Authors: Gerko A. I.
Abstract
Some sufficient conditions of the existence of concordant solutions of linear differential multidimensional equations
$y'h=a(x)hy + b(x)h $ $ (a\in C(R^n,$ $L(R^n,L(E,E))),\mathbreak b\in C(R^n,L(R^n,E)), y\in C(R^n,E),\quad h\in R^n)$ are obtained for arbitrary Banach space $E$. The cases of an uniform convex space $E$ and constant function $a$ are studied.
Universitatea de Stat din Moldova
str. Mateevici 60, Chişinău MD-2009, Moldova