| Заглавная страница | Руководство пользователя | Практикум абитуриента | Учебные программы |
| Математический кружок | Занимательная математика| Формулы, словари | Новости |
|Странички истории | Экзамены, тесты | Библиография | Ссылки | Карта |

Метод математической индукции

Метод математической индукции является важным способом доказательства предложений (утверждений), зависящих от натурального аргумента.

Метод математической индукции состоит в следующем:

Предложение (утверждение) P(n), зависящее от натурального числа n, справедливо для любого натурального n если:

  1. P(1) является истинным предложением (утверждением);
  2. P(n) остается истинным предложением (утверждением), если n увеличить на единицу, то есть P(n + 1) - истинное предложение (утверждение).

Таким образом метод математической индукции предполагает два этапа:

  1. Этап проверки: проверяется, истинно ли предложение (утверждение) P(1).
  2. Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).

Замечание 1. В некоторых случаях метод математической индукции используется в следующей форме:

Пусть m - натуральное число, m > 1 и P(n) - предложение, зависящее от n, nm.

Если

  1. P(m) справедливо;
  2. P(n) будучи истинным предложением, влечет истинность предложения P(n + 1) для любого натурального n, nm, тогда P(n) - истинное предложение для любого натурального n, nm.

В дальнейшем рассмотрим примеры применения метода математической индукции.

Пример 1. Доказать следующие равенства

g) формула бинома Ньютона:
   
где n О N.

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

.
Следует проверить (доказать), что P(n + 1), то есть
истинно. Поскольку (используется предположение индукции)
получим
то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 12 или 1=1, то есть, P(1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n2
и докажем, что имеет место P(n + 1):
1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1)2
или
1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1)2.

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

Таким образом, P(n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что
то есть истинность P(n) влечет истинность P(n + 1). Действительно,
и, так как 2n2 + 7n + 6 = (2n + 3)(n + 2), получим
и, следовательно, исходное равенство справедливо для любого натурального n.

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P(1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство
Действительно,

Следовательно, исходное равенство имеет место для любого натурального n.

f) P(1) справедливо: 1/3 = 1/3. Пусть имеет место равенство P(n):

.
Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P(n) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.

Пусть формула бинома Ньютона справедлива при n = k, то есть,

Тогда
Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + a)n ≥ 1 + na, a > -1,     n О N.
b) x1 + x2 + ... + xnn,   если   x1x2· ... ·xn = 1   и   xi > 0,   .
c) неравенство Коши относительно среднего арифемтического и среднего геометрического
      где   xi > 0, , n ≥ 2.
d) sin2na + cos2na ≤ 1,     n О N.
e)
f) 2n > n3,     n О N, n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство

1 + a ≥ 1 + a.
Предположим, что имеет место неравенство
(1 + a)n ≥ 1 + na
(1)
и покажем, что тогда имеет место и
(1 + a)n + 1 ≥ 1 + (n + 1)a.

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a)n(1 + a) ≥ (1 + na)(1 + a)
или
(1 + a)n + 1 ≥ 1 + (n + 1)a + na2
Поскольку na2 ≥ 0, следовательно,
(1 + a)n + 1 ≥ 1 + (n + 1)a + na2 ≥ 1 + (n + 1)a.

Таким образом, если P(n) истинно, то и P(n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x1 = 1 и, следовательно, x1 ≥ 1 то есть P(1) - справедливое утверждение. Предположим, что P(n) истинно, то есть, если adica, x1,x2,...,xn - n положительных чисел, произведение которых равно единице, x1x2·...·xn = 1, и x1 + x2 + ... + xnn.

Покажем, что это предложение влечет истинность следующего: если x1,x2,...,xn,xn+1 - (n + 1) положительных чисел, таких, что x1x2·...·xn·xn+1 = 1, тогда x1 + x2 + ... + xn + xn + 1n + 1.

Рассмотрим следующие два случая:

1) x1 = x2 = ... = xn = xn+1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x1x2· ... ·xn·xn + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть xn + 1 > 1 и xn < 1. Рассмотрим n положительных чисел

x1,x2,...,xn-1,(xn·xn+1).
Произведение этих чисел равно единице, и, согласно гипотезе,
x1 + x2 + ... + xn-1 + xnxn + 1n.
Последнее неравенство переписывается следующим образом:
x1 + x2 + ... + xn-1 + xnxn+1 + xn + xn+1n + xn + xn+1
или
x1 + x2 + ... + xn-1 + xn + xn+1n + xn + xn+1 - xnxn+1.

