Regularities in ordered ternary semigroups

Patchara Pornsurat and Bundit Pibaljommee

Abstract. We present various types of regularities in ordered ternary semigroups and describe connections between these regularities.

1. Preliminaries

A nonempty set S is called a ternary semigroup if there exists a ternary operation $S \times S \times S \to S$, written as $(x_1, x_2, x_3) \mapsto [x_1x_2x_3]$, such that

$$[[x_1x_2x_3]x_4x_5] = [x_1[x_2x_3x_4]x_5] = [x_1x_2[x_3x_4x_5]]$$

for all $x_1, x_2, x_3, x_4, x_5 \in S$. For any x, y, z in a ternary semigroup S, we will write xyz instead of $[xyz]$.

Siemons [8] introduced the concept of regularities in n-ary semigroups. Dudek and Groździńska [2] gave characterizations of a regular n-ary semigroup using its j-ideals. As a special case of a regular n-ary semigroup, a regular ternary semigroup was studied by Santiago and Sri Bala [7]. Connections between ternary and binary semigroups were firstly studied in [3].

An ordered ternary semigroup $(S, [], \leq)$ is a ternary semigroup $(S, [])$ together with a partial order relation \leq on S which is compatible with the ternary operation, i.e.,

$$x \leq y \Rightarrow xuv \leq yuv, \quad wuv \leq uvy, \quad wux \leq uyv$$

for all $x, y, u, v \in S$.

Ordered ternary semigroups have been studied by many authors (see, e.g., [4], [5], [6]). Daddi and Pawar [1] introduced the concepts of ordered quasi-ideals and ordered bi-ideals in ordered ternary semigroups and characterized a regular ordered ternary semigroup using its ordered ideals.

Throughout this paper, we write S for an ordered ternary semigroup, unless specify otherwise.

Let A, B, C be nonempty subsets of S. We denote

$$(A) = \{x \in S \mid x \leq a \text{ for some } a \in A\},$$

and note that $A \subseteq (A)$, $(A) = (A)[]$, $(A)[B](C) \subseteq (ABC)$, $(A)BC \subseteq (ABC)$, $A(B)C \subseteq (ABC)$, $AB(C) \subseteq (ABC)$, $(A \cup B) = (A) \cup (B)$ and $A \subseteq B$ implies $(A) \subseteq (B)$.

2010 Mathematics Subject Classification: 06F05, 20N10.

Keywords: ordered ternary semigroup, lightly regular ordered ternary semigroup.
A nonempty subset \(I \) of \(S \) is called an ordered left (resp. right, lateral) ideal of \(S \) if \(SSI \subseteq I \) (resp. \(ISS \subseteq I \), \(SIS \subseteq I \)) and \((I) = I \).

If \(I \) is an ordered left, right and lateral ideal of \(S \), then it is called an ordered ideal of \(S \).

A nonempty subset \(Q \) of \(S \) is called an ordered quasi-ideal of \(S \) if \(Q \) is an ordered left, right and lateral ideal of \(S \), then it is called an ordered ideal of \(S \).

A nonempty subset \(B \) of \(S \) is called an ordered quasi-ideal (bi-ideal) of \(S \) if \(B \) is an ordered left, right and lateral ideal of \(S \), then it is called an ordered ideal of \(S \).

Let \(A \) be a nonempty subset of \(S \). Then

(i) \(L(A) = (A \cup SSA] \)

(ii) \(R(A) = (A \cup ASS] \)

(iii) \(M(A) = (A \cup SAS \cup SSASS] \)

(iv) \(I(A) = (A \cup SSA \cup ASS \cup SAS \cup SSASS] \)

(v) \(B(A) = (A \cup AAA \cup ASASA] \)

(vi) \(Q(A) = (A \cup SSA] \cap (A \cup SAS \cup SSASS] \cap (A \cup ASS] \)

In particular case, for \(a \in S \), we write \(L(a), R(a), M(a), I(a), Q(a) \) and \(B(a) \) instead of \(L(\{a\}), R(\{a\}), M(\{a\}), I(\{a\}), Q(\{a\}) \) and \(B(\{a\}) \), respectively.

2. Regularities in ordered ternary semigroups

An ordered ternary semigroup \(S \) is called regular, if each its element is regular, i.e., for each \(a \in S \) there exists \(x \in S \) such that \(a \leq axa \).

We note that \(S \) is called regular if and only if for each \(a \in S \) there exist \(x, y \in S \) such that \(a \leq axa \).

