
Digitization of Romanian
Historical Printings

Chisinau

Vladimir Andrunachievici
Institute of Mathematics and Computer Science

Tudor Bumbu
Liudmila Burtseva
Svetlana Cojocaru

Alexandru Colesnicov
Ludmila Malahov

Vladim
ir Andrunachievici Institute of Mathematics and Compu

te
r S

cie
nc

e

In
st

itu
tu

l d
e M

atematică
 și Informatică „Vladimir Andrunachievici”

2023

Florilor, 30/1A, 26B, tel./fax 43-03-91,
e-mail: info@valinex.md, http:\\www.valinex.md

Coli editoriale 8,62. Coli de tipar conv. 10,23
Hirtie ofset. Tirajul 70.

CZU 004.9

D 41

Copyright © Vladimir Andrunachievici Institute of Mathematics and

Computer Science, Moldova State University, 2023.

All rights reserved.

VLADIMIR ANDRUNACHIEVICI INSTITUTE OF MATHEMATICS

AND COMPUTER SCIENCE, MOLDOVA STATE UNIVERSITY

5, Academiei str., Chisinau, Republic of Moldova, MD 2028

Tel: (373 22) 72-59-82, Fax: (373 22) 73-80-27

E-mail: imam@math.md

WEB address: http://www.math.md

Bumbu, T.; Burtseva, L.; Cojocaru, S.; Colesnicov, A.; Malahov, L.,

Digitization of Romanian Historical Printings.

Recommended for publication by the Scientific Council of the Vladimir

Andrunachievici Institute of Mathematics and Computer Science

Descrierea CIP a Camerei Naţionale a Cărţii din Republica Moldova

Digitization of Romanian Historical Printings / Tudor Bumbu, Liudmila

Burtseva, Svetlana Cojocaru [et al.] ; Vladimir Andrunachievici Institute of

Mathematics and Computer Science, Moldova State University. – Chişinău : [S.

n.], 2023 (Valinex). – 176 p. : fig., tab.

Bibliogr.: p. 151-176 (234 tit.). – 70 ex.

ISBN 978-9975-68-497-2.

004.9

D 41

3

Contents

Introduction 6

1 e historical evolution of Romanian writing and printing 10
1.1 Stages and timeline . 10
1.2 The Romanian Cyrillic script (RC) 13
1.3 The Simplified Romanian Cyrillic script (SRC) 16
1.4 The Transitional scripts (TR) 16
1.5 The Romanian Latin script (RL) 16
1.6 The Modern Romanian Latin script (MRL) 17
1.7 The Moldavian Cyrillic script (MC) 18

2 Tools for image preprocessing 20
2.1 The importance of image quality in OCR 20
2.2 Preprocessing techniques for scanned documents 21
2.3 Preprocessing with Scan Tailor 22

3 OCR solutions across languages and their evolution into inte-
grated recognition platforms 26
3.1 The comparative description of OCR tools for processing

historical documents . 26
3.2 OCR tools for Romanian historical printed texts 43
3.3 OCR post-processing methods 46
3.4 An overview of strategies for integrated recognition platforms 49

4 Contents

4 Recognition of the oldest Romanian texts 51
4.1 Introduction . 51
4.2 OCR process using ABBYY FineReader 12 52
4.3 User Language Creation and Dictionary Addition 55
4.4 Training Process with FR12, Template Creation 56
4.5 OCR Models Applied to Texts Printed in the 17th Century . 58
4.6 OCR Evaluation of 17th Century Documents 61
4.7 Classification of 17th Century Fonts 64

4.7.1 OCRModel Selection Program Based on Printing House 66
4.7.2 Classifying fonts using neural networks 68

4.8 Post-OCR text improvement 81

5 Recognition of texts printed with transitional alphabets 84
5.1 What is transitional alphabets? 84
5.2 Specific aspects of transitional alphabets digitization 85
5.3 OCR of Romanian transitional alphabet by examples 87

5.3.1 Initial usage . 87
5.3.2 Complete usage . 88
5.3.3 One direction conversion Cyrillic – Transitional —

Latin . 89
5.4 Accuracy evaluation . 90
5.5 Final remarks . 92

6 Transliteration 94
6.1 Introduction . 94
6.2 Transliteration Rules for Romanian Cyrillic 95
6.3 MC: Bidirectional Transliteration 95
6.4 Transitional Alphabets . 98
6.5 Glyphs and Transliteration Rules for RC 100
6.6 Examples of Transliteration 101
6.7 Transliteration utility . 101
6.8 Comparative Analysis of the Transliteration Process for Cyril-

lic Script of Different Periods 104

Contents 5

7 Heterogeneous documents processing 106
7.1 Definition of heterogeneous content 106
7.2 Layout analysis . 108
7.3 Specifics of heterogeneous document recognition 109
7.4 Music . 111
7.5 Mathematics . 113
7.6 Chemistry . 114
7.7 Technical drawing . 115
7.8 Charts . 117
7.9 Chess . 118
7.10 Final remarks . 119

8 Platform for recognition of heterogeneous documents 120
8.1 Introduction . 120
8.2 General structure of the HeDy platform 123
8.3 Platform architecture details 126
8.4 Image preprocessing modules 127
8.5 Optical Character Recognition (OCR) modules 127
8.6 Text Transliteration Modules 132
8.7 Modules for managing digitized documents 134
8.8 Digitization process overview for historical documents . . . 136
8.9 Digitization steps for heterogeneous content 137
8.10 Recognition of mathematical texts 142
8.11 Digitized Document Management Modules 144

Conclusion 149

Bibliography 151

6

Introduction

Recent advancements in digital technologies, particularly in artificial intel-
ligence, underscore the imperative to automate text digitization processes.
These processes play a pivotal role in generating essential resources for the
advancement of large linguistic models. Conversely, as early as 2011, the Eu-
ropean Commission formulated recommendations on digitization and online
accessibility of cultural material, along with digital preservation (source: [1]).
The document emphasized the importance of encouraging the development
of digitized content from libraries, archives, and museums. It urged member
states to bolster their investments in this domain to ensure Europe’s contin-
ued prominence as a global leader in culture and creative content, leveraging
its rich cultural heritage to the fullest extent.

The recommendation has been included as a policy action in many coun-
tries (not only in the EU) and a whole industry offering scanning, recognition,
and related services has been developed, with the issue of digitization and
preservation of cultural treasures.

Large-scale digitization, where the actions are scanning and storing
images, began with Project Gutenberg [2], initiated in the 1970s and counting
now more than 70000 free access books, later came the Hathi Trust digital
library [3] (containing more than 18 millions of printed items), the million-
book collection [4] (the goal of digitizing one million books was reached as
early as 2007, but work continues in 50 scanning centers) and the Google
Books digitization project [5] (where all the books are OCRsed). In addition
to these projects, we will also mention the Europeana portal [6], which
contains collections of European cultural heritage, including over 4 million
texts (books, magazines, articles, etc.) and more.

Introduction 7

Even though many documents can be found and read online, they are
usually exposed only in image format, and not in machine-readable (or
machine-editable) text format. Therefore, the challenge of automating the
process of transforming documents into machine-readable (editable) text will
be faced by machine learning and computer vision applications.

As an integral part of the Romanian-speaking space, the Republic of
Moldova is engaged in the preservation of its heritage through digitization.
Several specific problems are inherent in the digitization of the Romanian
historical linguistic heritage:

• a large number of periods in the evolution of the language;
• the small volume of widely distributed and available resources;
• the diversity of printing alphabets, in particular, mixed Cyrillic-Latin
transitional alphabets;

• the lack of tools for the correct recognition of Cyrillic letters from
different historical periods;

• the lack of lexicons suitable for the period of printing of the document;
• demand to transliterate the older Cyrillic scripts to the modern Roma-
nian Latin script.

Therefore, to make our printed heritage accessible as widely as possible,
it is necessary not only to limit ourselves to the optical recognition of the
characters but also to transliterate the texts into the modern Latin spelling
used for the Romanian language. Thus, in the following, by digitization,
we mean all the steps involved in transforming a document from a scanned
image into two editable documents: one presented in original characters, the
other transliterated into Latin characters of the modern Romanian alphabet,
and, in some cases, with updated spellings of words.

During document processing, our team used existing software adding
self-developed utilities. To integrate different program modules into a unified
document processing platform, we proposed an approach called convergent
technology [7]. Convergent technology is a general principle of physical
and/or logical pooling of resources based on the resemblance, belonging,
or similarity of the tasks solved into some interacting software modules.
Features of convergent technologies are:

• maximal usage of ready-made solutions of subtasks;

8 Introduction

• script language as a glue that gathers different modules together;
• script language to implement new solutions;
• non-intrusive support of modules assembly; modules and scripts inter-
act through external data and signals.

There are two types of documents to be processed: homogeneous (with
homogeneous content) and heterogeneous (with heterogeneous content).
Homogeneous content consists of text, possibly organized in tables, inter-
spersed with non-textual elements kept as images. Let us note that many
non-textual content elements can be presented in a scripting language. The
main features of the heterogeneous content are as follows [8]:

• the document is not exclusively in natural language;
• there are scripting languages presenting their components;
• the graphic representation can be re-rendered from the scripts.
Therefore, we will differentiate textual content, images, and script pre-

sentable content inside a heterogeneous document. Content that can be
presented as a script should be recognized; the most obvious advantage of
script presenting are possibilities to search and modify it. A good example
of a heterogeneous document is an encyclopedia.

This book examines the problems of digitization of both types of docu-
ments - homogeneous and heterogeneous, printed in the Roman language
with Cyrillic characters. It is based on the publications of seven years of re-
search and development by our team in this field, discusses the current state,
challenges, and perspectives, and is structured into seven basic chapters.

Chapter 1 describes the history of Romanian writing and printing, and
encircles the set of processed documents: printed documents and books
including historical ones from the 17th century up to the 20th century. The
scripts in the documents are mostly Cyrillic.

In Chapter 2, we analyze the tools for image preprocessing paying special
attention to methods of improving the quality of old document images.

The next Chapter 3 includes a review of methods, tools, and resources for
the digitization of documents of historical and cultural heritage for different
languages and periods. A special section is dedicated to the work done for
the processing of Romanian texts printed with the Cyrillic alphabet.

Chapter 4 summarizes the experience with documents from the 17th

Introduction 9

century. It grounds our approaches to the design of the technology for
processing historical texts (printed in Romanian in Cyrillic script in the 17th
century), describes the methods developed, and argues for the use of some of
the existing modules. The process of developing OCR models is presented,
and the neural network-based font classification method is described.

We have devoted a separate Chapter 5 to the processing of texts printed
with transitional alphabets, considering that this subject deserves special
attention because of the variety of alphabets (with at least 17 attested), char-
acteristic of the first half of the 19th century.

Chapter 6 describes the application of transliteration, highlighting prob-
lems specific to each historical period, the most difficult in this respect being
the writing of 20th-century texts in modern Cyrillic script.

The next Chapter 7 discusses IT support of work with heterogeneous
documents which usually contain not only text but also various content types
like mathematical and chemical formulas, musical scores, diagrams, technical
drawings, chess notations, etc.

The technology needs the use of an integratedWeb platform the structure
and functionality of which are described in the last Chapter 8.

