R}$ there exist C_{1}, C_{2} and ε_{0}, all of them positive and depending on γ, such that the following estimates are fulfilled:

$$
\begin{array}{ll}
\int_{0}^{\infty} e^{\gamma \tau}\left|K_{t}(t, \tau, \varepsilon)\right| d \tau \leq C_{1} \varepsilon^{-1} e^{C_{2} t}, & \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0 \\
\int_{0}^{\infty} e^{\gamma \tau}\left|K_{\tau}(t, \tau, \varepsilon)\right| d \tau \leq C_{1} \varepsilon^{-1} e^{C_{2} t}, & \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0 \\
\int_{0}^{\infty} e^{\gamma \tau}\left|K_{\tau \tau}(t, \tau, \varepsilon)\right| d \tau \leq C_{1} \varepsilon^{-2} e^{C_{2} t}, & \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0
\end{array}
$$

(vi) $K(t, \tau, \varepsilon)>0, \quad \forall t \geq 0, \quad \forall \tau \geq 0$;
(vii) For every continuous function $\varphi:[0, \infty) \rightarrow H$ with $|\varphi(t)| \leq M \exp \{\gamma t\}$ the following equality is true:

$$
\lim _{t \rightarrow 0}\left|\int_{0}^{\infty} K(t, \tau, \varepsilon) \varphi(\tau) d \tau-\int_{0}^{\infty} e^{-\tau} \varphi(2 \varepsilon \tau) d \tau\right|=0, \text { for every } \varepsilon \in\left(0,(2 \gamma)^{-1}\right)
$$

(viii)

$$
\int_{0}^{\infty} K(t, \tau, \varepsilon) d \tau=1, \quad \forall t \geq 0
$$

(ix) Let $\gamma>0$ and $q \in[0,1]$. There exist C_{1}, C_{2} and ε_{0} all of them positive and depending on γ and q, such that the following estimates are fulfilled:

$$
\int_{0}^{\infty} K(t, \tau, \varepsilon) e^{\gamma \tau}|t-\tau|^{q} d \tau \leq C_{1} e^{C_{2} t} \varepsilon^{q / 2}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t>0
$$

If $\gamma \leq 0$ and $q \in[0,1]$, then

$$
\int_{0}^{\infty} K(t, \tau, \varepsilon) e^{\gamma \tau}|t-\tau|^{q} d \tau \leq C \varepsilon^{q / 2}(1+\sqrt{t})^{q}, \quad \forall \varepsilon \in(0,1], \quad \forall t \geq 0
$$

(x) Let $p \in(1, \infty]$ and $f:[0, \infty) \rightarrow H, f(t) \in W_{\gamma}^{1, p}(0, \infty ; H)$. If $\gamma>0$, then there exist C_{1}, C_{2} and ε_{0} all of them positive and depending on γ and p, such that

$$
\begin{gathered}
\left|f(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) f(\tau) d \tau\right| \\
\leq C_{1} e^{C_{2} t}\left\|f^{\prime}\right\|_{L_{\gamma}^{p}(0, \infty ; H)} \varepsilon^{(p-1) / 2 p}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0 .
\end{gathered}
$$

If $\gamma \leq 0$, then

$$
\begin{gathered}
\left|f(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) f(\tau) d \tau\right| \\
\leq C(\gamma, p)\left\|f^{\prime}\right\|_{L_{\gamma}^{p}(0, \infty ; H)}(1+\sqrt{t})^{\frac{p-1}{p}} \varepsilon^{(p-1) / 2 p}, \quad \forall \varepsilon \in(0,1], \quad \forall t \geq 0 .
\end{gathered}
$$

(xi) For every $q>0$ and $\alpha \geq 0$ there exists a constant $C(q, \alpha)>0$ such that

$$
\int_{0}^{t} \int_{0}^{\infty} K(\tau, \theta, \varepsilon) e^{-q \theta / \varepsilon}|\tau-\theta|^{\alpha} d \theta d \tau \leq C(q, \alpha) \varepsilon^{1+\alpha}, \forall \varepsilon>0, \forall t \geq 0
$$

(xii) Let $f \in W_{\gamma}^{1, \infty}(0, \infty ; H)$ with $\gamma \geq 0$. There exist positive constants C_{1}, C_{2} and ε_{0}, depending on γ, such that

$$
\left|\int_{0}^{\infty} K_{t}(t, \tau, \varepsilon) f(\tau) d \tau\right| \leq C_{1} e^{C_{2} t}\left\|f^{\prime}\right\|_{L_{\gamma}^{\infty}(0, \infty ; H)}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0
$$

Theorem 4.1. Let us assume that operators $A(t), t \in[0, \infty)$, verify conditions (H1)-(H3) and $f_{\varepsilon} \in L_{\gamma}^{\infty}(0, \infty ; H)$ for some $\gamma \geq 0$. If u_{ε} is the strong solution to the problem $\left(P_{\varepsilon}\right)$, with $u_{\varepsilon} \in W_{\gamma}^{2, \infty}(0, \infty ; H) \cap L_{\gamma}^{\infty}(0, \infty ; H), A u_{\varepsilon} \in L_{\gamma}^{\infty}(0, \infty ; H)$, then for every $0<\varepsilon<(4 \gamma)^{-1}$ the function w_{ε}, defined by

$$
w_{\varepsilon}(t)=\int_{0}^{\infty} K(t, \tau, \varepsilon) u_{\varepsilon}(\tau) d \tau
$$