Lemma 2.2. (cf. [1]) The following statements are equivalent:

(i) \(S \) is regular,

(ii) \(A \subseteq (ASA] \) for any \(A \subseteq S \),

(iii) \(a \in (aSa] \) for any \(a \in S \),

(iv) \(A \subseteq (ASASA] \) for any \(A \subseteq S \),

(v) \(a \in (aSaSa] \) for any \(a \in S \).
Lemma 2.7. The following statements are equivalent:

(a) \(S \) is left (right) regular ordered quasi-ideal of \(S \).

(b) For each \(a \in S \), there exists \(x \in S \) such that \(a \leq xxax \) (\(a \leq aax \)).

Note that \(S \) is left (right) regular if and only if for each \(a \in S \) there exist \(x, y \in S \) such that \(a \leq xyaa \) (\(a \leq aaxy \)).

Lemma 2.4. The following statements are equivalent:

(i) \(S \) is left (resp. right) regular,

(ii) \(A \subseteq (SAA) \) (resp. \(A \subseteq (AAS) \)) for any \(A \subseteq S \),

(iii) \(a \in (Saa) \) (resp. \(a \in (aaS) \)) for any \(a \in S \),

(iv) \(A \subseteq (SSAAA) \) (resp. \(A \subseteq (AAASS) \)) for any \(A \subseteq S \),

(v) \(a \in (SSaaa) \) (resp. \(a \in (aaaSS) \)) for any \(a \in S \).

Theorem 2.5. \(S \) is both left regular and right regular ordered ternary semigroup if and only if every ordered quasi-ideal of \(S \) is semiprime.

Proof. Let \(S \) be both left regular and right regular and \(\emptyset \neq A \subseteq S \). Let \(Q \) be an ordered quasi-ideal of \(S \) such that \(A^3 \subseteq Q \). By Lemma 2.4,

\[
A \subseteq (AAS) \subseteq (A(AAS)(S)) \subseteq (AAASS) \subseteq (QSS),
\]

\[
A \subseteq (SAA) \subseteq (S[SAA](A)) \subseteq (SSAAA) \subseteq (SQS),
\]

\[
A \subseteq (AAS) \subseteq ((SAA)(A)[S]) \subseteq (SAAAS) \subseteq (SQS).
\]

Hence, \(A \subseteq (QSS) \cap (SQS) \cap (SSQ) \subseteq Q \).

Conversely, assume that every ordered quasi-ideal of \(S \) is semiprime and \(\emptyset \neq A \subseteq S \). We have \(A^3 \subseteq Q(A^3) = (A^3 \cup SSA^3) \cap (A^3 \cup SA^3S) \cap (A^3 \cup A^3S) \cap (A^3 \cup SSA^3). \)

By assumption, \(A \subseteq (A^3 \cup SSA^3) \cap (A^3 \cup SA^3S) \cap (A^3 \cup A^3S) \subseteq (A^3 \cup SSA^3). \) Thus,

\[
A^3 \subseteq (AA(A^3 \cup SSA^3) \cup SSA^3) \subseteq ((A^3 \cup AAASSA^3) \cup (SSA^3)) \subseteq (SSA^3)
\]

and then \(A \subseteq (A^3 \cup SSA^3) \subseteq ((SSA^3) \cup SSA^3) \subseteq (SSA^3) \subseteq (SAA) \). Similarly, we have \(A \subseteq (AAS) \). By Lemma 2.4, \(S \) is both left regular and right regular ordered ternary semigroup.

Definition 2.6. An ordered ternary semigroup \(S \) is called intra-regular, i.e., for each \(a \in S \) there exist \(x, y \in S \) such that \(a \leq xaxy \).

Note that \(S \) is intra-regular if and only if for each \(a \in S \) there exist \(w, x, y, z \in S \) such that \(a \leq wxyz \).

Lemma 2.7. The following statements are equivalent:
Theorem 2.8. The following statements are equivalent:

(i) \(S \) is intra-regular,

(ii) \(L \cap X \cap R \subseteq (LXR) \) for any ordered left ideal \(L \), ordered right ideal \(R \) and \(\emptyset \neq X \subseteq S \).

Proof. \((\Rightarrow)\) : Let \(a \in L \cap X \cap R \). Since \(S \) is intra-regular, there exist \(w, x, y, z \in S \) such that \(a \leq wxaaayz \in LaR \subseteq LXR \subseteq (LXR) \). Hence, \(L \cap X \cap R \subseteq (LXR) \).