Acknowledgments. The authors express their deep gratitude to their
colleagues from the Laboratory Programming Systems of the Vladimir An-
drunachievici Institute of Mathematics and Computer Science under the State
University of Moldova for their collaboration, support, and valuable discus-
sions. We would like to express our acknowledgment to the National Agency
for Research and Development of the Republic of Moldova for funding project
20.80009.5007.22: Intelligent information systems for solving ill-structured prob-
lems, processing knowledge and big data within the framework of which the
work was carried out in the period 2020-2023.

10

Chapter 1

e historical evolution of
Romanian writing and
printing

1.1 Stages and timeline

After the invention of movable type printing by Gutenberg around 1445, this
technology quickly spread throughout Europe. The first book on the territory
of modern Romania was printed in Târgoviște in 1508 in Church Slavonic.
The earliest surviving printed publication in the Romanian language is the
1561 Gospel Book [9]. Fig. 1.1 shows two pages from The Romanian Apostolos
printed by Coresi in Brașov in 1563.

The subsequent development can be described as a combination of three
processes.

Firstly, there was continuous evolution in the Danubian Principalities
and later in Romania. According to [10], it was in the late 15th and early
16th centuries that the process of replacing Church Slavonic with Romanian
began in administrative and governmental structures as well as in the church.
From Church Slavonic, the Romanian language adopted the Cyrillic alphabet.
The letter Ꙟ is unique to the Romanian alphabet among other Cyrillic-based
alphabets.

Chapter 1. The historical evolution of Roma… 11

Figure 1.1: Pages from The Romanian Apostolos, Brașov, 1563.

The division of text into words can already be observed in the 1561
Gospel Book. By the late 18th century, there was a simplification of the
script: a transition to Arabic numerals, the abandonment of abbreviations,
and diacritical marks. This was followed by the shift to the Latin-based script
through transitional scripts, accompanied by the abandonment of uncial
forms. In 1904, the simplification of the Latin script of 1860 led to the modern
script. These five stages are reflected in rows 1–5, Tab. 1.1.

Secondly, when considering detailed data from Bessarabia, the situation
becomes more complicated. This region became a part of the Russian Empire
in 1812, joined Romania in 1918, and then switched from Romania to the
USSR twice. The Romanian speaking regions on the left side of river Dniester
(Transnistria) remained within the USSR and even held autonomous status
there for a period. In Bessarabia under USSR and Transnistria, the MC variant
(Tab. 1.1, row 6) of the Romanian script was used.

12 Section 1.2. The Romanian Cyrillic script (RC…

Table 1.1: Evolution of Romanian scripting.
1 RC The Romanian Cyrillic

script
Up to 43+ letters, imitating
manuscripts.

2 SRC The Simplified Romanian
Cyrillic script

In the uncial and civil variants
(see Tab. 1.2).

3 TR The TRansitional scripts Civil SRC with several Latin
letters

4 RL The Romanian Latin script The initial variant.
5 MRL The Modern Romanian

Latin script
Mainly phonetic script.

6 MC The Moldavian Cyrillic
script

Ad hoc transcription of Roma-
nian sounds by Russian letters.

The detailed timeline of this evolution, including in Bessarabia and
Transnistria, is shown in Tab. 1.2.

Table 1.2: Timeline of the Romanian scripts.
From 1560 1760 1812 1830 1862 1904 1918 1924 1932 1938 1940 1941 1944 1989 1992

Romania
RC SRC1 SRC1 TR RL MRL MRL MRL

MRL
MRL

Bessarabia SRC2

MC MC MRL MRL
Transnistria MC MRL MC MC
1Uncial variant (in Romania).
2Civil variant (in Bessarabia, church publications). See details in Sec. 1.3 on p. 16.

Lastly, irregular attempts at using the Latin alphabet occurred long
before its official adoption in 1860. Several Romanian books were printed in
Latin script with varying orthographic models (Germanic, Hungarian, Polish)
[11, p. 201-248].

This intricate history reflects the dynamic interplay of linguistic, cultural,
and geopolitical factors that have shaped the trajectory of Romanian writing
and printing. See portions of texts in all six regular Romanian scripts in
Fig. 1.2 on p. 13.

Chapter 1. The historical evolution of Roma… 13

Figure 1.2: Six regular Romanian scripts

1.2 e Romanian Cyrillic script (RC)

In old grammars of the Romanian language, a Cyrillic alphabet of 43 letters
is presented. We reproduce it in Tab. 1.3 on page 14, following source [12].

The order of the letters varies in different sources. As for their quantity,
it depends on what is considered a letter. In the alphabet shown, for example,
the letter Ѕ was used only for writing numbers. The letter Ы was always
included in the alphabet but was not used in word spellings. Conversely, Й
was not included in the alphabet as it was considered a variant of the letter
И with a diacritic mark.

Romanian Cyrillic uses a variety of diacritic marks (Tab. 1.4 on page 15).
Example:

RC: Ад̓евъ́рь шѝ нои́ ѡ̓ам́ени съ́нтем̾ шѝ а҆́м пꙋтꙋ́т̾ шѝ грешѝ
3 1 2 1 31 1 5 2 4 1 5 2 2

MRL: Adevăr și noi oameni suntem și am putut și greși
Eng.: Truth be told, we are human, and we can commit sins

14 Section 1.2. The Romanian Cyrillic script (RC…

Table 1.3: The Romanian scripts.
RC, SRC TR RL, MRL MC RC, SRC TR RL, MRL MC

1 Аа а a а 22 Ѹѹ ɣ u у
2 Бб б b б 23 Фф f f ф
3 Вв в v в 24 Хх х h х
4 Гг g g, gh г 25 Ѡѡ o o о
5 Дд d d д 26 Цц ц ț ц
6 Ее е e е 27 Чч ч c (before e, i) ч
7 Жж ж j ж 28 Шш ш ș ш
8 Ѕѕ 29 Щщ щ șt шт
9 Зз, z, ḑ z, ḍ (RL) з 30 Ъъ ъ ă э

Ꙁꙁ z (MRL)
10 Ии i i и 31 Ыы

(Йй) ĭ ĭ (RL only) й, ь 32 Ьь
11 Її i i и 33 Ѣѣ ea ea я
12 Кк k c, ch к 34 Юю iɣ, ĭɣ iu ю
13 Лл l l л 35 Ѫѫ î â, î ы
14 Мм m m м 36 Ꙗꙗ ia ia я
15 Нн n n н 37 Ѧѧ ia ia я
16 Оо o o о 38 Ѱѱ пs ps пс
17 Пп п p п 39 Ѳѳ t, ft t, th т
18 Рр р r р 40 Ѯѯ ks x кс
19 Сс s s с 41 Ѵѵ i, ɣ i, v и, в
20 Тт t t т 42 Ꙟꙟ în, îm în, îm ын, ым
21 Ꙋꙋ ɣ u у 43 Џџ џ g (before e, i) ж (until 1967), ӂ

RC followed Churchslavonic number notation that is shown in Tab. 1.5
on page 15. Numbers up to 999 are written by letters with a specific overline
mark.

Unlike the Romanian version, in Church Slavonic the number 800 was
written ѿ҃. The letter Ѿ was not part of the Romanian alphabet, although it
may be used in Romanian church texts.

When forming compound numerals in the range 11−19, the lowest digit
was written first, followed by і ҃ (10). The rest of the numerals were written
from the highest digit to the lowest: compare в҃і= 12 and к҃а= 21. This is
explained by the fact that in Romanian, as well as in Church Slavonic, in the
verbal recording of numerals, the order of the digits is exactly the same.

Numbers bigger than 999 can be written in two manners: with underline
symbol ҂ for thousand, or framed, as shown in Tab. 1.5.

Chapter 1. The historical evolution of Roma… 15

Table 1.4: Overline marks in the RC script.
1 и́ Usual stress
2 ѝ Stress at the end of the word
3 и̓ Vowel is the first letter in the word
4 и҆́ Both the first vowel and stress (stress may be omit-

ted)
5 м̾ Mute letter ь omitted after the consonant at the end

of the word
6 й Forms Йй from Ии
7 и҃ Abbreviations and numbers

Table 1.5: The Churchslavonic number notation.
1 = а҃ 10 = і ҃ 100 = р ҃ Examples Framed notarion
2 = в҃ 20 = к҃ 200 = с ҃ 12 = в҃і 3000000000 = г ꙲
3 = г҃ 30 = л ҃ 300 = т҃ 123 = рк҃г 200000000 = в꙱
4 = д҃ 40 = м҃ 400 = у҃ 1234 = ҂аслд҃ 10000000 = а ꙰
5 = є҃ 50 = н҃ 500 = ф҃ 12345 = ҂в҃і тм҃є 3000000 = г ҉
6 = ѕ҃ 60 = ѯ҃ 600 = х҃ 123456 = ҂рк҃г унѕ҃ 200000 = в ҈
7 = з҃ 70 = ѻ҃ 700 = ѱ҃ 1234567 = ҂҂а ҃ ҂слд҃ фѯз҃ 10000 = а⃝
8 = и҃ 80 = п҃ 800 = ѡ҃ 12345678 = ҂҂в҃і ҂тм҃є хѻ҃и
9 = ѳ҃ 90 = ч҃ 900 = ц҃ 123456789 = ҂҂рк҃г ҂унѕ҃ ѱп҃ѳ

RC abbreviations are of four kinds: taking letters above the line with a
superscript marking, the same without a marking, omitting individual letters
with a superscript marking, and abbreviating some frequently occurring
words. Examples from [13]: ѧ҇ⷭте = ѧ҆́ сте, д

м
ꙋнеꙁъ́ꙋ = дꙋмнеꙁъ́ꙋ, сфит҃ѫ =

сфи́нтѫ, Iсх҃҃с = I҆їсꙋс́ Христос́ (Jesus Christ). There are also combinations of
these abbreviations, e.g. прѣ ⷣс҇лов́їе = прѣдослов́їе (bringing the letter up with
a mark and omitting the letter).

16 Section 1.5. The Romanian Latin script (RL)

1.3 e Simplified Romanian Cyrillic script (SRC)

At the last third of the 18th century the RC script was simplified by omitting
overline marks, revealing abbreviations, and use of the Arabic numerals. In
Romania, it kept uncial letter form. Example from [14, p. 10]:

Дрептачеѧ ꙟн аритметикъ сѫнт доꙋѫ операцiй фондаментале,
адекъ Адицiа ши Сꙋбтраџерѣ; ши алте доꙋѫ каре сѫнт
нꙋмай ꙋн каꙁ партикꙋлар ачелор доꙋѫ динтъй, ши съ нꙋмеск
мꙋлтипликацiа (ꙟнмꙋлцирѣ) ши дивиꙁiа (ꙟмпърцирѣ.)

In Bessarabia, the local church administration was a single actor that
regularly published in Romanian, including periodicals. These publications
used the civil variant of the SRC script. Non-church publishing was rare and
followed the script actual at the moment in the territory of Romania. This
continued until 1918. See details in [15].

1.4 e Transitional scripts (TR)

The Transitional scripts (TR) aimed to move the Romanian writing to Latin-
based civil script step by step, replacing several letters each time. That is,
SRL was the starting point that was rebuild in civil (non-uncial) design, and
then more and more letters were replaced by Latin ones.