is the strong solution in H to the problem

$$
\left\{\begin{array}{l}
w_{\varepsilon}^{\prime}(t)+A(t) w_{\varepsilon}(t)=F_{0}(t, \varepsilon)+\int_{0}^{\infty} K(t, \tau, \varepsilon)[A(t)-A(\tau)] u_{\varepsilon}(\tau) d \tau, \text { a. e. } t>0 \\
w_{\varepsilon}(0)=\varphi_{\varepsilon}
\end{array}\right.
$$

where

$$
\begin{gathered}
F_{0}(t, \varepsilon)=\frac{1}{\sqrt{\pi}}\left[2 \exp \left\{\frac{3 t}{4 \varepsilon}\right\} \lambda\left(\sqrt{\frac{t}{\varepsilon}}\right)-\lambda\left(\frac{1}{2} \sqrt{\frac{t}{\varepsilon}}\right)\right] u_{1}+\int_{0}^{\infty} K(t, \tau, \varepsilon) f_{\varepsilon}(\tau) d \tau \\
\varphi_{\varepsilon}=\int_{0}^{\infty} e^{-\tau} u_{\varepsilon}(2 \varepsilon \tau) d \tau
\end{gathered}
$$

5 Limits of solutions to the problem $\left(P_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$

In this section we will prove the convergence estimates for the difference of solutions to the problems $\left(P_{\varepsilon}\right)$ and $\left(P_{0}\right)$. These estimates will be uniform relative to small values of the parameter ε.

Theorem 5.1. Let $T>0$. Let us assume that operators $A(t), t \in[0, \infty)$, satisfy conditions (H1)-(H3). If $u_{0}, u_{0 \varepsilon}, u_{1 \varepsilon} \in V$ and $f, f_{\varepsilon} \in W^{1,2}(0, T ; H)$, then there exist constants $C=C\left(T, \gamma, a_{0}, \omega\right)>0, \varepsilon_{0}=\varepsilon_{0}\left(\gamma, a_{0}, \omega\right), \varepsilon_{0} \in(0,1)$, such that

$$
\begin{gather*}
\left\|u_{\varepsilon}-v\right\|_{C([0, T] ; H)} \\
\leq C\left(M\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right) \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+\left\|f_{\varepsilon}-f\right\|_{L^{2}(0, T ; H)}\right), \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \tag{5.1}
\end{gather*}
$$

where u_{ε} and v are strong solutions to problems $\left(P_{\varepsilon}\right)$ and $\left(P_{0}\right)$ respectively,

$$
M\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right)=\left|A(0) u_{0 \varepsilon}\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+| | f_{\varepsilon} \|_{W^{1,2}(0, T ; H)} .
$$

Proof. During the proof we will agree to denote constants $C=C\left(T, \gamma, a_{0}, \omega\right)$, $M\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right)$ and $\varepsilon_{0}=\varepsilon_{0}\left(\gamma, a_{0}, \omega\right)$ by C, M and ε_{0}, respectively.

If $f, f_{\varepsilon} \in W^{k, p}(0, T ; H)$ with $k \in \mathbb{N}$ and $p \in(1, \infty]$, then $f, f_{\varepsilon} \in C([0, T] ; H)$ (see, for example, [3]). Moreover, there exist extensions $\tilde{f}, \tilde{f}_{\varepsilon} \in W^{k, p}(0, \infty ; H)$ such that

$$
\left\{\begin{array}{l}
\|\tilde{f}\|_{C(0, \infty) ; H)}+\|\tilde{f}\|_{W^{k, p}(0, \infty ; H)} \leq C(T, p)\|f\|_{W^{k, p}(0, T ; H)}, \tag{5.2}\\
\left\|\tilde{f}_{\varepsilon}\right\|_{C((0, \infty) ; H)}+\| \tilde{f_{\varepsilon}\left\|_{W^{k, p}(0, \infty ; H)} \leq C(T, p)\right\| f_{\varepsilon} \|_{W^{k, p}(0, T ; H)}} .
\end{array}\right.
$$

Let us denote by \tilde{u}_{ε} the unique strong solution to the problem $\left(P_{\varepsilon}\right)$, defined on $(0, \infty)$ instead of $(0, T)$ and \tilde{f}_{ε} instead of f_{ε}.

From Lemma 3.1 it follows that $\tilde{u}_{\varepsilon} \in W^{2, \infty}(0, \infty ; H) \cap L^{\infty}(0, \infty ; H)$, $A(\cdot) \tilde{u}_{\varepsilon} \in L^{\infty}(0, \infty ; H)$. Moreover, due to this lemma and inequalities (5.2), the following estimates hold

$$
\begin{align*}
& \left\|u_{\varepsilon}\right\|_{C([0, t] ; H)}+\left\|A^{1 / 2}(\cdot) u_{\varepsilon}\right\|_{L^{2}([0, t] ; H)} \leq C M, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0, \tag{5.3}\\
& \left\|u_{\varepsilon}^{\prime}\right\|_{C([0, t] ; H)}+\left\|A^{1 / 2}(\cdot) u_{\varepsilon}^{\prime}\right\|_{L^{2}([0, t] ; H)} \leq C M, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right], \quad \forall t \geq 0 . \tag{5.4}
\end{align*}
$$