\((\Leftarrow)\) : Let \(a \in S \). By assumption and Lemma 1.1,

\[
\begin{align*}
a &\in L(a) \cap \{a\} \cap R(a) \subseteq (L(a)\{a\}R(a)) \subseteq ((a \cup SSA\{a\}(a \cup aSS)) \\
&\subseteq (a^3) \cup (a^3SS) \cup (SSa^3) \cup (SSS^3SS).
\end{align*}
\]

Case 1: \(a \in \{a^3\} \); \(a \leq aaaxxx \leq aaaaaaa \leq SSa^3SS \).

Case 2: \(a \in \{aaaSS\} \); there exist \(x, y \in S \), \(a \leq aaaxyy \leq (aaaxyy)xy \in SSa^3SS \).

Case 3: \(a \in \{SSaaa\} \); there exist \(x, y \in S \), \(a \leq xzxyyz \leq xzxyz \in SSa^3SS \).

Case 4: \(a \in \{SSaaaSS\} \); it is obvious. By Lemma 2.7, \(S \) is intra-regular.

Definition 2.9. An ordered ternary semigroup \(S \) is called completely regular, if it is regular, left regular and right regular.

Lemma 2.10. The following statements are equivalent:

(i) \(S \) is completely regular,

(ii) \(A \subseteq (A^3SASA^3) \) for any \(A \subseteq S \),

(iii) \(a \in (a^3SaSa^3) \) for any \(a \in S \).

Theorem 2.11. \(S \) is completely regular if and only if every ordered quasi-ideal of \(S \) is completely regular.

Proof. Assume that \(S \) is completely regular. Let \(Q \) be an ordered quasi-ideal of \(S \) and \(\emptyset \neq A \subseteq Q \). By Lemma 2.10,

\[
\begin{align*}
A \subseteq (A^3SASA^3) \subseteq ([A](A^3SASA^3)(ASASA)(A^3SASA^3)(A]) \\
\subseteq ([A](A^3SASA^3)(ASA)(A^3SASA^3)(A]) \\
\subseteq (A^3(ASASA)A(A(ASASAAS)ASA)A^3) \\
\subseteq (A^3(QSASQ)A(QSASQ)A^3) \\
\subseteq (A^3QAQA^3).
\end{align*}
\]

By Lemma 2.10, \(Q \) is completely regular.

The converse is clear because \(S \) itself is an ordered quasi-ideal.
Theorem 2.12. S is completely regular if and only if every ordered bi-ideal of S is semiprime.

Proof. Assume that S is completely regular and $\emptyset \neq A \subseteq S$. Let B be an ordered bi-ideal of S and $A^3 \subseteq B$. By Lemma 2.10 and Lemma 2.4,

$$A \subseteq (A^3SASA) \subseteq (BSASB) \subseteq (BS(SSAAA)SB) \subseteq (BSBSB) \subseteq (B) = B.$$

Hence, every ordered bi-ideal of S is semiprime.

Conversely, assume that every ordered bi-ideal of S is semiprime. Let $\emptyset \neq A \subseteq S$. First we show that (A^3SASA) is an ordered bi-ideal of S. Thus,

$$(A^3SASA)(A^3SASA)S(A^3SASA) \subseteq (A^3SASA)(SSASA)(SASA)(SASA)$$

Clearly, $(A^3SASA) = (A^3SASA)$. So, (A^3SASA) is ordered bi-ideals of S. Since $A^3 \subseteq (A^3SASA)$, by assumption, $A^3 \subseteq (A^3SASA)$, and $A \subseteq (A^3SASA)$. By Lemma 2.10, S is completely regular.

Now, we define the notions of a left lightly regularity and a right lightly regularity of an ordered ternary semigroups as follows.

Definition 2.13. An ordered ternary semigroup S is called left (right) lightly regular, if each its element is left (light) lightly regular, i.e., for each $a \in S$ there exist $x, y, z \in S$ such that $a \leq xyza$ ($a \leq axyz$).

Lemma 2.14. The following statements are equivalent:

(i) S is left (resp. right) lightly regular,

(ii) $A \subseteq (SSASA)$ (resp. $A \subseteq (ASASS)$) for any $A \subseteq S$,

(iii) $a \in (SSaSa)$ (resp. $a \in (aSaSS)$) for any $a \in S$.