In reality different typographies replaced fonts discordantly; supposedly,
the replacement was performed while renewing worn letterpunches. As a
result, more than dozen variants of the TR scripts are counted.

See details in [11].

1.5 e Romanian Latin script (RL)

The Romanian Latin (RL) script was introduced in 1860 in Romania, and in
1862 adopted in Transilvania and Bucovina that were then under foreign
sovereignty.

The script was introduced by the order of the minister of internal affairs
Ion Ghica on February 8, 1860 [11, p. 332−334]. The order was very short

Chapter 1. The historical evolution of Roma… 17

containing the letter-to-letter table of the actual transitional and new Latin-
based scripts, and several simple rules in plus.

Some peculiarities of the introduced script were: variants of letters (ț, ts
for ц, and ș and ss for ш); acute accent for combinations of vowels (é for ea,
ó for oa); ḑ for sound /d͡ʒ/ that was replaced slightly later by ḍ; two letters
(â, î) for sound /ɨ/; mute ŭ, etc. See [11, p. 333].

In the period 1860−1904 some authors proposed and apply even more
complicated etymological orthography. For example, they wrote ç in place of
ț because the Latin source word contained c, or used up to five letters (â, ê,
î, ô, û) for /ɨ/ depending of the corresponding vowel in the Latin prototype
word, etc.

1.6 e Modern Romanian Latin script (MRL)

In 1904 the RL script was replaced by the Modern Romanian Latin (MRL)
script that is used till nowadays. MRL fixes the (almost) phonological Roma-
nian orthography.

The phonological principle concerns the correspondence between letters
and phonemes or typical sounds. In a phonological writing system each
phoneme is denoted by a letter and each letter renders in writing a single
sound.

Since 1904 MRL got minor changes in 1932, 1953, 1964, and 1993 [16].
The current variant (1993) was subsumed in 2005 by the normative dictionary
[17].

The following example of the MRL script is taken from the Romanian
Wikipedia [18], article Limba română (The Romanian language):

Limba română a evoluat din latina orientală, contactul prelungit
cu populațiile slave fiind la originea unei părți importante din
vocabular. În evul mediu și în perioada premodernă au intrat
în limbă un număr limitat de cuvinte maghiare, turcice vechi,
turcice otomane și grecești. O influență puternică a avut-o limba
franceză în secolul al XIX-lea.

As an exclusion of phonological principle, MRL contains two letters Â
and Î for just one sound /ɨ/. In 1953−1964 only Î was used, and in 1964−1993

18 Section 1.7. The Moldavian Cyrillic script (M…

Â was restored only in the word român (Romanian) and its derivatives.
The restoration of the Latin-based alphabet in MSSR took place in 1989
that fixed for the Republic of Moldova the actual in 1989 Romanian variant
with restricted usage of Â. This variant remains official until present in the
Republic of Moldova while Romania restored Â fully since 1993. In practice,
only schools and official editions in the RM follow these restrictions for Â;
they are ignored by most people and non-governmental publishers.

1.7 e Moldavian Cyrillic script (MC)

The Moldavian Cyrillic (MC) script was created with the creation of the
Moldavian Autonomous SSR in Transnistria in 1924.

Moreover, since 1920s till 1950 a theory ruled in the USSR that language
is class specific.

The initial period of MC writing (1924–1951) is associated with an ex-
tremely specific lexicon. It is characterized by: use of Russian words; deletion
of Romanian words that were claimed as “bourgeois”; introduction of self-
invented neologisms for abstract notions that cannot be found in the local
dialect; fixing of local dialect peculiarities as the language norm.

The MC was practiced in the MASSR until 1932. In 1932 Transnistria
was switched to the Romanian language norms and the MRL script. The
year 1938 brought the next transfer back to MC. In 1940 Romania returned
Bessarabia to the URSS. Moldavian became the state language of the newly
created Moldavian SSR that included Transnistria but excluded Budjak.

Since 1941 until 1944 Bessarabia and Transnistria was administrated by
Romania. Since 1944 the MSSR was restored.

In 1950 the Soviet leader Josef Stalin published his work Marxism and
problems of linguistics, which dethroned the theory of the class specific
languages. This permitted to reorient MSSR to the linguistic standards of
Romania, keeping nevertheless the MC script. Finally, in 1967 MC was
extended by the letter Ӂ for the sound /d͡ʒ/.

MSSR got independence as the Republic of Moldova in 1991, while the
MRL writing was established in 1989. The enclave of Transnistria uses MC
until present.

Chapter 1. The historical evolution of Roma… 19

The following citation from [19, p. 14] gives an example of MC writing:

Пентру а не конвинӂе де ачаста, сэ анализэм кыт де мулт
пот фи мутате кэрэмизиле спре дряпта. Дакэ ну авем ла
ындемынэ кэрэмизь, сэ луэм доминоул сау, ын чел май рэу
каз, ун симплу клит де кэрць. Кондиция принчипалэ есте
кондиция де екилибру. Не вом стрэдуи сэ ынцелеӂем ын
че констэ еа.

20

Chapter 2

Tools for image preprocessing

2.1 e importance of image quality in OCR

It is well-known that the quality of an image significantly influences the
accuracy of optical character recognition (OCR). Historical documents are
particularly vulnerable to quality degradation. Factors such as humidity, light
exposure, physical wear and tear, and even certain writing materials can lead
to fading, smudging, or the deterioration of the text over time. Such damage
can introduce noise and other distortions, making it challenging for OCR
systems to identify and translate the characters correctly. Thus, preprocessing
the images from documents, especially older ones, to enhance their qualitative
appearance becomes a crucial step in the digitization workflow. Additionally,
preprocessing scanned documents is a vital step in machine learning, as
during this phase the initial data is adapted to serve as a compatible input
for an OCR system.

Considering our interest in extracting text from images, we will em-
phasize those image preprocessing procedures that ensure the highest pos-
sible OCR accuracy. In this chapter, we will describe the nuances of us-
ing certain tools for image processing—namely Scan Tailor[20] and ABBYY
FineReader(AFR)[21].

Chapter 2. Tools for image preprocessing 21

2.2 Preprocessing techniques for scanned docu-
ments

Preprocessing techniques can rectify many common issues found in deterio-
rated or low-quality scans. For example:

•noise reduction technique removes specks, dots, or unwanted artifacts,
ensuring that they are not mistakenly recognized as characters;

•binarization converts the image to black and white, making the black
text clearer against the white background;

•skew correction or orientation correction makes the text to appear straight
if a document is scanned at a slight angle, so it aligns correctly for the OCR
system;

•resolution enhancement can provide finer details of the text, especially
for older documents where characters might be closely spaced;

•character thickening is akin to the resolution enhancement technique
previously mentioned – just as enhancing resolution can provide finer de-
tails of the text, thickening thinned-out characters (some characters may be
thinned-out by binarization) ensures they are recognizable and accurately
transcribed by OCR systems.

The binarization is achievable in all the tools described next. In AFR it
appears as a default option when setting up the image processing settings.
Therefore, we can infer that FR provides some necessary options for pre-
processing old texts. However, it does not encompass the entire spectrum
of required tools, necessitating the involvement of additional instruments.
There is a wide range of these tools available, including some that are freely
distributable, such as Scan Tailor, OpenCV and GIMP. One of the essential
preprocessing modules for old documents that is absent in FR pertains to
character thickening. Much like rust corrodes iron, wear and tear specific to
books can thin out characters. Furthermore, certain binarization methods
can reduce the thickness of the lines in characters. To thicken them again
during the image preprocessing phase, we use a specialized module in Scan
Tailor, a tool that we will describe in further detail below.

22 Section 2.3. Preprocessing with Scan Tailor

2.3 Preprocessing with Scan Tailor

Scan Tailor is an interactive preprocessing tool for scanned pages. It performs
operations such as page splitting, deskewing, adding/removing borders, and
others. It is a Free Software written in C++ with Qt and released under the
General Public License version 3 [20].

This tool has proven to be quite suitable for our cases considering several
factors, including processing speed and a default document processing order
that is accessible to most users. Therefore, in the following, we will focus on
applying the Scan Tailor software and examine the steps of image processing
with this software.

For a document consisting of multiple pages, it is necessary to process
each page separately. Most often, we use this tool for binarization, to clean
the image of unwanted artifacts (spots, blurriness with erased areas, noise
represented by a multitude of black dots next to characters, etc.), to straighten
the rows, to thicken the characters and to improve the resolution. If several
pages are in a single image, then we will apply the split pages step. The type
of separation is determined automatically, but it can be set manually and can
be applied to all pages simultaneously or to individual pages.

An important module we utilize through Scan Tailor is binarization. It is
defined as a function that maps the intensities of the input image pixels to
values of 0 (black) or 1 (white) in the binarized output image. There are two
main classes of binarization methods. The first determines a global threshold
in the image, simply a grayscale level, and then assigns the value 0 to all
pixels with a value less than this threshold and the value 1 to the other pixels.
Themost used method in this class is the Otsu’s Method[22]. The second class
consists of a set of methods with a local threshold. It determines a different
binarization threshold for each pixel, rather than using a global threshold
for the entire image. Local threshold methods can use various techniques
to determine the binarization thresholds for each pixel. Some may consider
information about the near neighbors of the pixel to determine the threshold,
while others might use global statistics to find a threshold that adjusts at the
local level. After determining the binarization thresholds for each pixel, they
are used to decide whether each pixel should be treated as being white or
black in the final binary image. In Scan Tailor, binarization is implemented

Chapter 2. Tools for image preprocessing 23

by equalizing the illumination based on the study [23], smoothing via the
Savitzky-Golay filter[24], followed by the actual binarization based on Otsu’s
Method, and, ultimately, the removal of broken edges. The removal of these
broken edges involves using a template image as a reference to locate and
eliminate discontinuous margins from the input image. In this context, the
template image would represent a linear edge without interruptions, and the
algorithmwould search for this in the input image, replacing any broken edge
with an edge similar to the one in the template. Our experience indicates
that it’s beneficial to save documents in a “black-and-white” format since
this has shown better accuracy in OCR. However, opting for this approach
demands special attention, as discoloration might lead to the loss of some
text elements. This loss can be compensated to some extent by thickening
the characters (an option selectable upon saving), but it’s crucial to test on a
few pages before applying the procedure to the entire document.

One of the crucial modules at the preprocessing stage is the one that
corrects image resolution. Resolution represents the number of pixels present
in an image and is vital for OCR models to work efficiently. Resolution can
vary depending on when the document was printed, its wear state, and the
quality of the scanned image. To achieve optimal results, it’s essential to
adjust the images’ resolution before OCR.

To obtain optimal results during the processing of old documents, it is
essential to consider the necessary resolution for each period. For instance,
17th-century documents require a resolution higher than 900DPI to detect
ligatures, but below 1300DPI to avoid detecting multiple characters together
(see Fig. 2.3, p. 25). The sufficient resolution for 18th 19th and 20th-century
documents is 300DPI, also referred to as the gold standard of resolution. If
an image with a different resolution than the images used for OCR model
training is submitted for recognition, issues or anomalies might occur during
recognition, especially for 17th-century documents. This is because, instead
of detecting and segmenting the entire character, only a character portion
or multiple characters and rows might be segmented together (see Fig. 2.1
on p. 24, Fig. 2.2 on p. 25, Fig. 2.3 on p. 25 taken from a 17th-century printed
document with characters from the Romanian Cyrillic alphabet.