By Theorem 4.1, the function w_{ε} defined by

$$
w_{\varepsilon}(t)=\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{u}_{\varepsilon}(\tau) d \tau
$$

is the strong solution in H to the problem

$$
\left\{\begin{array}{l}
w_{\varepsilon}^{\prime}(t)+A(t) w_{\varepsilon}(t)=F(t, \varepsilon), \quad \text { a. e. } \quad t>0, \tag{5.5}\\
w_{\varepsilon}(0)=w_{0}
\end{array}\right.
$$

for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$, where

$$
\begin{gathered}
F(t, \varepsilon)=f_{0}(t, \varepsilon) u_{1 \varepsilon}+\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}(\tau) d \tau+\int_{0}^{\infty} K(t, \tau, \varepsilon)[A(t)-A(\tau)] u_{\varepsilon}(\tau) d \tau \\
f_{0}(t, \varepsilon)=\frac{1}{\sqrt{\pi}}\left[2 \exp \left\{\frac{3 t}{4 \varepsilon}\right\} \lambda\left(\sqrt{\frac{t}{\varepsilon}}\right)-\lambda\left(\frac{1}{2} \sqrt{\frac{t}{\varepsilon}}\right)\right] \\
w_{0}=\int_{0}^{\infty} e^{-\tau} u_{\varepsilon}(2 \varepsilon \tau) d \tau
\end{gathered}
$$

Using properties (vi), (viii), (x) from Lemma 4.1, and the estimate (5.4), we obtain that

$$
\begin{equation*}
\left\|\tilde{u}_{\varepsilon}-w_{\varepsilon}\right\|_{C([0, t] ; H)} \leq C M \varepsilon^{1 / 4}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{5.6}
\end{equation*}
$$

Denote by $R(t, \varepsilon)=\tilde{v}(t)-w_{\varepsilon}(t)$, where \tilde{v} is the strong solution to the problem $\left(P_{0}\right)$ with \tilde{f} instead of $f, T=\infty$ and w_{ε} is the solution of (5.5). Then

$$
\left\{\begin{array}{l}
R^{\prime}(t, \varepsilon)+A(t) R(t, \varepsilon)=\mathcal{F}(t, \varepsilon)+\int_{0}^{\infty} K(t, \tau, \varepsilon)[A(t)-A(\tau)] u_{\varepsilon}(\tau) d \tau, \text { a.e. } t>0 \\
R(0, \varepsilon)=R_{0}
\end{array}\right.
$$

where $R_{0}=u_{0}-w_{0}$ and

$$
\mathcal{F}(t, \varepsilon)=\tilde{f}(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}(\tau) d \tau-f_{0}(t, \varepsilon) u_{1 \varepsilon}
$$

Taking the inner product in H by R and then integrating, we obtain

$$
\begin{gathered}
|R(t, \varepsilon)|^{2}+2 \int_{0}^{t}\left|A^{1 / 2}(s) R(s, \varepsilon)\right|^{2} d s \leq|R(0, \varepsilon)|^{2} \\
+2 \int_{0}^{t}|\mathcal{F}(s, \varepsilon)||R(s, \varepsilon)| d s \\
+2 \int_{0}^{t} \int_{0}^{\infty} K(s, \tau, \varepsilon)\left([A(s)-A(\tau)] u_{\varepsilon}(\tau), R(s, \varepsilon)\right) d \tau d s, \quad \forall t \geq 0 .
\end{gathered}
$$

Using condition (H2) and the property (ix) from Lemma 4.1 we get

$$
\begin{gather*}
|R(t, \varepsilon)|^{2}+2 \int_{0}^{t}\left|A^{1 / 2}(s) R(s, \varepsilon)\right|^{2} d s \leq|R(0, \varepsilon)|^{2} \\
+2 \int_{0}^{t}\left(|\mathcal{F}(s, \varepsilon)|+C M \varepsilon^{1 / 2}\right)|R(s, \varepsilon)| d s, \quad \forall t \geq 0, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) . \tag{5.7}
\end{gather*}
$$

Applying Brézis' Lemma to (5.7), we get

$$
\begin{gather*}
|R(t, \varepsilon)|+\left(\int_{0}^{t}\left|A^{1 / 2}(t) R(s, \varepsilon)\right|^{2} d s\right)^{1 / 2} \\
\leq \sqrt{2}|R(0, \varepsilon)|+\sqrt{2} \int_{0}^{t}\left(|\mathcal{F}(s, \varepsilon)|+C M \varepsilon^{1 / 2}\right) d s, \quad \forall t \geq 0, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{5.8}
\end{gather*}
$$

From (5.4) it follows that

$$
\begin{align*}
& \left|R_{0}\right| \leq\left|u_{0 \varepsilon}-u_{0}\right|+\int_{0}^{\infty} e^{-\tau}\left|\tilde{u}_{\varepsilon}(2 \varepsilon \tau)-u_{0 \varepsilon}\right| d \tau \leq\left|u_{0 \varepsilon}-u_{0}\right|+\int_{0}^{\infty} e^{-\tau} \int_{0}^{2 \varepsilon \tau}\left|\tilde{u}_{\varepsilon}^{\prime}(s)\right| d s d \tau \\
& \quad \leq\left|u_{0 \varepsilon}-u_{0}\right|+C \varepsilon M \int_{0}^{\infty} \tau e^{-\tau+\gamma \varepsilon \tau} d \tau \leq\left|u_{0 \varepsilon}-u_{0}\right|+C M \varepsilon, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) . \tag{5.9}
\end{align*}
$$

In what follows we will estimate $|\mathcal{F}(t, \varepsilon)|$. Using the property (\mathbf{x}) from Lemma 4.1 and (5.2), we have

$$
\begin{align*}
& \left|\tilde{f}(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}(\tau) d \tau\right| \leq\left|\tilde{f}(t)-\tilde{f}_{\varepsilon}(t)\right|+\left|\tilde{f}_{\varepsilon}(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}(\tau) d \tau\right| \\
& \quad \leq\left|\tilde{f}^{(}(t)-\tilde{f}_{\varepsilon}(t)\right|+C(T, p)\left\|f_{\varepsilon}^{\prime}\right\|_{L^{2}(0, T ; H)} \varepsilon^{1 / 4}, \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \forall t \in[0, T] . \tag{5.10}
\end{align*}
$$