Theorem 2.15. The following statements are equivalent:

(i) S is left lightly regular,

(ii) $R \cap M \cap L \subseteq (SSRML)$ for any ordered left ideal L, ordered right ideal R and ordered lateral ideal M of S,

(iii) $L \subseteq (LSL)$ for any ordered left ideal L of S,

(iv) $L \cap M \subseteq (LML)$ for any ordered left ideal L and ordered lateral ideal M of S.

Proof. (i) \Leftrightarrow (ii): Let L, R and M be an ordered left ideal, an ordered right ideal and an ordered lateral ideal of S, respectively and $a \in R \cap M \cap L$. Since S is left lightly regular, there exist $x, y, z \in S$ such that $a \leq xyaza \leq xz(axyza) = xy(axa)z(a) \in SSRML$. Hence, $R \cap M \cap L \subseteq (SSRML)$.

Conversely, let $\emptyset \neq A \subseteq S$. Then $A \subseteq R(A) \cap M(A) \cap L(A)$. By assumption and Lemma 1.1,

$$A \subseteq R(A) \cap M(A) \cap L(A) \subseteq (SSR(A)M(A)L(A)) = ((S)[S][A \cup AS][A \cup SAS \cup SSASS][A \cup SSA]) \subseteq (S^2A^3 \cup S^2A^2S^2A \cup S^2ASASA \cup S^2ASAS^3A \cup S^2AS^2AS^2A$$

$$\cup S^2AS^2AS^4A \cup S^2AS^2A \cup S^2AS^2AS^3A \cup S^2AS^3AS^3A \cup S^2AS^4AS^2A \cup S^2AS^2A) \subseteq (SSASA).$$

By Lemma 2.14, S is left lightly regular.

(i) \Rightarrow (iv): Let L and M be an ordered left ideal and an ordered lateral ideal of S and $a \in L \cap M$. Since S is left lightly regular, there exist $x, y, z \in S$ such that $a \leq xyaza \leq xz(axyza) = xy(axa)z(a) \in LML$. Hence, $L \cap M \subseteq (LML)$.

(iv) \Rightarrow (iii): It is clear because S itself is an ordered lateral ideal of S.

(iii) \Rightarrow (i): Let $a \in S$. Then $a \in L(a)$. By assumption and Lemma 1.1,

$$a \in L(a) \subseteq (L(a)L(a)) = ((a \cup S[a][a \cup SSA]) \subseteq (aS[a] \cup aSSa \cup SSaSSa) \subseteq (aS[a] \cup aSSa \cup SSaSSa).$$

Case 1: $a \in (aS[a])$: there exists $x \in S$, $a \leq axa \leq ax(axa) \in SSaSa$.

Case 2: $a \in (aSSa)$: there exist $x, y, z \in S$, $a \leq axya \leq axz(axya) \in SSaSa$.

Case 3: $a \in (SSaS[a])$: it is obvious.

Case 4: $a \in (SSaSSa)$: it is obvious, since $(SSaSSa) \subseteq (SSaSa)$.

Thus, S is left lightly regular.

The next theorem can be similarly proved as Theorem 2.15.

Theorem 2.16. The following statements are equivalent:

(i) S is right lightly regular,

(ii) $R \cap M \cap L \subseteq (RMLSS)$ for any ordered left ideal L, ordered right ideal R and ordered lateral ideal M of S,

(iii) $R \subseteq (RSR)$ for any ordered right ideal L of S,

(iv) $R \cap M \subseteq (RMR)$ for any ordered right ideal R, ordered lateral ideal M of S.

[End of natural text]
Definition 2.17. An ordered ternary semigroup S is called generalized regular, if each its element is generalized regular, i.e., for each $a \in S$ there exist w, x, y, z such that $a \leq wxayz$.

Lemma 2.18. The following statements are equivalent:

(i) S is generalized regular,

(ii) $A \subseteq (SSASS)$ for any $A \subseteq S$,

(iii) $a \in (SSaSS)$ for any $a \in S$.

Theorem 2.19. The following statements are equivalent:

(i) S is generalized regular,

(ii) $L \subseteq (SSLSS)$ for any ordered left ideal L of S,

(iii) $R \subseteq (SSRSS)$ for any ordered right ideal R of S,

(iv) $M \subseteq (SSMSS)$ for any ordered lateral ideal M of S,

(v) $I \subseteq (SSISS)$ for any ordered ideal I of S.