Detecting a character doesn’t mean recognizing the character. Actual

24 Section 2.3. Preprocessing with Scan Tailor

Figure 2.1: Detection and segmentation of characters in an imagewith optimal
resolution

character recognition follows after detection and segmentation). It is crucial
to account for this resolution difference to obtain optimal results during
document processing.

Resolution setting modules in Scan Tailor and OpenCV allow manual
resolution setting by the user. By default, Scan Tailor sets the output image
resolution to 600DPI. We mentioned output image resolution because there’s
also an input image resolution parameter, meaning that before Scan Tailor
starts other image processing, the loaded image should already have an
appropriate resolution. For instance, applying the noise removal on a 50DPI
resolution image might have no effect in Scan Tailor, hence sometimes input
resolution setting is required. The input resolution parameter or simply
resolution in Scan Tailor is set to 600DPI by default.

The preprocessing with Scan Tailor is a supervised process. With every
preprocessing option chosen, a specialist needs to adjust the parameters and
initiate each process individually. As a result, the preprocessed images are
stored in a designated folder, named “out” in TIFF format. These images are
ready for OCR.

Chapter 2. Tools for image preprocessing 25

Figure 2.2: Detection and segmentation of characters in an image with too
low resolution (96DPI)

Figure 2.3: Detection and segmentation of characters in an image with too
high resolution (2000DPI)

26

Chapter 3

OCR solutions across
languages and their evolution
into integrated recognition
platforms

3.1 e comparative description of OCR tools for
processing historical documents

Various OCR methods and tools have been proposed for processing histori-
cal documents; however, while some excel in certain tasks and are mostly
commercial products, others - free of charge - offer comparatively reduced
functionality in terms of character recognition accuracy but still present
suitable tools for research and experimentation.

Optical Character Recognition for modern printed documents using the
Latin alphabet works very well (with over 99% accuracy in most cases) and is
often considered a solved problem [25]. Traditional OCR methods available
in commercial and free software products operate as follows: during the
OCR process, an image of a printed page is segmented into characters, which
are then compared with sets of abstract features describing examples of

Chapter 3. OCR solutions across languages a… 27

characters previously learned from a character set of a font. The similarity
between the learned and recognized characters, the clear separation of black
characters from the white background, and the modern spelling of words
contribute to excellent recognition results.

Until 2014, historical documents posed a severe limit to the effectiveness
of OCR, as most available OCR engines had been extensively trained with
modern fonts. However, since historical fonts are very different from modern
ones, they require separate training by specialist teams. For relatively old
texts (19th century), the OCR results from commercial engines are often less
satisfactory [26], [27]. Even Antiqua fonts (Roman glyph forms) of historical
prints often lead to a character recognition accuracy of about 85%, being
recognized with ABBYY FineReader, a leading commercial product [28]. Since
2019, ABBYY has implemented new artificial intelligence algorithms[29],
which substantially contribute to the recognition of languages based on
complex scripts, such as Chinese, Japanese, and Korean. Hence, different
models are used for Latin, Cyrillic, Arabic, and other scripts. For example, for
Arabic script, an end-to-end approach is used for word recognition without
character separation. A special architecture, combining convolutional and
recurrent neural networks, solves this task. For old Latin and Cyrillic scripts,
a mixed approach is used, switching between different recognition models
based on the visual quality of the text. This significantly improves both the
speed and accuracy of optical character recognition, including from historical
documents[29].

There are two well-known methods of training OCR models in this field:
training on synthetic data (images generated from existing electronic text and
computer-available fonts); or training on real data (pairs formed from glyph
or character images and their transcription - the Unicode character)[30].
The first method avoids the need to generate ground truth data necessary
to establish the link between glyph forms and Unicode characters during
training and also does not require the preprocessing of real images. As the
entire training process can be automated, this training method is preferred
whenever applicable. However, the multitude of historical fonts cannot
be matched with existing fonts, and irregularities in word spacing, inferior
quality of scanned images, wear stains, etc., in such documents lead to inferior

28 Section 3.1. The comparative description of O…

recognition results compared to training on real data [28]. OCR training
for historical documents must therefore rely on a process that uses real
data, meaning that training examples taken directly from printed documents
become a key resource. Historical corpora with such examples, which could
serve as training data for historical fonts, are not yet available in sufficient
quantity (as mentioned above, only small groups of specialists are concerned
with this). Another issue is variability. Old typographies are characterized
by a greater diversity of fonts, as the process of designing, producing, and
distributing metal letter types had not yet become a separate profession,
and old typographies had to produce their own sets of letters, leading to
a wide variety of historical fonts [31], [32]. Therefore, it is problematic to
train associations between printed glyphs and the UNICODE characters they
represent, using data from one typography and applying it to another.

In the paper [28], the authors note two issues regarding the application
of OCR methods to historical printed documents. First, an individual model
must be trained for a specific book with its unique typography. This can be
done by transcribing a portion (one or more pages) of the printed document’s
text, usually requiring linguistic knowledge. Second, even if this model works
well for the book it was trained on, it normally does not yield good OCR
results for other books, even if their fonts look similar. This typographic
barrier must be overcome to effectively use OCR methods in building a his-
torical corpus. The authors then describe experiments addressing both issues.
Firstly, they outline a procedure for training individual models, using a new
recognition algorithm based on recurrent neural networks, as implemented in
the OCRopus OCR engine [33]. As training material, the authors use scanned
documents from the RIDGES corpus[34]. The individual model is trained
on a single document with its specific fonts and thus optimally adapted to
this book. These models produce excellent recognition results for unseen
(unprocessed) pages of the books they were trained on, but unfortunately
yield mostly poor results when applied to any other documents with even
slightly similar fonts. Next, the authors explore the viability of training mixed
models on a range of different typographies, pooling training material from
a variety of books in the hope that these models are better able to generalize
the recognition process for books from which character examples were not

Chapter 3. OCR solutions across languages a… 29

taken in the training set.
Many studies on the recognition (OCR) of historical documents have

largely focused on Tesseract [35], an OCR engine that can be trained on
artificial images generated from computer fonts. Tesseract is undoubtedly
one of the most popular open-source OCR engines. It was created at Hewlett-
Packard between 1985 and 1994 and was made open source in 2005. Tesseract
is still under active development by Google and modern versions includes a
new engine based on neural networks with an recurrent architecture. Both
engines have strengths and weaknesses and are therefore applicable in dif-
ferent use scenarios. However, training on real data has proven difficult and
requires some effort to reconstruct the original historical font from cut-out
glyphs. This was also achieved by the team in Poznan (Poland) in paper [36]
with the Franken+[37] tool. The authors reported that this tool managed to
achieve a character accuracy of about 86% on the ECCO document collection
[38].

A completely different approach was adopted with the OCR engine Oc-
ular [39], which can convert printed text to electronic text in a completely
unsupervised manner (i.e., no need for a ground truth dataset). This may
be a viable alternative for training individual models with reduced manual
effort, but it appears to be very resource-intensive and slow (transcribing
30 lines of text takes 2.4 minutes). Its results are better than Tesseract and
ABBYY FineReader (without training), but it remains to be demonstrated
that they can consistently achieve character recognition performance greater
than 90%.

In paper [40], it is shown how the recognition accuracy for historical
Polish texts can be significantly improved by training the OCR engine used.
The report shows improvements from 45 to 80% in character recognition
accuracy and 15–55% in word recognition accuracy for recognizing Gothic
documents after training ABBYY FineReader on just a few pages. To leverage
OCR training, systems like ABBYY FineReader have basic built-in facilities
to add at least a few new symbols to an existing language [41].

Tesseract and other open-source programs, on the other hand, offer more
extensive training possibilities. There are various works on how specific
OCR training issues have been addressed.

30 Section 3.1. The comparative description of O…

One example [42] demonstrates how Tesseract was trained to recognize
Ancient Greek. The process described mainly relies on scripting and some
manual interventions. The authors provide some general recommendations,
but no systematic approach regarding the choice of parameters and settings
is described, nor are any statistical justifications presented.

Another example can be found in [43], where the authors train the
Tesseract engine to recognize Odia – an Indian script. Here, the training set
is first generated artificially and then introduced into Tesseract’s standard
command line tools. Although this might work for languages (character sets)
that are fundamentally known, it wouldn’t be a viable option if unknown
characters and symbols are expected to appear (which is quite common in
historical documents).

In the paper [44], the authors describe an efficient approach for train-
ing OCR engines using the Aletheia document analysis system [45]. The
development of the Aletheia system initially began in 2001 with the goal of
creating a system to produce ground truth datasets for page structure and text
block recognition. Since then, Aletheia has evolved into a comprehensive
document image analysis system, incorporating support for multiple file
formats, image processing/enhancement and geometric correction methods,
integrated OCR, functionalities for entering and manipulating text blocks,
and more. The general architecture of the Aletheia system has a modular
design that allows for the integration of various OCR engines. The Tesseract
engine is available by default in Aletheia. Communication between mod-
ules is based on a command-line interface, and data communication is done
through PAGE XML (with compatibility also with other formats like ALTO
and FineReader XML) [46]. All the necessary components for training OCR
models are integrated into Aletheia: preparation of training data, the training
processes of the OCR model itself, text recognition, and evaluation of the
trained model. Such a training and evaluation system, guided through a
user-friendly graphical interface, allows for iterative incremental training
to achieve the best results. Besides the detailed description of the proposed
OCR engine training system, the paper [47] also reports several experiments
conducted on various datasets to investigate the ideal training conditions
in terms of the size and quality of a training set. The authors validated the

Chapter 3. OCR solutions across languages a… 31

training process’s effectiveness using two very different datasets, each repre-
senting a realistic use-case scenario where OCR engine training can make
a difference: a dataset from the 1961 Census for England and Wales (like
more “modern” monospaced fonts) and a book from the French National Li-
brary printed in 1603; the data being collected and grounded for the IMPACT
project [48].

In Fig. 3.1, p. 32, the authors present two examples, and Table 3.1, p. 31
displays the characteristics and sizes of the training and testing sets. All
experiments were conducted by creating an initial set of training examples
(glyphs along with ground truth), and the results were evaluated using a
text-based metric. The training process was carried out through Aletheia.

Dataset Characters/font Train-
ing Set

Testing
Set

1961 Census 40 character classes, uppercase
Latin letters, digits, and punc-
tuation marks; a single font

2150
glyphs

2115
glyphs

French Na-
tional Library
(1603)

74 character classes; Latin with
French characters and liga-
tures, two fonts

773 +
1321
glyphs

2040
glyphs

Table 3.1: The datasets for model evaluation in [47]

Special characters and ligatures were not transliterated because were
introduced in diplomatic transcription mode. Diplomatic transcription[49]
tries to represent document exactly as it appears, without changes such as
expanding abbreviations, transliterating proper names, etc. The strategies
considered by the authors for selecting training examples involved: remov-
ing partially erased/deformed glyphs and eliminating glyphs with a similar
appearance. The impact of each strategy was tested by gradually eliminating
more and more training examples from the dataset. To measure the OCR
results’ quality, a tool called TextEval [50] was used. Among other measures,
it uses an implementation of the University of Nevada’s measure [51], which
is based on the string’s edit distance. The quality of evaluation is reported in
percentages, where 100% indicates that the text was recognized perfectly.