Since

$$
e^{\tau} \lambda(\sqrt{\tau}) \leq C, \quad \forall \tau \geq 0
$$

the estimates

$$
\begin{gathered}
\int_{0}^{t} \exp \left\{\frac{3 \tau}{4 \varepsilon}\right\} \lambda\left(\sqrt{\frac{\tau}{\varepsilon}}\right) d \tau \leq C \varepsilon \int_{0}^{\infty} e^{-\tau / 4} d \tau \leq C \varepsilon, \quad \forall t \geq 0 \\
\int_{0}^{t} \lambda\left(\frac{1}{2} \sqrt{\frac{\tau}{\varepsilon}}\right) d \tau \leq \varepsilon \int_{0}^{\infty} \lambda\left(\frac{1}{2} \sqrt{\tau}\right) d \tau \leq C \varepsilon, \quad \forall t \geq 0
\end{gathered}
$$

are true. Then

$$
\begin{equation*}
\left|\int_{0}^{t} f_{0}(\tau, \varepsilon) d \tau\right| \leq C \varepsilon, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{5.11}
\end{equation*}
$$

Using (5.2), (5.10) and (5.11) we obtain

$$
\begin{gather*}
\int_{0}^{t}\left(|\mathcal{F}(s, \varepsilon)|+C M \varepsilon^{1 / 2}\right) d \tau \\
\leq C\left(M \varepsilon^{1 / 4}+\left\|f_{\varepsilon}-f\right\|_{L^{2}(0, T ; H)}\right), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \in[0, T] . \tag{5.12}
\end{gather*}
$$

From (5.8), using (5.9) and (5.12) we get the estimate

$$
\|R\|_{C([0, t] ; H)}+\left\|A(\cdot)^{1 / 2} R\right\|_{L^{2}(0, t ; H)}
$$

$$
\begin{equation*}
\leq C\left(M \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+\left\|f_{\varepsilon}-f\right\|_{L^{p}(0, T ; H)}\right), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \in[0, T] \tag{5.13}
\end{equation*}
$$

In the consequence, from (5.6) and (5.13) we deduce

$$
\begin{gather*}
\left\|\tilde{u}_{\varepsilon}-\tilde{v}\right\|_{C([0, t] ; H)} \leq\left\|\tilde{u}_{\varepsilon}-w_{\varepsilon}\right\|_{C([0, t] ; H)}+\|R\|_{C([0, t] ; H)} \\
\leq C\left(M \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+\left\|f_{\varepsilon}-f\right\|_{L^{2}(0, T ; H)}\right), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \in[0, T] . \tag{5.14}
\end{gather*}
$$

Since $u_{\varepsilon}(t)=\tilde{u}_{\varepsilon}(t)$ and $v(t)=\tilde{v}(t)$, for all $t \in[0, T]$, then the estimate (5.1) follows from (5.14).

Theorem 5.2. Let $T>0$. Let us assume that operators $A(t), t \in[0, \infty)$, satisfy conditions (H1)-(H4). If $u_{0}, u_{0 \varepsilon}, A(0) u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}(0) \in V$ and $f, f_{\varepsilon} \in W^{2,2}(0, T ; H)$, then there exist constants $C=C\left(T, \omega, \gamma, a_{0}, a_{1}\right)>0, \varepsilon_{0}=\varepsilon_{0}\left(\omega, \gamma, a_{0}, a_{1}\right), \varepsilon_{0} \in(0,1)$, such that

$$
\begin{gather*}
\left\|u_{\varepsilon}^{\prime}-v^{\prime}+h_{\varepsilon} e^{-t / \varepsilon}\right\|_{C([0, T] ; H)} \\
\leq C\left(M_{1}\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right) \varepsilon^{1 / 4}+D_{\varepsilon}\right), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \tag{5.15}
\end{gather*}
$$

where u_{ε} and v are strong solutions to problems $\left(P_{\varepsilon}\right)$ and (P_{0}) respectively, $h_{\varepsilon}=f_{\varepsilon}(0)-u_{1 \varepsilon}-A(0) u_{0 \varepsilon}$,

$$
\begin{gathered}
M_{1}=\left|A^{1 / 2}(0) f_{\varepsilon}(0)\right|+\left|A^{3 / 2}(0) u_{0 \varepsilon}\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+| | A(t) h_{\varepsilon}\left\|_{L^{2}(0, \infty ; H)}+\right\| f_{\varepsilon} \|_{W^{2,2}(0, \infty ; H)}, \\
D_{\varepsilon}=\left\|f_{\varepsilon}-f\right\|_{W^{1,2}(0, T ; H)}+\left|A_{0}\left(u_{0 \varepsilon}-u_{0}\right)\right|
\end{gathered}
$$

Proof. In the proof of this theorem, we will agree to denote the constants $C=C\left(T, \omega, \gamma, a_{0}, a_{1}\right)>0, \varepsilon_{0}=\varepsilon_{0}\left(\omega, \gamma, a_{0}, a_{1}\right)$ and $M_{1}\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right)$ by C, ε_{0} and M_{1} respectively. Also we preserve for $\tilde{v}(t), \tilde{u}_{\varepsilon}(t), \tilde{f}(t)$ and $\tilde{f}_{\varepsilon}(t)$ the same notations as in Theorem 5.1.

