Authors: Svetlana Aleschenko
Abstract
Let $(R,\xi)$ be a pseudonormed ring and $R_{n}$ be a ring of matrices over the ring $R$. We prove
that if $1\leq\gamma, \sigma\leq\infty$ and $\frac{1}{\gamma} + \frac{1}{\sigma} \geq 1$, then the
function $\eta_{\xi ,\gamma ,\sigma }$ is a pseudonorm on the ring $R_{n}$. Let now
$\varphi:(R,\xi)\rightarrow(\bar{R},\overline{\xi})$ be a semi-isometric isomorphism of pseudonormed
rings. We prove that $\Phi:(R_{n},\eta_{\xi,\gamma ,\sigma })\rightarrow(\bar{R}_{n},\eta_{\bar{\xi},
\gamma ,\sigma })$ is a semi-isometric isomorphism too for all $1\leq\gamma, \sigma\leq\infty$ such
that $\frac{1}{\gamma} + \frac{1}{\sigma} \geq 1$.
Tiraspol State University
str. Iablochkin 5, Chisinau MD-2069
Moldova
E-mail:
Fulltext

–
0.12 Mb