32 Section 3.1. The comparative description of O…

Figure 3.1: Examples of pages from the evaluation dataset in paper [47]

To measure the impact of the trained models, OCR results with and with-
out training were compared. Without training, in this context, means using
the default linguistic information files provided by OCR engines. For the sake
of a complete comparison, the authors also evaluated the commercial system
ABBYY FineReader Engine 11. It should be noted that the Census dataset
includes only uppercase Latin characters (as well as digits and punctuation
marks).

Table 3.2, p. 32 presents the evaluation results made by the authors.

OCR Engines and Models OCR Accuracy by Dataset (%)
1961 Census French National Library (1603)

FineReader (without training) 88.40 88.40
Tesseract (without training) 90.08 84.93
Tesseract (with training) 95.40 90.14

Table 3.2: OCR accuracy with and without training in [47]

The trained Tesseract engine outperforms all other configurations, and

Chapter 3. OCR solutions across languages a… 33

the authors managed to investigate the accuracy for the FineReader engine
with training. For both testing sets, there is an approximate 5% increase in
performance compared to the Tesseract OCR results without training.

If wewere to discuss free OCR tools, then themost popular ones areOCRo-
pus[52], Ocropy, Kraken[53], Tesseract[35] and Calamari[54]. Ocropy and
Kraken train a neural network with an LSTM architecture. Long short-term
memory (LSTM) is an artificial recurrent neural network that can process
not only individual data points (such as images) but also entire sequences of
data (such as audio or video). Ocropy and Kraken architecture is constructed
with a single layer of neurons, while the newer versions of Tesseract and
Calamari train OCR models with multilayer networks of types of LSTM and
CNN. A Convolutional Neural Network (CNN), also known as ConvNet, is
a category of artificial neural networks primarily used for processing and
identifying images[55].

In the paper [56], various OCR methods with Ocropy are applied to
historical printed documents with a Latin font, resulting in good accuracy.
The authors of [57] present the architecture of Ocropy and explain the various
steps of an OCR process. Springmann and Lüdeling in their work [30]
(discussed above) use Ocropy to recognize printed documents between 1487
and 1870 and report a character-level performance of over 90%.

In the paper [58], the authors introduce for the first time the software
called Calamari (also known as Calamari OCR) - a set of tools for training and
recognizing text lines from images. It was created as an improved version
compared to Ocropy. Calamari supports a user-defined multilayer CNN-
LSTM neural network architecture, which has been found to increase model
accuracy. They use Tensorflow as the backend, which appears to enhance
computational performance compared to Ocropy, especially during training
and recognition on a GPU. The Calamari tool can serve as a replacement for
Ocropy and offers other important features as well. For example, models can
be trained and text can be recognized on a GPU, improving performance.
The implementation of additional features such as The implementation of
additional features such as:

early stopping - in machine learning, early stopping is a form of regular-
ization used to prevent overfitting of a model when it is learned using an

34 Section 3.1. The comparative description of O…

iterative method such as gradient descent ;
cross-validation[59–61] or out-of-sample testing are techniques for val-

idating a machine learning model to assess how well the trained model’s
results will generalize to an independent dataset;

pretraining has led to lower error rates [62] and works as follows: let
m is a machine learning model and A is a dataset, on which you train m,
therefore - before starting the training of model m on the new dataset B, m
is (pre)trained on A.

In the work [63], Calamari’s performance is tested compared to Ocropy
on historical documents, demonstrating that a combination of a convolutional
neural network and an LSTM network performs better than a single LSTM
layer (used in Ocropy). It was found that to achieve an error rate below
2% for recognizing a book, a pretrained model requires training examples
with ground truth from 60 lines of text. The authors verify both training and
recognition speeds. Training the neural network in Calamari is faster than
training Ocropy when using multiple CPU cores (more than 4). However,
training a model on a GPU is 4 times faster. In the prediction phase, Calamari
is 3 times faster than Ocropy even with a single CPU core and approximately
30 times faster on a GPU.

In the work [62], the authors use the Calamari tool to recognize a corpus
of historical newspapers published in Finland between 1771 and 1929 [64].
It’s worth noting that this corpus was previously recognized with ABBYY
FineReader 11 and has a character-level accuracy ranging from 87% to 92%,
which is quite high for qualitative linguistic analysis of the corpus. How-
ever, the authors considered the need to re-recognize the entire corpus of
documents using the advantages of the Calamari tool. This corpus contains
highly diverse data written in a non-standard language [62]. The newspapers
in Finland from the 18th century to the early 20th century were printed in
two basic languages of Finland (Finnish and Swedish) using two different
font families: Gothic (Blackletter) and Antiqua. It’s worth noting that the
data is not evenly distributed. In older documents, there is more material
printed in Swedish with Gothic fonts, while modern documents are mostly
printed in Finnish with Antiqua fonts. However, there are periods when
both languages and font families were widely used, sometimes even on the

Chapter 3. OCR solutions across languages a… 35

same newspaper pages. The standardization of the Finnish literary language
began in the 19th century [65]; therefore, a significant portion of the corpus
contains spellings from different Finnish dialects [45]. The size of linguistic
corpus is usually measured by tokens. A token is an instance of a character
sequence in a specific document, grouped together as a semantic unit useful
for processing. Tokens are often loosely referred to as terms or words. The
task of segmenting a text into tokens, while discarding certain characters
such as punctuation marks, is called tokenization. The corpus from work
[62] is very large, with nearly 5 billion tokens, so the authors also try to find
an efficient method for the repeated recognition of the corpus. The OCR
approach proposed by the authors includes image preprocessing, where the
basic process is the conversion to black and white; image segmentation into
text lines (Fig. 3.2, p. 35) training examples consist of text lines and charac-
ter sequences themselves - it’s very important here to note this difference
in approach compared to OCR engines that train with glyph-level training
examples, such as Tesseract 3 or ABBYY FineReader.

Figure 3.2: An example of training with a line of text from an image and the
matched ground truth sequence of characters[62]

It is agreed that correctly segmenting each glyph is difficult, leading to
many segmentation errors, and creating glyph-level training templates for
different fonts, especially for historical documents, is very time-consuming.
The ability to present whole lines of text in LSTM neural networks, line-
level segmentation asserting itself as the latest technology [62]. Next, in
the recognition process, the dataset is prepared, and a recognition model is
trained, resulting in text that can be corrected using linguistic post-processing
methods. The result is usually in XML files. For the preparation of the training
and test set, already available data collections are used [66], which consist
of approximately 9500 lines of Finnish text and 6500 lines of Swedish text
(418 from each set are used for testing only), as well as separate datasets
created by the authors. Both datasets were randomly extracted from the

36 Section 3.1. The comparative description of O…

corpus of historical newspapers and magazines [64]. The Finnish dataset
is extracted from the period 1820-1939, while the Swedish dataset covers
the years 1771 to 1874. In addition to existing datasets, the authors added
5000 lines from Swedish documents and 4000 Finnish lines from the same
corpus, manually transcribing them. To obtain training examples from the
corpus, the segmentation and OCR information of ABBYY FineReader, stored
in files METS-ALTO. The METS standard is a flexible schema for describing a
complex digital object (such as a digitized newspaper issue). METS describes
the structure of the object but does not encode the actual textual content
of the object. The ALTO standard fills this gap by encoding the textual
content of a digitized page in detail, including styles and layouts. In addition
to encoding the digitized text itself, ALTO encodes the spatial coordinates
of each column, line, and word as they appear on the page. METS and
ALTO are XML standards maintained by the U.S. Library of Congress[67].
The authors obtained approximately 11,500 lines of Swedish text and 13,500
lines of Finnish text after preparing the dataset, both consisting of a similar
percentage of Gothic and Antiqua font lines. The Finnish and Swedish test
data sets, in particular, each contain 418 lines of text. To test the OCR
model’s results, the authors use cross-validation on the dataset divided into
5 equally sized parts. The following measurements are conducted for result
evaluation: Character Error Rate (CER) and Word Error Rate (WER). The
Character Error Rate is the percentage of incorrectly recognized characters
out of the total number of recognized characters. Similarly, the Word Error
Rate is the number of incorrectly recognized words divided by the sum of
correctly and incorrectly recognized words. To obtain the number of errors,
the authors first aligned the ground truth with the recognized text lines at
the character level (for both CER and WER) and calculated the Levenshtein
distance [68] between them. In the recognition phase, the authors of the
work [62] use the prediction tool from Calamari. From this perspective, the
main advantage of this tool is the ability to run on a GPU, which makes the
recognition phase very fast. Another feature of the tool is the capacity to
recognize an image with multiple models at the same time and then to choose
the optimal result using a voting mechanism. The voting mechanism is ameta-
machine learning model that combines predictions from several other models.

Chapter 3. OCR solutions across languages a… 37

This is a technique that can be used to improve the model’s performance,
ideally achieving better performance than any single model. Each model
predicts multiple candidates along with their associated probabilities, and
then the voting mechanism decides which candidate wins. The authors of the
study [64] demonstrate that voting always reduces errors. The disadvantage
of this method is the need for recognition using multiple models, which
slows down the recognition process. To evaluate the performance of the
recognition models, the authors conducted experiments with mixed models
(models trained on both Finnish and Swedish data); monolingual models
(models trained on either Finnish or Swedish data); application of the voting
mechanism on combinations of models; and post-correction. The mixed
models achieved an average error of 2.6% CER and 10% WER. Specifically
for Swedish, they obtained 3.8% CER and 13% WER, while for Finnish, they
produced 1.7% CER and 8% WER. Applying the voting mechanism on models
that operated with the Swedish test set yielded 2.8% CER and 11% WER, and
the Finnish test set generated the best results from 5 equal mixed models with
1.9% CER and 8% WER. Finally, the authors performed post-processing (error
correction after recognition) on the new OCR results. The results showed a
significant increase in accuracy, resulting in 1.7% CER on the Finnish test set
and 2.7% CER on the Swedish test set. The authors’ greatest achievement is
the successful formation of a mixed model for the entire corpus and finding
a configuration of the voting mechanism that further improves the results.

Next, we will analyze some platforms or frameworks for digitizing and
processing historical documents developed in major projects related to the
digitization of cultural-historical heritage. Certainly, the process of digitizing
and processing historical documents would be more efficient and streamlined
if all the necessary tools were available in one place and integrated into
a single software application. Such applications could be referred to as
digitization platforms or frameworks.