By Lemma 3.2, we have that the function

$$
\tilde{z}_{\varepsilon}(t)=\tilde{u}_{\varepsilon}^{\prime}(t)+h_{\varepsilon} e^{-t / \varepsilon}, \text { with } h_{\varepsilon}=f_{\varepsilon}(0)-u_{1 \varepsilon}-A(0) u_{0 \varepsilon}
$$

is the solution to the problem

$$
\left\{\begin{array}{l}
\varepsilon \tilde{z}_{\varepsilon}^{\prime \prime}(t)+\tilde{z}_{\varepsilon}^{\prime}(t)+A(t) \tilde{z}_{\varepsilon}(t)=\tilde{\mathcal{F}}(t, \varepsilon), \quad t>0, \\
\tilde{z}_{\varepsilon}(0)=f_{\varepsilon}(0)-A(0) u_{0 \varepsilon}, \quad \tilde{z}_{\varepsilon}^{\prime}(0)=0,
\end{array}\right.
$$

where

$$
\tilde{\mathcal{F}}(t, \varepsilon)=\tilde{f}_{\varepsilon}^{\prime}(t)-A^{\prime}(t) \tilde{u}_{\varepsilon}(t)+e^{-t / \varepsilon} A(t) h_{\varepsilon}
$$

and

$$
\begin{equation*}
\left\|A_{0}^{1 / 2}(\cdot) \tilde{z}_{\varepsilon}\right\|_{C([0, t] ; H)}+\left\|\tilde{z}_{\varepsilon}^{\prime}\right\|_{L^{2}(0, t ; H)} \leq C M_{1}, \quad \forall t \geq 0 \tag{5.16}
\end{equation*}
$$

Since $\tilde{z}_{\varepsilon}^{\prime}(0)=0$, from Theorem 4.1, the function $w_{1 \varepsilon}(t)$, defined by

$$
\begin{equation*}
w_{1 \varepsilon}(t)=\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{z}_{\varepsilon}(\tau) d \tau \tag{5.17}
\end{equation*}
$$

satisfies in H the following conditions

$$
\left\{\begin{array}{l}
w_{1 \varepsilon}^{\prime}(t)+A(t) w_{1 \varepsilon}(t)=F_{1}(t, \varepsilon), \quad \text { a. e. } \quad t>0, \\
w_{1 \varepsilon}(0)=\varphi_{1 \varepsilon}
\end{array}\right.
$$

for every $0<\varepsilon<\varepsilon_{0}$, where

$$
\begin{gathered}
F_{1}(t, \varepsilon)=\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}^{\prime}(\tau) d \tau-\int_{0}^{\infty} K(t, \tau, \varepsilon) A^{\prime}(\tau) \tilde{u}_{\varepsilon}(\tau) d \tau \\
+\int_{0}^{\infty} K(t, \tau, \varepsilon) e^{-\tau / \varepsilon} A(\tau) h_{\varepsilon} d \tau+\int_{0}^{\infty} K(t, \tau, \varepsilon)[A(t)-A(\tau)] \tilde{z}_{\varepsilon}(\tau) d \tau \\
\varphi_{1 \varepsilon}=\int_{0}^{\infty} e^{-\tau} \tilde{z}_{\varepsilon}(2 \varepsilon \tau) d \tau
\end{gathered}
$$

Using (5.17), the properties (vi), (viii) and (ix) from Lemma 4.1 and (5.16), we get the estimate

$$
\begin{gathered}
\left|\tilde{z}_{\varepsilon}(t)-w_{1 \varepsilon}(t)\right| \leq \int_{0}^{\infty} K(t, \tau, \varepsilon)\left|\tilde{z}_{\varepsilon}(t)-\tilde{z}_{\varepsilon}(\tau)\right| d \tau \\
\leq \int_{0}^{\infty} K(t, \tau, \varepsilon)\left|\int_{\tau}^{t}\right| \tilde{z}_{\varepsilon}^{\prime}(s)|d s| d \tau \leq C M_{1} \int_{0}^{\infty} K(t, \tau, \varepsilon)|t-\tau|^{1 / 2} d \tau \\
\leq C M_{1} \varepsilon^{1 / 4}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0
\end{gathered}
$$

which implies

$$
\begin{equation*}
\left\|\tilde{z}_{\varepsilon}-w_{1 \varepsilon}\right\|_{C([0, t] ; H)} \leq C M_{1} \varepsilon^{1 / 4}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \geq 0 \tag{5.18}
\end{equation*}
$$

Let $v_{1}(t)=\tilde{v}^{\prime}(t)$, where \tilde{v} is the strong solution to the problem $\left(P_{0}\right)$ with \tilde{f} instead of f and $T=\infty$.

Let us denote by $R_{1}(t, \varepsilon)=v_{1}(t)-w_{1 \varepsilon}(t)$. The function $R_{1}(t, \varepsilon)$ verifies in H the following problem

$$
\left\{\begin{array}{l}
R_{1}^{\prime}(t, \varepsilon)+A(t) R_{1}(t, \varepsilon)=\mathcal{F}_{1}(t, \varepsilon), \quad t>0 \\
R_{1}(0, \varepsilon)=R_{10}
\end{array}\right.
$$

where

$$
\begin{gather*}
R_{10}=f(0)-A_{0} u_{0}-\varphi_{1 \varepsilon} \\
\mathcal{F}_{1}(t, \varepsilon)=\tilde{f}^{\prime}(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}^{\prime}(\tau) d \tau+\int_{0}^{\infty} K(t, \tau, \varepsilon) A^{\prime}(\tau) \tilde{u}_{\varepsilon}(\tau) d \tau-A^{\prime}(t) v(t) \\
-\int_{0}^{\infty} K(t, \tau, \varepsilon) e^{-\tau / \varepsilon} A(\tau) h_{\varepsilon} d \tau-\int_{0}^{\infty} K(t, \tau, \varepsilon)[A(t)-A(\tau)] \tilde{z}_{\varepsilon}(\tau) d \tau \tag{5.19}
\end{gather*}
$$