Proof. $(i) \iff (v)$: Let I be an ordered ideal of S. By Lemma 2.18, $I \subseteq (SSISS)$. Conversely, let $a \in S$. Then $a \in I(a)$. By assumption and Lemma 1.1,

$$a \in I(a) \subseteq (SSI(a)SS) \subseteq ((S)(S)[a \cup SSa \cup aSS \cup SaS \cup SSaSS](S)(S)$$

$$\subseteq (S^2aS^2 \cup S^4aS^2 \cup S^2aS^4 \cup S^2aS^3 \cup S^4aS^4)$$

$$= (S^2aS^2) \cup (S^4aS^2) \cup (S^2aS^4) \cup (S^2aS^3) \cup (S^4aS^4).$$

Case 1: $a \in (S^2aS^2)$; it is obvious.

Case 2: $a \in (S^4aS^2)$; it is obvious, since $(S^4aS^2) \subseteq (S^2aS^2)$.

Case 3: $a \in (S^2aS^4)$; it is obvious, since $(S^2aS^4) \subseteq (S^2aS^2)$.

Case 4: $a \in (S^3aS^3)$; there exist $u, v, w, x, y, z \in S$, $a \leq uwaxyz \leq uw(uwaxyz)xyz = (uw)(uw)a(xyz)(xyz) \in SSaSS$.

Case 5: $a \in (S^3aS^4)$; it is obvious, since $(S^3aS^4) \subseteq (S^2aS^2)$.

Thus, S is generalized regular.

$(i) \iff (ii) \iff (iii) \iff (iv)$ Can be proved similarly.

3. Connections between regularities

The proof of following proposition is not difficult.

Proposition 3.1. Let S be an ordered ternary semigroup.

(i) If S is completely regular, then it is regular, left regular and right regular.
(ii) If S is left or right regular, then it is intr-regular.

(iii) If S is left (resp. right) regular, then it is left (resp. right) lightly regular.

(iv) If S is regular, then it is left and right lightly regular.

(v) If S is intr-regular or left lightly regular or right lightly regular, then it is generalized regular.

Now, we give examples to show that the converses statements are not true.

Example 3.2. Let $S = \{a, b, c, d\}$. A ternary operation $[\]$ on S and the figure of a partial order relation \leq on S are as follows:

$$
\begin{array}{cccc|cccc|cccc}
 & a & b & c & d & a & b & c & d & a & b & c & d \\
\hline
aa & a & a & a & a & ba & b & b & b & cb & a & a & a \\
ab & a & a & a & d & bb & b & b & b & cc & a & a & a \\
ac & a & a & a & d & bc & b & b & b & cd & d & d & d \\
ad & d & d & d & d & bd & d & d & d & cd & d & d & d \\
\end{array}
$$

It is clear that a, b, d are left lightly regular. Since $c \notin (SScS) = S$, S is left lightly regular. However, S is neither regular nor right lightly regular because $c \notin (cSc) = \{a, d\} = (cScS)$.

Example 3.3. Let $S = \{a, b, c, d\}$. A ternary operation $[\]$ on S and the figure of a partial order relation \leq on S are as follows:

$$
\begin{array}{cccc|cccc|cccc}
 & a & b & c & d & a & b & c & d & a & b & c & d \\
\hline
aa & a & b & a & a & ba & a & b & a & cb & a & b & a \\
ab & a & b & a & d & bb & a & b & a & cc & a & b & a \\
ac & a & b & a & d & bc & a & b & a & cd & a & b & a \\
ad & d & d & d & d & bd & d & d & d & cd & d & d & d \\
\end{array}
$$

It is clear that a, b, d are right lightly regular. Since $c \notin (cScS) = S$, S is right lightly regular. However, S is neither regular nor left lightly regular because $c \notin (cSc) = \{a, d\} = (SScS)$.
Example 3.4. Let $S = \{a, b, c, d, e, f\}$. A ternary operation $[\]$ on S is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>ab</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>ac</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>ad</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>ae</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>af</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

Define a partial order relation \leq on S by $\leq := \{(x, x) \mid x \in S\}$. It is clear a, b, c, d, e are regular. Since $f \in (fSf) = \{a, e, f\}$, S is regular. So, S is left lightly regular. However, S is neither right regular nor intra-regular because $f \notin (Sff) = \{a, e\} = (SSf)^3SS$.

