Authors: Arnautov Vladimir, G. N. Ermakova
Abstract
Let $R $ be a nilpotent ring and let $ (\mathfrak {M},
<) $ be the lattice of all ring topologies or the lattice of all
ring topologies in each of which the ring $R $ possesses a basis
of neighborhoods of zero consisting of subgroups. If $
\tau_0\prec_ {\mathfrak {M}} \tau_1\prec _ {\mathfrak {M}}
\ldots\prec_{\mathfrak {M}} \tau_n $ is an unrefinable chain
of ring topologies from $ \mathfrak {M} $ and $\tau\in\mathfrak
{M}$, then $k\leq n $ for any chain $\sup\{\tau,\tau ' _0\} =\tau
' _1 <\tau ' _2 <\ldots <\tau ' _k =\sup\{\tau,\tau _n\} $ of
topologies from $ \mathfrak {M} $.
V. I.Arnautov
Institute of Mathematics and Computer Science
Chisinau, Moldova
E-mail:
G. N.Ermacova
Transnistrian State University
25 October str., 128, Tiraspol, 278000
Moldova
E-mail:
Fulltext
–
0.13 Mb