Authors: Perjan A. V.
Abstract
We consider the equation $(P^2 - \lambda Q)u = f(x,t,\lambda)$, where $P \equiv {\partial / \partial t} +a(x,t) {\partial / \partial x} + b(x,t)$,\ \ $Q \equiv q_0(x,t) {\partial / \partial t} +q_1(x,t) {\partial / \partial x} + q_2(x,t)$ and $\lambda$ is a complex parameter, $|\lambda|\ge 1$. Uniform in $\lambda$ estimates of energetic type in case when $P^2$ and $Q$ form a nonstrictly hyperbolic pair are established for the solutions of this equation.
State University of Moldova
Mateevici str. 60, Chisinau MD-2014, Moldova