Using the properties (viii), (ix) from Lemma 4.1 and the inequalities (5.2), we get

$$
\left|\tilde{f}^{\prime}(t)-\int_{0}^{\infty} K(t, \tau, \varepsilon) \tilde{f}_{\varepsilon}^{\prime}(\tau) d \tau\right|
$$

$$
\begin{gather*}
\leq\left|\tilde{f}^{\prime}(t)-\tilde{f}_{\varepsilon}^{\prime}(t)\right|+\int_{0}^{\infty} K(t, \tau, \varepsilon)\left|\tilde{f}_{\varepsilon}^{\prime}(\tau)-\tilde{f}_{\varepsilon}^{\prime}(t)\right| d \tau \\
\leq\left|\tilde{f}^{\prime}(t)-\tilde{f}_{\varepsilon}^{\prime}(t)\right|+\left\|\tilde{f}_{\varepsilon}^{\prime \prime}\right\|_{L^{2}(0, \infty ; H)} \int_{0}^{\infty} K(t, \tau, \varepsilon)|t-\tau|^{1 / 2} d \tau \leq\left|\tilde{f}^{\prime}(t)-\tilde{f}_{\varepsilon}^{\prime}(t)\right| \\
+C(T)\left\|f_{\varepsilon}^{\prime \prime}\right\|_{L^{2}(0, T ; H)} \varepsilon^{1 / 2}, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right), \quad \forall t \in[0, T] \tag{5.20}
\end{gather*}
$$

Taking the inner product in H by R_{1} and then integrating, we obtain

$$
\begin{align*}
& \left|R_{1}(t, \varepsilon)\right|^{2}+2 \int_{0}^{t}\left|A^{1 / 2}(s) R_{1}(s, \varepsilon)\right|^{2} \quad d s=|R(0, \varepsilon)|^{2} \\
& \quad+2 \int_{0}^{t}\left(\mathcal{F}_{1}(s, \varepsilon), R_{1}(s, \varepsilon)\right) d s, \quad \forall t \geq 0 \tag{5.21}
\end{align*}
$$

Using the properties (viii), (ix) from Lemma 4.1, conditions (H2), (H4), estimates (5.1), (5.3) and (5.4) we get

$$
\begin{align*}
&\left(\int_{0}^{\infty} K(s, \tau, \varepsilon) A^{\prime}(\tau) \tilde{u}_{\varepsilon}(\tau) d \tau-A^{\prime}(s) v(s), R_{1}(s, \varepsilon)\right) \\
&= \int_{0}^{\infty} K(s, \tau, \varepsilon)\left(\left[A^{\prime}(\tau)-A^{\prime}(s)\right] \tilde{u}_{\varepsilon}(\tau) d \tau, R_{1}(s, \varepsilon)\right) d \tau \\
&+\int_{0}^{\infty} K(s, \tau, \varepsilon)\left(A^{\prime}(s)\left[\tilde{u}_{\varepsilon}(\tau)-\tilde{u}_{\varepsilon}(s)\right], R_{1}(s, \varepsilon)\right) d \tau \\
&+\int_{0}^{\infty} K(s, \tau, \varepsilon)\left(A^{\prime}(s)\left[\tilde{u}_{\varepsilon}(s)-v(s)\right], R_{1}(s, \varepsilon)\right) d \tau \\
&\left.\leq C\left(M \varepsilon^{1 / 2}+M \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+\left\|f_{\varepsilon}-f\right\|_{L^{2}(0, T ; H)}\right)\right)\left|R_{1}(s, \varepsilon)\right| \\
& \leq C\left(M \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+\left\|f_{\varepsilon}-f\right\|_{L^{2}(0, T ; H)}\right)\left|R_{1}(s, \varepsilon)\right|, \tag{5.22}
\end{align*}
$$

for every $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and for all $s \in[0, t]$.
Using the property (xi) from Lemma 4.1, we can state

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{\infty} K(s, \tau, \varepsilon) e^{-\tau / \varepsilon}\left|A(\tau) h_{\varepsilon}\right| d \tau d s \leq C M_{1} \varepsilon, \quad \forall \varepsilon>0, \quad \forall t \geq 0 \tag{5.23}
\end{equation*}
$$

Using the properties (viii), (ix) from Lemma 4.1, condition (H2) and estimate (5.16) we get

$$
\begin{gather*}
\int_{0}^{\infty} K(s, \tau, \varepsilon)\left([A(s)-A(\tau)] \tilde{z}_{\varepsilon}(\tau), R_{1}(s, \varepsilon)\right) d \tau \\
\leq C M_{1} \varepsilon^{1 / 2}\left|R_{1}(s, \varepsilon)\right|, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{5.24}
\end{gather*}
$$

For R_{10}, due to (5.16), we have

$$
\left|R_{10}\right| \leq\left|f(0)-f_{\varepsilon}(0)\right|+\left|A_{0}\left(u_{0}-u_{0 \varepsilon}\right)\right|+\int_{0}^{\infty} e^{-\tau}\left|\tilde{z}_{\varepsilon}(2 \varepsilon \tau)-\tilde{z}_{\varepsilon}(0)\right| d \tau
$$

$$
\begin{gather*}
\quad \leq\left|f(0)-f_{\varepsilon}(0)\right|+\left|A_{0}\left(u_{0}-u_{0 \varepsilon}\right)\right|+\int_{0}^{\infty} e^{-\tau} \int_{0}^{2 \varepsilon \tau}\left|\tilde{z}_{\varepsilon}^{\prime}(s)\right| d s d \tau \\
\quad \leq\left|f(0)-f_{\varepsilon}(0)\right|+\left|A_{0}\left(u_{0}-u_{0 \varepsilon}\right)\right| \\
+C M_{1} \varepsilon \int_{0}^{\infty} \tau e^{-\tau+2 \gamma \varepsilon \tau} d \tau \leq C D_{\varepsilon}+C M_{1} \varepsilon, \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right] . \tag{5.25}
\end{gather*}
$$

