IMI/Publicaţii/CSJM/Ediţii/CSJM v.24, n.1 (70), 2016/

Large-scale executable biology using rapid integration of computational models

Authors: Rogojin Vladimir, Ion Petre
Keywords: computational biomodelling, multiscale whole-cell modeling, model integration, model refinement, executable biology.


We plan to develop a systematic framework for assembling large-scale computational biological models by reusing and combining already existing modelling efforts. Our goal is to build a software platform that will compile large-scale biomodels through successive integrations of smaller modules. The modules can be arbitrary executable programs accompanied by a set of (I/O) interface variables; they may also have an internal structure (such as a metabolic network, interaction network, etc.) that yields its executable part in a well defined way. Firstly, wherever possible, modules with the compatible internal structure will be joined by combining their structure and by producing new larger executable modules (like, combining two metabolic networks, etc.). Then, irrespective of the underlying internal structure and modelling formalisms, all the modules will be integrated through connecting their overlapping interface variables. The resulting composed model will be regarded as an executable program itself and it will be simulated by running its submodules in parallel and synchronizing them via their I/O variables. This composed model in its turn can also act as a sub-module for some other even large composite model. The major goal of this project is to deliver a powerful large-scale modeling methodology for the primary use in the fields of Computational Systems Biology and Bioinformatics.

Computational Biomodelling Laboratory
Turku Centre for Computer Science, and
Department of Computer Science
Åbo Akademi University
Agora, Domkyrkotorget 3
20500 Åbo
Phone: +358 2 215 3361
E-mail: ,

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License


Adobe PDF document0.73 Mb