HDPA. In the paper [69], a complex and flexible web framework named
Historical Document Processing and Analysis Framework (HDPA) is described
for managing and analyzing historical documents, with a primary focus on
OCR. The HDPA framework is available for free [70]. The framework con-
tains eight modules to facilitate three main tasks: image preprocessing and

38 Section 3.1. The comparative description of O…

segmentation, creating a dataset for training the OCR model, and the recog-
nition itself. This framework is available for free for research purposes. The
authors demonstrate that this system is efficient and can save human labor
in the process of preparing datasets for OCR. The web application is written
in Django[71]. Django is (free and open source) high-level web framework,
written in Python, that encourages rapid development and provides a clean,
pragmatic design. The Django implementation of HDPA allows developers
and researchers to develop individual Python modules. Modules can run
separately, and Django acts as a hub connecting the user interface with the
desired module outcomes. The proposed HDPA framework contains units or
functional groups that perform three main tasks. The first functional group
deals with image preprocessing and page segmentation. The second func-
tional group provides tools for creating datasets (ground truth) for training
the OCR model. The third functional group encompasses the OCR engine. A
post-processing module is not integrated by default in the HDPA framework,
but the authors ensure easy integration of new modules. This way, users can
easily customize the HDPA system for their specific needs. The framework
currently offers users two basic preprocessing modules, namely image bina-
rization and rotation. The training dataset creation module is useful when we
want to train a new OCR model. It provides tools for creating a set of images
with a single letter/glyph, cut out directly from images uploaded by the user.
Another way to create synthetic datasets is by using a text image generation
tool. Here an OCR model is trained in two stages: training on large synthetic
data, which helps in learning the shapes of glyphs; and training on a small
amount of images with text lines cut out from real pages, which ensures
that the model can learn some specific aspects of real data, which cannot be
generated in synthetic lines. To allow the creation of ground truth datasets
for real data, the authors offer a tool for annotating text lines. The OCR
system proposed by the authors is based on machine learning and uses CNN
networks for feature extraction and a bidirectional LSTM recurrent neural
network for sequential recognition of text lines. In Fig. 3.3, p. 39, the authors
present the architecture of the HDPA framework.

The architecture is modular, consisting of eight modules (M1–M8) encap-
sulated in three functional units (U1–U3)[69].

Chapter 3. OCR solutions across languages a… 39

Figure 3.3: The architecture of the HDPA framework [69]

The first functional unit U1 deals with image preprocessing and seg-
mentation. Preprocessing includes important image transformations and
corrections, which are necessary for successful image analysis and segmen-
tation. The purpose of unit U1 is to prepare text lines from the image for
training the OCR engine. Module M1 in U1 performs image binarization. The
binarization module in [69] uses the adaptive thresholding method proposed
in the paper [72].

The next module,M2, deals with rotating the image to the left/right so that
the rows of text are horizontally aligned. This way, line-level segmentation
will yield better results.

Next, module M3 detects and extracts text blocks from the straightened
pages in module M2. In this module, the authors implemented the convolu-
tional U-Net network [69, 73] and trained it on two different training datasets:
the first training dataset was from the Europeana project [74], and the second
dataset was created from historical documents from the Porta fontium project
[75] dealing with archives from the Czech-Bavarian border area. A result of

40 Section 3.1. The comparative description of O…

module M3 is shown in Fig. 3.4, p. 40, where bounding boxes are identified
and drawn on the original image.

Figure 3.4: Image processing with module M3 from HDPA [69]

The last module in functional unit U1 is M4, which segments and extracts
text lines. To implement this functionality, the authors use ARU-Net [69, 76],
a multi-layer neural network designed to detect baseline lines (the line on
which the letters sit) in manuscripts. This neural network can detect lines
on pages with variable font size, but for text lines, the authors determine
the font size, they use an algorithm based on a projection profile of a region
above the detected baseline. A visualization of the text line segmentation
process, applied to one of our examples, is presented in Fig. 3.5, p. 41).

The next three modules (M5, M6, M7) are part of the functional unit U2.
This functional unit is used for creating/generating training data for the OCR
model. Unit U3 contains module M8, which is the OCR engine itself. The
engine uses an approach based on processing text lines, which recognizes the
images of extracted text lines and generates the predicted character sequence.
Module M8 handles both the training phase and the recognition phase. The
developers of the HDPA framework have included in module M8 pre-trained
models on a synthetic dataset containing 25,000 images with text lines.

The texts used for generating synthetic images are based on old German
documents to ensure that the language corresponds to that used in the

Chapter 3. OCR solutions across languages a… 41

Figure 3.5: Image processing with module M4 from HDPA

documents processed by the authors. They also used the annotated Porta
fontium dataset for training. The OCR engine proposed in module M8 uses a
combination of a convolutional and recurrent neural network. CNN is used
for feature extraction, while LSTM is used for the recognition itself. The
architecture is a simplified version of the network proposed in paper [76].
For evaluating OCR results, the authors use average accuracy/precision at the
text line level, WER and CER based on the results of cross-validation on 10
test pages divided into 5 equal parts. Recall that WER is the word error rate,
and CER is the character error rate. In the case of paper [69], the average
precision indicates how many images with text lines out of all processed
were correctly recognized, with the authors achieving a result of 0.488. The
results for WER and CER are 0.11 and 0.024, respectively.

The authors mention that future development of the framework will focus
on building an extension that will allow the application of natural language
processing methods on the transcribed data, which will include such tools as
named entity recognition, classification, and intelligent full-text search in
documents.

Aletheia. Continuing to discuss digitization, processing, and analysis
platforms for historical documents, we will repeatedly mention in this context

42 Section 3.1. The comparative description of O…

the Aletheia platform[45]. In Aletheia, a particular focus of the authors is on
the analysis of the document page’s layout and page segmentation. Document
segmentation or document layout analysis is the process of identifying and
classifying regions of interest in a scanned image of a text document. A
reading system requires the delimitation of text areas (blocks) from non-
textual areas and the correct order of reading them [77]. Detecting and
labeling different blocks, such as text blocks, illustration blocks, mathematical
symbols, and tables embedded in a document is called geometric layout
analysis [78]. Text blocks play different logical roles within the document
(titles, subtitles, footnotes, etc.), and this type of semantic labeling is the
scope of logical layout analysis. Aletheia can automatically detect objects
on four levels: regions of interest (text, tables, formulas, musical notes, etc.),
text lines, words, and glyphs. The contours of objects can be adjusted by the
user. The creation of ground truth is another feature of the Aletheia platform.
Ground truths are stored in the PAGE XML format [47].

Transkribus. Another digitization platform is Transkribus [79] - a com-
plex tool developed within the READ project [80] at the University of Inns-
bruck, which deals with the recognition, transcription, and searching of
historical documents. It offers a range of tools for the automatic process-
ing of historical documents, such as handwriting recognition, page layout
analysis, document understanding, writer identification, or optical character
recognition (OCR). For OCR, Transkribus uses the ABBYY Finereader engine.
Transkribus does not support the generation of any type of synthetic data, a
feature well implemented in the HDPA framework [69].

OCR-D. Recently in Germany, theOCR-D project [81] emerged, featuring
8 special modules focused on various stages of OCR.The project’s architecture
with the workflows is displayed in Fig. 3.6, p. 43.

Along with this project comes the OCR4all platform [82], an open-source
tool providing a semi-automatic OCR workflow for historical documents.

Besides discussed above general historical documents digitization plat-
forms, there are many tools, which concern specific problems, for example,
the generating artificial OCR datasets for Russian [83], Arabic [84], and Ro-
manian [85] languages.

Considering this, we can conclude that the value of digitization platforms

Chapter 3. OCR solutions across languages a… 43

Figure 3.6: A segment of the project’s structure OCR-D

with full functionality is much greater.

3.2 OCR tools for Romanian historical printed texts

An important project in this field is DeLORo project PN-III-P2-2.1-PED-2019-
3952, no. 400PED: Deep Learning for Old Romanian [86]. The objectives of
this project include the development of technology capable of deciphering
documents written in the Romanian language with Cyrillic characters and
transliterating them into Latin characters, thus laying the foundation for
opportunities to study and preserve cultural heritage [87, 88].

Within the project, the authors managed to develop an online tool for
annotating images from Romanian Cyrillic documents. Moreover, the ground-
work was laid for the creation of a valuable resource, namely the Old Roma-
nian Cyrillic Corpus (ROCC) [88], which includes a collection of scanned
historical documents annotated with transcribed text [89]. The corpus con-
sists of 367 scanned document pages, with a total of 6418 annotated lines of
text.

Details regarding the resources and technology developed in the DeLORo
project are described in Cristea et al. [88]. This paper proposes solutions
for creating the dataset in the training process of neural networks and their

44 Section 3.2. OCR tools for Romanian historica…

use in training the actual neural networks for tasks such as segmentation
and OCR. In this endeavor, the authors construct the ROCC corpus. The
collection of documents in ROCC covers the 16th to 19th centuries and deals
with various levels of quality in historical documents.

The process of collecting documents for this corpus is iterative and in-
cludes original images of pages in Cyrillic script, and manual annotations
regarding the segmentation of columns, text rows, words, and characters(Fig. 3.7,
p. 44).

Figure 3.7: Annotated objects on a scanned page[88]

Manual annotation involves two components: visual segments in columns,
and rows, interlinear or marginal writing, words, characters; and their tran-
scriptions in Latin script. When developing the resources needed for training
neural networks, the authors focus on two types of them: a language model
containing as many word forms as possible ever written in the Romanian
language in Cyrillic script and a large collection of identified and transliter-
ated graphemes. Collecting the first type of resources is very challenging for

Chapter 3. OCR solutions across languages a… 45

several reasons. One reason is that in many historical periods, there were no
language usage norms, so there is a great diversity of written word forms
over time and space. Inflection patterns for Old Romanian have not been
identified, which would have allowed for the automatic generation of the
old Romanian lexicon; proper nouns are almost impossible to inventory in
their entirety. This type of resource acts as a vocabulary, and the authors
propose the application of automatic augmentation methods to it. The second
type of resource in the ROCC corpus is used for training neural networks on
different document qualities and different types of writing. These resources
should assist in the classification task, where visual objects that appear on a
scanned page are identified and labeled.

Undoubtedly, large training datasets are required when training neural
networks. In the OCR stage, the authors train neural networks with pairs of
Romanian Cyrillic graphic symbols and their corresponding Latin transcrip-
tions. In addition to the annotations made through the OOCIAT interface, the
authors also use alternative resources fromMonumenta Linguae Dacoromano-
rum (MLD) [90] and the UAIC-RoDia Treebank corpus [91] – a collection of
syntactic sentence trees in Old Romanian. The volume of the dataset is still
insufficient. One method to augment the proposed dataset is the iterative
use of what has been manually annotated for the OCR stage, followed by
manual correction of the OCR results. The authors believe that this process
can accelerate manual annotation because, for the next set of new pages,
the accuracy of the OCR modules would be higher, and accordingly, the
manual correction effort should decrease. Another proposed method is to
use a manually transcribed document and align the images of the pages with
the corresponding text, line by line.

Considering that the results consist of sequences of characters delimited
only by line breaks, and given that in old Cyrillic printings, words are rarely
separated by distinguishable spaces, the authors propose methods for word
segmentation. Assuming that each character in the original image of a text
row is recognized, the problem of segmenting the sequence of Romanian
Latin letters into words remains. To address this, a sequence-to-sequence[92]
approach is used, which takes a sequence of letters as input and, for each
individual letter, recognizes one of the 4 classes:beginning of a word, end of

46 Section 3.3. OCR post-processing methods

a word, middle of a word, and single-character word. The authors do not use
any context to disambiguate ambiguous Cyrillic letters (examples include:
Ѧ ѧ: ĭa/ea; Ѳ ѳ: th, ft). Another action implemented by the authors is
lexical clustering to group old word forms belonging to the same lemma and
part of speech. To achieve this, the authors intend to apply string kernels
[93] and spectral clustering [94]. In the first step, the inflected forms of the
same lemma found in a collection of old Romanian Cyrillic documents will
be labeled as belonging to the same class. In the second step, the detected
clusters should be aligned with the dictionary entries of a modern Romanian
language dictionary. In their ongoing work, the authors plan to integrate the
developed tools into a freely accessible platform for researchers.