Example 3.5. Let $S = \{a, b, c, d, e, f\}$. A ternary operation $[\]$ on S is as follows:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>da</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>db</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>dc</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>dd</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>de</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>df</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>

Define a partial order relation \leq on S by $\leq := \{(x, x) \mid x \in S\}$. It is clear a, b, c, d, e are regular. Since $f \in (fSf) = \{a, e, f\}$, S is regular. So, S is left lightly regular. However, S is neither right regular nor intra-regular because $f \notin (fSf) = \{a, e\} = (SSf)^3SS$.

Example 3.6. Let $S = \{a, b, c, d, e\}$. A ternary operation $[\]$ on S and the figure of a partial order relation \leq on S are as follows:
It is clear \(b, c, d, e\) are left regular. Since \(a \in (Saa) = \{a, b, c, e\}\), \(S\) is left regular. So, \(S\) is intra-regular and generalized regular. However, \(S\) is neither right lightly regular nor regular because \(a \notin (aSaSa) = \{b, e\} = (aSa)\).

Example 3.7. Let \(S = \{a, b, c, d, e\}\). A ternary operation \([\]\) on \(S\) and the figure of a partial order relation \(\leq\) on \(S\) are as follows:

\[\begin{array}{cc}
aa & ab \\
ba & bb \\
ca & ac \\
db & ad \\
ae & ae \\
\end{array}\]

\[\begin{array}{cc}
aa & ba \\
bb & bb \\
cc & ac \\
dd & ad \\
ea & ae \\
\end{array}\]

\[\begin{array}{cc}
aa & ca \\
ba & bb \\
cc & ab \\
dd & ae \\
ea & ee \\
\end{array}\]

\[\begin{array}{cc}
ba & bb \\
bb & bb \\
cc & ac \\
dx & ae \\
ea & ee \\
\end{array}\]

It is clear \(b, c, d, e\) are right regular. Since \(a \in (SaS) = \{a, b, c, e\}\), \(S\) is right regular. So, \(S\) is intra-regular and generalized regular. However, \(S\) is neither left lightly regular nor regular because \(a \notin (SSaSa) = \{b, e\} = (SSa)\).

Example 3.8. Let \(S = \{a, b, c, d\}\). A ternary operation \([\]\) on \(S\) and the figure of a partial order relation \(\leq\) on \(S\) are as follows:

\[\begin{array}{cc}
aa & ba \\
ab & aa \\
ac & ab \\
ad & ad \\
ae & ae \\
\end{array}\]

\[\begin{array}{cc}
ba & bb \\
bb & bb \\
cc & ac \\
dd & ad \\
ea & ae \\
\end{array}\]

\[\begin{array}{cc}
aa & ca \\
bb & bb \\
cc & ab \\
dx & ae \\
ea & ee \\
\end{array}\]

\[\begin{array}{cc}
aa & ba \\
bb & bb \\
cc & ac \\
dx & ae \\
ea & ee \\
\end{array}\]

It is clear \(b, c, d, e\) are right regular. Since \(a \in (aaS) = \{a, b, c, e\}\), \(S\) is left regular. So, \(S\) is intra-regular and generalized regular. However, \(S\) is neither left lightly regular nor regular because \(a \notin (SSaSa) = \{b, e\} = (SSa)\).
It is clear a, b, d are generalized regular. Since $c \in (SScSS) = \{a, b, c\}$, S is generalized regular. S is not intra-regular because $c \notin (SSc^3SS) = \{a, b\}$.

Example 3.9. Let $S = \{a, b, c, d, e, f, g\}$. A ternary operation $[\cdot]$ on S and the figure of a partial order relation \leq on S are as follows:
It is clear a, b, d, e, f, g are left regular. Since $c \in (Scc) = \{a, b, c, e, f\}$, S is left regular. Similarly, a, b, d, e, f, g are right regular and $c \in (ccS) = \{a, b, c, d, e\}$, S is right regular. However, S is not regular because $c \notin (cSc) = \{a, b, e\}$.

Now, we conclude the connections of the eight regularities as the figure.

Acknowledgements. This work is supported by the National Research Council of Thailand (NRCT). We would like to express our thanks to Science Achievement Scholarship of Thailand (SAST) and our heartfelt thanks to the referee(s) for their interest, extremely valuable remark and suggestions to our paper.

References

Acknowledgements. This work is supported by the National Research Council of Thailand (NRCT). We would like to express our thanks to Science Achievement Scholarship of Thailand (SAST) and our heartfelt thanks to the referee(s) for their interest, extremely valuable remark and suggestions to our paper.

References