Applying Lemma of Brézis to (5.21) and using estimates (5.22), (5.23), (5.24), (5.25), we get

$$
\begin{gather*}
\left|R_{1}(t, \varepsilon)\right|+\left\|A_{0}^{1 / 2} R_{1}\right\|_{L^{2}(0, t ; H)} \\
\leq C\left(M_{1}\left(T, u_{0 \varepsilon}, u_{1 \varepsilon}, f_{\varepsilon}\right) \varepsilon^{1 / 4}+D_{\varepsilon}\right), \quad \forall \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{5.26}
\end{gather*}
$$

which together with (5.18) implies (5.15).

6 An example

Let $\Omega \subset R^{n}$ be an open bounded set with smooth $\partial \Omega$. In the real Hilbert space $L^{2}(\Omega)$ with the scalar product

$$
(u, v)=\int_{\Omega} u(x) v(x) d x
$$

we will consider the following Cauchy problem

$$
\left\{\begin{array}{l}
\varepsilon \partial_{t}^{2} u_{\varepsilon}(x, t)+\partial_{t} u_{\varepsilon}(x, t)+A(x, t) u_{\varepsilon}(x, t)=f(x, t), \quad x \in \Omega, t>0, \tag{6.1}\\
u_{\varepsilon}(x, 0)=u_{0 \varepsilon}(x), \quad \partial_{t} u_{\varepsilon}(x, 0)=u_{1 \varepsilon}(x)
\end{array}\right.
$$

where $D(A(\cdot, t))=H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad t \in[0, \infty)$,

$$
\begin{align*}
A(x, t) u(x)= & -\sum_{i, j=1}^{n} \partial_{x_{i}}\left(a_{i j}(x, t) \partial_{x_{j}} u(x)\right)+a(x, t) u(x), u \in D(A(\cdot, t)), \forall t \in[0, \infty), \\
& a_{i j}(\cdot, t) \in C^{1}(\bar{\Omega}), a(\cdot, t) \in C(\bar{\Omega}), \quad \forall t \in[0, \infty) \tag{6.2}\\
& a(x, t) \geq 0, \quad a_{i j}(x, t)=a_{j i}(x, t), \quad x \in \bar{\Omega}, \quad \forall t \in[0, \infty) \tag{6.3}\\
& \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geq a_{0}|\xi|^{2}, \quad x \in \bar{\Omega}, \quad \xi \in \mathbb{R}^{n}, \quad a_{0}>0 . \tag{6.4}
\end{align*}
$$

$a_{i j}(x, \cdot), a(x, \cdot)$ are continuously differentiable on $(0, \infty), \partial_{t} a_{i j}(x, \cdot), \partial_{t} a(x, \cdot)$ are bounded on $[0, \infty)$ and

$$
\begin{equation*}
\partial_{t} a_{i j}(\cdot, t) \in C^{1}(\bar{\Omega}), \partial_{t} a(\cdot, t) \in C(\bar{\Omega}), \quad \forall t \in[0, \infty), \tag{6.5}
\end{equation*}
$$

$a_{i j}(x, \cdot), a(x, \cdot)$ are twice continuously differentiable on $(0, \infty), \partial_{t}^{2} a_{i j}(x, \cdot), \partial_{t}^{2} a(x, \cdot)$ are bounded on $[0, \infty)$, and

$$
\begin{equation*}
\partial_{t}^{2} a_{i j}(\cdot, t) \in C^{1}(\bar{\Omega}), \partial_{t}^{2} a(\cdot, t) \in C(\bar{\Omega}), \quad \forall t \in[0, \infty) . \tag{6.6}
\end{equation*}
$$

In conditions (6.2)-(6.3) the operators $A(t), \forall t \in[0, \infty)$, are positive and selfadjoint. Let us now consider the unperturbed problem associated to the problem (6.1)

$$
\left\{\begin{array}{l}
\partial_{t} v(x, t)+A(x, t) v=f(x, t), \quad x \in \Omega, t>0, \tag{6.7}\\
v(x, 0)=u_{0}(x) .
\end{array}\right.
$$

Using Theorem 5.1 we obtain the following theorem.
Theorem 6.1. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set with smooth $\partial \Omega$. Let $T>0$. Suppose that conditions (6.2) - (6.5) are fulfilled. If $u_{0}, u_{0 \varepsilon}, u_{1 \varepsilon} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, $f, f_{\varepsilon} \in W^{1,2}\left(0, T ; L_{2}(\Omega)\right)$, then there exist constants $\varepsilon_{0}=\varepsilon_{0}\left(\gamma, a_{0}, \omega\right) \in(0,1)$ and $C=C\left(T, n, \gamma, a_{0}, \omega\right)>0$ such that

$$
\begin{gather*}
\left\|u_{\varepsilon}-v\right\|_{C\left([0, T] ; L_{2}(\Omega)\right)} \\
\leq C\left(\widetilde{M} \varepsilon^{1 / 4}+\left|u_{0 \varepsilon}-u_{0}\right|+| | f_{\varepsilon}-f \|_{L^{2}\left(0, T ; L_{2}(\Omega)\right)}\right), \quad \varepsilon \in\left(0, \varepsilon_{0}\right] \tag{6.8}
\end{gather*}
$$

where u_{ε} and v are the strong solutions to problems (6.1) and (6.7), respectively, and

$$
\widetilde{M}=\left|A(0) u_{0 \varepsilon}\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+\left\|f_{\varepsilon}\right\|_{W^{1,2}\left(0, \infty ; L_{2}(\Omega)\right)} .
$$