3.3 OCR post-processing methods

OCR post-processing or OCR post-correction is a task that is either manual,
semi-automatic, or automatic for checking and editing the text recognized by
an OCR engine. Integrated post-processing in an OCR system adds significant
value to the obtained result, making the OCR systemmore robust and valuable
in terms of mass digitization of historical documents.

There are many different approaches to OCR post-processing.
Some of the basic methods view post-processing as a task of correcting

the text’s spelling [95–98].
In the paper [62], analyzed above, the authors, basing on he work [99],

use a method called sequence-to-sequence or seq2seq[92]. seq2seq is a family
of machine learning approaches used in natural language processing. This ap-
proach is applied to problems such as machine translation, text paraphrasing,
text alignment, and summarization. This method can use a vocabulary/dictio-
nary of words or lexicon to identify OCR errors, but it can also work without
a dictionary. The method corrects input tokens and creates an error model,
which is a set of context-dependent rules annotated with weights, imple-
mented as a weighted finite-state automaton. After the error model is created,
a dictionary lookup is used to validate or eliminate suggestions generated
by this model. For training OCR post-correction models, the authors took a
text recognized using a voting mechanism with 5 mixed models [62]. The

Chapter 3. OCR solutions across languages a… 47

best results after post-processing the recognized test datasets were achieved
with dictionary-less post-correction with 2.7% CER for Swedish, 1.7% CER for
Finnish. The dictionary-less post-correction managed to improve all results,
and post-processing with a dictionary did not produce any change in the
result [62].

Most OCR post-processing methods have at least two steps:
1. Generation of candidate suggests the replacing incorrect tokens;
2. Decision-making accepts (or does not) the proposed corrections from

the first step.
Other approaches would involve three consecutive steps:
1. Vocabulary expansion where the initial word dictionary is extended

with frequent words from the recognized texts;
2. Candidate rankingwhere for all presumed errors, corrections are cal-

culated using an analytical rule-based approach, and the proposed candidates
for correction are sorted by the most likely candidate;

3. Decision making: finally, it is decided whether the presumed error
is replaced with the correction suggestion or left unchanged.

Machine learning models are used to estimate the risk of incorrectly
replacing a correct word. Therefore, the decision step helps avoid erroneous
correction steps. In this context, the authors of the paper [100] carried out
OCR post-processing of newspapers printed in German between 1910 and
1920. They use a dictionary and an external corpus alongwith the Levenshtein
distance and n-gram frequencies to vote for candidates and find the winner
(the candidate with the most votes). N-grams are sequences of elements as
they appear in texts. These elements can be words, characters, or any other
units as they occur one after another. The ”N” or ”n” in the term ”n-grams”
corresponds to the number of elements in the sequence [101]. Their model
performs well when the correct result does not have a Levenshtein distance
from the candidate token greater than 2.

Another example in this direction is described in [102], where histor-
ical Arabic documents with OCR results below 70% word-level accuracy
are post-corrected to achieve over 90% word-level accuracy. They use a
word dictionary to search for and identify incorrect words in the recognized
documents, for which they create correction candidates using a regression

48 Section 3.3. OCR post-processing methods

model. In the second stage, the candidate is again selected using a regression
model, but this time based on word features obtained from a language model,
constructed from a large text dataset.

Manual OCR post-correction can yield high-quality results, often better
than fully automated ones, but it requires time and effort, sometimes even
specialists, when dealing with historical documents printed in old alphabets
no longer in use [103]. People performing manual correction need to have a
good understanding of the language of the document and be trained in how
to use post-correction tools. There are semi-automated approaches that make
manual correction easy and efficient. In the approach presented in [104], an
interactive interface is proposed for correcting the results of handwritten
text recognition. The user’s corrections are taken into account in real-time
and are subsequently used to provide better correction suggestions.

A tool for semi-automated OCR text correction is PoCoTo [28]. The tool
was initially developed as a desktop application and later as a Web applica-
tion. PoCoTo uses a mechanism that calculates with a certain probability
errored words in an OCR document, using a combination of statistical and
analytical methods. The graphical user interface presents the user with page
snippets along with OCR text that contains potential errors and offers possi-
ble corrections. Thus, it is easier for users to manually correct the errors. In
2019, an improved and fully automated version of PoCoTo, named A-PoCoTo
[105], was published. The OCR approach of this tool has a machine learning
model to classify candidates that require correction. At its input, A-PoCoTo
receives a set of n ≥ 1 parallel OCR results for a historical document. To
obtain n > 1 parallel OCR results for a document, multiple OCR engines can
be used. After the preliminary alignment of all available OCR results, the
OCR post-processing for a document begins with the expansion of the word
dictionary. Input documents often contain special names (personal names,
geographical names, etc.) and other expressions. Any word not found in the
dictionary is considered a candidate for expanding the dictionary. Intuitively,
if there is evidence that a word in the recognized text is not a recognition
error, then it makes sense for the user to include it in the vocabulary. This
implies that this word can serve as a candidate for subsequent corrections.

In the paper [106], an interesting method is presented that is based on the

Chapter 3. OCR solutions across languages a… 49

observation that OCR errors for the same word, due to semantic similarities,
are grouped in the vector space. The authors obtained clusters of OCR errors
and synonyms of words, using aWord2Vec[107] family of model architectures
and optimizations. Then, by verifying correct words using a dictionary, the
groups of incorrect and correct words are identified using the Levenshtein
distance. Utilizing this parallel dataset, a neural machine translation model
is trained, performing a translation of incorrect words into correct words.

A similar approach to that in [106] is presented in [108], where the authors
propose an OCR post-processing tool that also groups all similar words in
the text. However, instead of grouping them semantically, they group them
based on character distances in Euclidean space. They use external data
such as lexicons and morphological rules to suggest correction candidates.
Ultimately, the correction is performed by selecting the candidate with the
highest score.

3.4 An overview of strategies for integrated recog-
nition platforms

The process of addressing the challenge of digitizing heterogeneous content
involves several key stages: preprocessing, layout classification/analysis,
assembly, and digital preservation.

Our work delves into the preprocessing stage in detail [109]. Over recent
years, deep learning-based image preprocessing has become a standard tool
in numerous optical character recognition systems, both commercial and
open-source. In the classification/label analysis stage, image processing of
heterogeneous documents is segmented based on content type. Digitizing
heterogeneous content for general cases, where any content type is allowed,
is resource-intensive. Thus, we separate the classification step from the
workflow. This one-time event typically occurs during the digitization of
document archives, with subsequent additions through an interface speci-
fying the type of heterogeneous content. The unique nature of the problem
makes it well-suited for processing on online platforms. Major commercial
systems like Canon IRIS [110] and Kofax Layout Classifier [111] are part of
the growing set of such platforms.

50 Section 3.4. An overview of strategies for in…

Apart from commercial systems, individual projects, particularly research
initiatives, are developing their platforms, mainly grounded in deep learning
[112]. For instance, the SCyDia OCR application [113] focuses on the Serbian
Cyrillic script with diacritics, used in dictionaries and linguistic publications.
SCyDia, implemented in Python, integrates Tesseract [35] and includes neural
networks for letter and diacritic recognition.

While some projects deal with general classification cases, most focus on
specific types of heterogeneous content. General case classification projects
typically leverage deep learning [114, 115]. An intriguing study [116] ad-
dresses the processing of distorted images of heterogeneous documents
caused by scanning. Another unique approach is proposed in [117], show-
casing a hybrid cross-modal methodology learning from both text corpus
and structural image information. A non-Deep Learning approach is demon-
strated in [118], suggesting a novel document classification technique based
on formal concept analysis. Legal heterogeneous document images [119]
represent a specific case where classification, rather than layout analysis, is
crucial. Legal documents often have strict layout patterns, requiring catego-
rization for digital conversion.

Despite being fully developed, processing text-type layout elements also
finds interesting applications, such as specific text area searches on ID cards
[120].

Upon reviewing tools and platforms for digitizing historical documents,
it’s evident that numerous methods, tools, resources, and platforms, both ex-
isting and in development, offer pre-processing, recognition, post-processing,
and translation of historical documents. Additionally, novel recognition
methods, like training OCR patterns on images with suggested text strings
[44], enhance OCR mechanisms’ learning rates and expedite mass digitiza-
tion. Post-recognition OCR tools offer high-quality text for further language
processing, web placement, preservation, and metadata enhancement in
digital libraries.

A noteworthy contribution is the emergence of digitization platforms
streamlining tasks for successful historical document processing. The De-
LORo project [86, 89] showcases significant efforts in deciphering old Roma-
nian documents, presenting promising alternative recognition solutions.

51

Chapter 4

Recognition of the oldest
Romanian texts

4.1 Introduction

In this chapter, we will elucidate our technology designed for processing
historical texts, with a specific emphasis on the oldest Romanian Cyrillic
printings from the 17th and the majority of the 18th centuries. Throughout
this period, the Romanian Cyrillic alphabet underwent significant evolution.
We will specifically discuss the Romanian Cyrillic (RC) variant consisting of
47 characters, occasionally referencing its simplified counterpart (SRC) as
outlined in Section 1.1 above.

In the 17th century printings, the action of introducing the Romanian lan-
guage into the Church was intensified, which meant replacing the Slavonic
language as the liturgical language with Romanian. This was an extremely
important achievement, conclusively accomplished in the early 18th century.
Despite the fact that Romanian is part of the group based on the Latin lan-
guage, the script in which the texts were printed was Cyrillic (Slavonic). Con-
sidering that most printing presses were located in sacred places (churches,
monasteries, etc.), the majority of printed documents and books also had
religious themes.

The main source of digitized Romanian documents from the 17th cen-

52 Section 4.2. OCR process using ABBYY FineRead…

tury is the Digital Library of Romania. The archive of this library includes
approximately 490 scanned old Romanian books, out of which 80 books are
from the 17th century.

Our technology for processing historical Romanian Cyrillic documents
includes OCR and transliteration technologies. The OCR technology includes:
image preprocessing; document layout analysis and segmentation; and font
classification. The transliteration technology will be described in chapter

4.2 OCR process using ABBYY FineReader 12

The analysis in the previous chapter supports the use of ABBYY FineReader
Professional (AFR) for recognizing Romanian Cyrillic characters. Initial tests
and adaptationswere conducted on version FR 12, with subsequent preference
for newer versions like FineReader 14 and FineReader 15. Both AFR 12 and
the later versions are not inherently geared towards processing old Romanian
texts. Therefore, our efforts focused on expanding the capabilities of this
product to address these challenges. To work with documents from the
specified period, we developed new components, especially alphabets and
dictionaries, and trained the software on additional datasets for high-quality
results. These actions culminate in the creation of one ormoremodels tailored
for recognizing texts from a specific historical period.

AFR is an OCR software equipped with the necessary functions for pre-
processing and recognizing documents, the use of which significantly con-
tributes to increasing the productivity of these operations. It provides high-
performance tools that are easy to use for accessing information contained
in printed documents and PDF files.

