RO  EN
IMCS/Publications/CSJM/Issues/CSJM v.30, n.3 (90), 2022/

Privacy and Reader-first Authentication in Vaudenay's RFID Model with Temporary State Disclosure

Authors: Ferucio Laurențiu Țiplea, Cristian Hristea, Rodica Bulai

Abstract

Privacy and mutual authentication under corruption with temporary state disclosure are two significant requirements for real-life applications of RFID schemes. This paper proposes two practical RFID schemes that meet these requirements. They differ from other similar schemes in that they provide reader-first authentication. Regarding privacy, our first scheme achieves destructive privacy, while the second one -- narrow destructive privacy in Vaudenay's model with temporary state disclosure. To achieve these privacy levels, we use Physically Unclonable Functions (PUFs) to assure that the internal secret of the tag remains hidden from an adversary with invasive capabilities. Both of our schemes avoid the use of random generators on tags. Detailed security and privacy proofs are provided.

Ferucio Laurențiu Țiplea
Department of Computer Science
“Alexandru Ioan Cuza” University of Iasi
Iasi, Romania
E-mail:

Cristian Hristea
Simion Stoilow Institute of Mathematics of the Romanian Academy
Bucharest, Romania
E-mail:

Rodica Bulai
Faculty of Computers, Informatics and Microelectronics
Technical University of Moldova
Chisinau, Republic of Moldova
E-mail:

DOI

https://doi.org/10.56415/csjm.v30.18

Fulltext

Adobe PDF document0.21 Mb