Поскольку

(1 - xn)(xn+1 - 1) > 0,
то
n + xn + xn+1 - xnxn+1 = n + 1 + xn+1(1 - xn) - 1 + xn =
= n + 1 + xn+1(1 - xn) - (1 - xn) = n + 1 + (1 - xn)(xn+1 - 1) ≥ n + 1.
Следовательно,
x1 + x2 + ... + xn + xn+1n+1,
то есть, если P(n) справедливо, то и P(n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x1 = x2 = ... = xn = 1.

c) Пусть x1,x2,...,xn - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице:
согласно ранее доказанному неравенству b), следует, что
откуда

Замечание 5. Равенство выполняется если и только если x1 = x2 = ... = xn.

d) P(1) - справедливое утверждение: sin2a + cos2a = 1. Предположим, что P(n) - истинное утверждение:

sin2na + cos2na ≤ 1
и покажем, что имеет место P(n + 1). Действительно,
sin2(n + 1)a + cos2(n + 1)a = sin2na·sin2a + cos2na·cos2a < sin2na + cos2na ≤ 1
(если sin2a ≤ 1, то cos2a < 1, и обратно: если cos2a ≤ 1, то sin2a < 1). Таким образом, для любого n О N    sin2na + cos2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо:     1 < 3/2.

Допустим, что и докажем, что

Поскольку
учитывая P(n), получим

f) Учитывая замечание 1, проверим P(10): 210 > 103, 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2n > n3    (n > 10) и докажем P(n + 1), то есть 2n+1 > (n + 1)3.

Поскольку при n > 10 имеем или , следует, что

2n3 > n3 + 3n2 + 3n + 1   или   n3 > 3n2 + 3n + 1.
Учитывая неравенство (2n > n3), получим
2n+1 = 2n·2 = 2n + 2n > n3 + n3 > n3 + 3n2 + 3n + 1 = (n + 1)3.

Таким образом, согласно методу математической индукции, для любого натурального n О N,     n ≥ 10 имеем 2n > n3.

Пример 3. Доказать, что для любого n О N

a) n(2n2 - 3n + 1)   делится на 6,
b) 62n-2 + 3n+1 + 3n-1   делится на 11.

Решение. a) P(1) - истинное утверждение (0 делится на 6). Пусть P(n) справедливо, то есть n(2n2 - 3n + 1) = n(n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P(n + 1), то есть, (n + 1)n(2n + 1) делится на 6. Действительно, поскольку

n(n + 1)(2n + 1) = n(n - 1 + 2)(2n - 1 + 2) = (n(n - 1) + 2n)(2n - 1 + 2) =
= n(n - 1)(2n - 1) + 2n(n - 1) + 2n(2n + 1) = n(n - 1)(2n - 1) + 2n·3n =
= n(n - 1)(2n - 1) + 6n2
и, как n(n - 1)(2n - 1), так и 6n2 делятся на 6, тогда и их сумма n(n + 1)(2n + 1) делится 6.

Таким образом, P(n + 1) - справедливое утверждение, и, следовательно, n(2n2 - 3n + 1) делится на 6 для любого n О N.

b) Проверим P(1): 60 + 32 + 30 = 11, следовательно, P(1) - справедливое утверждение. Следует доказать, что если 62n-2 + 3n+1 + 3n-1 делится на 11 (P(n)), тогда и 62n + 3n+2 + 3n также делится на 11 (P(n + 1)). Действительно, поскольку

62n + 3n+2 + 3n = 62n-2+2 + 3n+1+1 + 3n-1+1 =
= 62·62n-2 + 3·3n+1 + 3·3n-1 = 3·(62n-2 + 3n+1 + 3n-1) + 33·62n-2
и, как 62n-2 + 3n+1 + 3n-1, так и 33·62n-2 делятся на 11, тогда и их сумма 62n + 3n+2 + 3n делится на 11. Утверждение доказано.

Индукция в геометрии

Пример 4. Вычислить сторону правильного 2n-угольника, вписанного в окружность радиуса R.

Решение. При n = 2, правильный 22-угольник есть квадрат, и в этом случае a4 = R.

Пусть и определим . Если AB = aў, то AE = aў/2; BD = aўў. По теореме Пифагора, из прямоугольного треугольника DEB

В свою очередь DE = R-EC и
Таким образом, и, следовательно,
формула перехода от n к n + 1.

В частных случаях

Возникает гипотеза
(2)

Как ранее было показано при n = 1, что эта формула справедлива. Пусть (2) выполняется при n = k. Вычислим . Согласно формуле перехода,

Замечание. Из (2) следует, что длина окружности равна

и, поскольку l = 2pR, получим

Упражнения для самостоятельной работы

I. Доказать равенства

II. Доказать неравенства

III. Доказать, что при любом натуральном n число an делится на b

a) an = 5n+3 + 113n+1,    b = 17,
b) an = 11n+2 + 122n+1,    b = 133,
c) an = 2n3 + 3n2 + 7n,    b = 6,
d) an = 10n + 18n - 28,    b = 27,
e) an = n5 - n,    b = 30.

IV. Показать, что   (Формула Виета).

V. Вычислить радиусы rn, Rn вписанной и описанной окружностей правильного 2n-угольника с периметром p.

VI. Пусть даны n произвольных квадратов. Доказать, что эти квадраты могут быть разрезаны так, чтобы из получившихся частей можно было образовать квадрат.



| Заглавная страница | Руководство пользователя | Практикум абитуриента | Учебные программы |
| Математический кружок | Занимательная математика| Формулы, словари | Новости |
|Странички истории | Экзамены, тесты | Библиография | Ссылки | Карта |