Using Theorem 5.2 we obtain the following theorem.
Theorem 6.2. Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set with smooth $\partial \Omega$. Let $T>0$. Suppose that conditions (6.2) - (6.6) are fulfilled. If

$$
u_{0}, u_{0 \varepsilon}, A(0) u_{0 \varepsilon}, u_{1 \varepsilon}, f(0), f_{\varepsilon}(0) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), \quad f, f_{\varepsilon} \in W^{2,2}\left(0, T ; L_{2}(\Omega)\right),
$$

then there exist constants $\varepsilon_{0}=\varepsilon_{0}\left(\omega_{0}, \omega_{1}\right) \in(0,1)$ and $C=C\left(T, n, \omega_{0}, \omega_{1}\right)>0$ such that

$$
\begin{equation*}
\left\|u_{\varepsilon}^{\prime}-v^{\prime}+h_{\varepsilon} e^{-\frac{t}{\varepsilon}}\right\|_{C\left([0, T] ; L_{2}(\Omega)\right)} \leq C\left(\widetilde{M}_{1} \varepsilon^{(1 / 4}+\widetilde{D}_{\varepsilon}\right) \tag{6.9}
\end{equation*}
$$

where v and u_{ε} are the strong solutions to problems (6.1) and (6.7), respectively, $h_{\varepsilon}=f_{\varepsilon}(0)-u_{1 \varepsilon}-A(0) u_{0 \varepsilon}$,

$$
\begin{gathered}
\widetilde{D}_{\varepsilon}=\left|\left|f_{\varepsilon}-f \|_{W^{1,2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+\left|A_{0}\left(u_{0 \varepsilon}-u_{0}\right)\right|\right.\right. \\
\widetilde{M}_{1}=\left|A^{1 / 2}(0) f_{\varepsilon}(0)\right|+\left|A^{3 / 2}(0) u_{0 \varepsilon}\right|+\left|A^{1 / 2}(0) u_{1 \varepsilon}\right|+\left|A(t) h_{\varepsilon}\right|+| | f_{\varepsilon} \|_{W^{2,2}\left(0, \infty ; H_{0}^{1}(\Omega)\right)}
\end{gathered}
$$

References

[1] D'Acunto B. Hyperbolic-parabolic singular perturbations. Rend. Mat. Appl, 1993, No. 1, 229-254.
[2] Esham B. F., Weinacht R. J. Hyperbolic-parabolic singular perturbations for scalar nonlinearities. Appl. Anal., 1988, 29, No. 1-2, 19-44.
[3] Evans L. C. Partial Differential Equations. American Mathematical Society, 1998.
[4] Gallay Th., Raugel G. Scaling variables and asymptotic expansions in damped wave equations. J. Differential Equations, 1998, 150, No. 1, 42-97.
[5] Gobbino M. Singular perturbation hyperbolic-parabolic for degenerate nonlinear equations of Kirchhoff type. Nonlinear Anal., 2001, 44, No. 3, 361-374.
[6] Hajouj B. Perturbations singulières d'équations hyperboliques du second ordre non linéaires. Ann. Math. Blaise Pascal, 2000, 7, No. 1, 1-22.
[7] Horodnii M. F. Stability of bounded solutions of differential equations with small parameter in a Banach space. Ukrainian Math. J., 2003, 55, No. 7, 1071-1085.
[8] Hsiao G., Weinacht R. Singular perturbations for a semilinear hyperbolic equation. SIAM J. Math. Anal., 1983, 14, No. 6, 1168-1179.
[9] Jager E. M. Singular perturbations of hyperbolic type. Nieuw Arch. Wisk., 1975, (3)23, No. 2, 145-172.
[10] Kubesov N. A. Asymptotic behavior of the solution of a mixed problem with large initial velocity for a singularly perturbed equation that degenerates into a parabolic equation. Vestnik Nats. Akad. Respub. Kazakhstan, 1994, 1, 71-74 (in Russian).
[11] Lions J. L. Control optimal de systemes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris, 1968.
[12] Milani A. On singular perturbations for IBV problems. Ann. Fac. Sci. Toulouse Math., 2000, (6)9, No. 3, 467-468.
[13] Moroşanu Gh. Nonlinear Evolution Equations and Applications, Ed. Acad. Române, Bucureşti, 1988, 340 p.
[14] Perjan A. Linear singular perturbations of hyperbolic-parabolic type. Bul. Acad. Stiinte Repub. Mold. Mat., 2003, No. 2(42), 95-112.
[15] Perjan A. Limits of solutions to the semilinear wave equations with small parameter. Bul. Acad. Stiinte Repub. Mold. Mat., 2006, No. 1(50), 65-84.
[16] Perjan A., Rusu G. Convergence estimates for abstract second-order singularly perturbed Cauchy problems with Lipschitzian nonlinearities. Asymptotic Analysis, 2011, 74, No. 3-4, 135-165.
[17] Zlamal M. The mixed problem for hyperbolic equations with a small parameter. Czechoslovak Math. J., 1960, 10(85), 83-120 (in Rusian).

Andrei Perjan, Galina Rusu
Received August 3, 2014
Department of Mathematics and Informatics
Moldova State University
A. Mateevici str. 60, MD 2009, Chisinau

Moldova
E-mail: perjan@usm.md; rusugalinamoldova@gmail.com

[^0]: (C) Andrei Perjan, Galina Rusu, 2014
 *Research is in part supported by the Project 11.817.08.41F