In Fig. 4.1, p. 53 we present a document from the 17th century processed
with AFR 12.

The processing includes applying the optimal resolution (800-1200 dpi
in this case), manually removing wear and tear spots from the image, train-
ing the OCR model, recognizing all pages of the document, and manually
correcting the OCR results.

We would like to mention that some image processing operations, such
as binarization and straightening of lines, were performed with another

Chapter 4. Recognition of the oldest Romani… 53

Figure 4.1: Main window of AFR 12 graphical user interface

software tool, namely Scan Tailor. We will discuss this tool in the next
section.

In case when a document printed in a language not supported by FR, a
new language named ”user’s language” has to be added. The OCR process of
such case contains several additional stages.

Below is a list of the most important stages of OCR of a document printed
in the ”user’s language”.

1. Image Preprocessing. This stage usually involves editing the image,
removing irrelevant elements or noisy content from the image, straightening
the lines, and adjusting the resolution to an optimal level. In our case, we
can perform these actions with existing software, but finding a specific way
to apply them to old texts.

2. Language and Alphabet Preparation and Creation. At this stage,
all constituent characters (letters, punctuation marks, ligatures - referring
to the combination of multiple letters into a single graphic symbol) of the
relevant language are prepared. If the alphabet contains characters from
multiple languages, the base languages are first selected, followed by choosing

54 Section 4.2. OCR process using ABBYY FineRead…

all the necessary characters for recognition from each language.
3. Word Dictionary Preparation and Creation. Any language inte-

grated into FR12 comes with its own vocabulary. If we create a new language,
i.e., the user’s language, a specific vocabulary for that language needs to be
created. For example, for documents in Romanian printed with Romanian
Cyrillic letters, we need Romanian words in Cyrillic script. One solution
would be to transliterate words from the modern (Latin) script to the Cyrillic
script and add them to the dictionary in FR 12.

4. Template Creation and Training. Each individual character is
machine-learned in a supervised manner (involving specialists), so that the
segmented characters from the image are matched with their correspond-
ing Unicode digital characters. Following the training of the OCR engine
in FR, typically on a volume of 2-10 pages of the researched document, a
characteristic template (model) is created for that specific document, or gen-
erally, characteristic of the typography in which the document was printed.
The number of pages required to achieve a quality result depends on the
specific nature of the document. In the learning process, FR uses not only
the established results from processing the respective document, but also a
series of previously trained (pre-trained) neural network models, as well as
incorporated mechanisms based on statistical analysis, thereby improving
the recognition process.

Contextual information plays a significant role and is used in the OCR
engine in a manner similar to human text reading, with words often being
predicted after only a few characters, taking into account the context, i.e., the
meaning of the entire sentence. However, the gained experience is not shared
between different documents, which is a temporary disadvantage. In future
versions of FR, advanced neural network architectures such as recurrent
neural network architectures may be introduced, which could potentially
link the recognition experience (memory) between pages or even between
documents.

Thus, out of the steps listed above, only the first one - image preprocessing
- will be practically used without modifications using existing software. For
the remaining steps, developments are needed to extend the preset capabilities
of the existing software.

Chapter 4. Recognition of the oldest Romani… 55

In the following section, we will describe the properties and functionality
of the image preprocessing modules, highlighting their specific application
when dealing with old texts.

4.3 User Language Creation and Dictionary Addi-
tion

Adding the alphabet and creating the user language are the extended features
of the ABBYY FineReader software.

However, these features are not full functioning for non standard alpha-
bets. When processing the Romanian Cyrillic alphabet of the 17th century,
the main difficulty is that the characters Ꙟ and Ꙋ do not exist in the alpha-
bet addition system in FR 12 and cannot be displayed by its system fonts.
Therefore, it was necessary to adapt them from specialized software like
BabelMap2. The rest of Romanian Cyrillic characters can be selected through
the alphabet window in FR 12, as shown in Fig. 4.2, p. 55.

Figure 4.2: User Language Creation Window in FR 12

The word dictionary can be expanded using three methods.

56 Section 4.4. Training Process with FR12, Temp…

The first method involves transliterating existing vocabularies from the
modern (Latin) alphabet to the Cyrillic one, and adding them to the dictionary
in FR 12. This method partially solves the problem because many words from
the 17th and 18th centuries are no longer present in the modern Romanian
vocabulary, and vice versa, many words from the modern vocabulary would
be unnecessary in a system that recognizes documents printed in the 17th
century.

The second method involves creating the dictionary from the already
recognized document. It means, that all the words in the text obtained after
OCR are manually corrected and added to the „user dictionary” as shown in
Fig. 4.3, p. 56.

Figure 4.3: Word Dictionary Addition Window in FR 12

The thirdmethod of adding words to the user dictionary is also based on
the fact that some portions of the document have been recognized. From the
window with the recognized text (Fig. 4.4, p. 57), during the spell-checking
process, there is the possibility to include the word underlined in red using
”Add to Dictionary” right-click option.

4.4 Training Process with FR12, Template Creation

A template is a set of pairs consisting of the printed character and the corre-
sponding digital character used by the computer. Templates can be created
during training.

Chapter 4. Recognition of the oldest Romani… 57

Figure 4.4: FR 15 Window with Recognized Text

The training process of FR12 with Romanian documents printed in the
17th century can be carried out as follows:

• several pages of the document are recognized through the supervised
training procedure presented in Fig. 4.5, p. 57,

Figure 4.5: FR Template Learning Window

• template is created as pairs of the „image character” (character cut from
the preprocessed document image) and the „digital character” (UNICODE
character) as shown in Fig. 4.6, p. 58.

• the resulted template is used as an additional source of information to
aid in recognizing the remaining text.

Sometimes, two or more characters can be joined together, making it

58 Section 4.5. OCR Models Applied to Texts Prin…

Figure 4.6: Window with pairs: ’image character’, ’digital character’

practically impossible to recognize each character separately. In this case,
they will be recognized together in a single bounding box, as a composite
character, known as a ligature. In 17th-century Romanian documents, we
encounter a more distinctive type of ligatures, namely „vertical ligatures” -
a set of characters that do not explicitly join but are stacked one above the
other (see Fig. 4.7, p. 58). Examples of such combinations are very common
in the studied documents.

Figure 4.7: Sets of Ligatures

4.5 OCR Models Applied to Texts Printed in the
17th Century

The case study of optical character recognition of 17th-century books, de-
scribed in this chapter, was conducted on the book „New Testament” printed
in 1648, in Balgrad (Alba Iulia), using black and red ink, with 34 lines per page.

Chapter 4. Recognition of the oldest Romani… 59

The first cover is adorned with a border featuring vegetal motifs, created
through embossing. In the center, the Crucifixion scene is depicted.

The New Testament contains 682 pages, and the first approximately 270
pages comprise the four Gospels:

• The Gospel according to Matthew;
• The Gospel according to Mark;
• The Gospel according to Luke;
• The Gospel according to John;
Optical Character Recognition (OCR) was applied to the Gospels accord-

ing to Matthew, Mark, Luke, and John, which together constitute 267 pages.
After preprocessing with Scan Tailor, the default preprocessing in FR 12 was
run. A common aspect of books printed in the 17th century is the writing
of certain letters above other letters, as exemplified in Fig. 4.8, p. 59. This
may be due to the fact that in the printing process, some letters were omitted,
and then they were written above the preceding letter. The most frequently
omitted consonants are:с, д, ш, н, м, л, к, р, х, ц, ч, and vowels: а, и, ь.

Figure 4.8: Representation of vertical ligatures in the document

Furthermore, abbreviations using tildes or other diacritical marks are
used(Fig. 4.9,p. 59). Abbreviations were used especially for proper names,
such as Jesus ЇС), God Дмнеꙁъꙋ). Taking this aspect into consideration, we
will significantly increase the resolution (over 1200 DPI) so that we have the
entire frame of a character in the training process..

Figure 4.9: Representation of the abbreviation ЇС (Isus) in the document

The numbers are also represented by letters with tildes above them
(Fig. 4.10, p. 60).

60 Section 4.5. OCR Models Applied to Texts Prin…

Figure 4.10: Representation of the number ”24”

In the process of training the templates, textual numbers have been
replaced with Arabic numerals (Fig. 4.11, p. 60).

Figure 4.11: Template for recognizing numbers in the New Testament printed
in 1648 in Balgrad

Another characteristic of books and documents from the 17th century is
that many words are printed together. Most of these compound words are
combinations of prepositions/articles joined with other parts of speech. In
Fig. 4.12, p. 61, an example of a compound word is shown (алдоиле equivalent
to the modern expression al doilea). This complicates the process of expand-
ing the dictionary used to support optical recognition. In this regard, it would
be advisable for all these words to be separated. To automate this process, a
small program was created that separates these words. This program is based
on a manually created vocabulary from already recognized documents.

At present, the dictionary of words used for optical character recognition
for texts from the 17th century contains more than 7500 words.

Chapter 4. Recognition of the oldest Romani… 61

Figure 4.12: Examples of words written together (encircled)

Taking into account that in the 17th century, 47 characters of the Ro-
manian Cyrillic alphabet were used for printing, in the training stage, we
need a keyboard that will contain all these characters. As a result, a virtual
keyboard (see Fig. 4.13,p. 61) was developed for Windows 7, 8, 10 operating
systems using the tool Microsoft Keyboard Layout Creator3, integrating all
these characters.

Figure 4.13: Virtual keyboard with the Romanian Cyrillic alphabet

In this subsection, some characteristic properties of recognizing docu-
ments from the 17th century were described. In the next subsection, we will
describe the process and results of OCR evaluation for Romanian Cyrillic
documents from the 17th century.

4.6 OCR Evaluation of 17th Century Documents

For the OCR evaluation of 17th century documents printed with Romanian
Cyrillic characters, we will use ABBYY FineReader PDF 15 OCR Editor (re-
ferred to as FR 15).

For this purpose, a dataset with pages from the New Testament (1648) was
prepared. For the training set, 10 pages were selected. For the test set, 5 pages
were selected, which include approximately 7090 characters and about 1280
words. On average, a single page from the test set contains 1400 characters
and 260 words. These pages have already been manually recognized, verified,

62 Section 4.6. OCR Evaluation of 17th Century D…

and corrected in a previous training process, which was not subjected to a
strict accuracy measurement. Additionally, for some experiments, we used a
dictionary consisting of 4582 words extracted earlier from recognized pages
from the 17th and 18th centuries. The words in the dictionary were checked
and corrected before being added to FR 15.

In this evaluation, the criteria taken into account were OCR accuracy
both at the character level and at the word level. The evaluation results for
a specific number of test/training pages will be summarized to obtain an
overall OCR accuracy. The overall accuracy (OA) for a specific experiment
will be calculated using the formula4.1 described in reference [40]:

AG =

∑n
1 ci∑n
1 ti

(4.1)

where n is the number of test pages for each experiment, is the number of
correctly recognized characters or words from an arbitrary page, and is the
total number of characters/words in the test set used in the experiments.

The OCR evaluation results are presented in Table 4.1 p. 64. Each row
in the table represents an experiment conducted on a specific training and
testing dataset consisting of a defined number of pages. The table is composed
of the following columns:

• Experiment - which includes the number of pages used for training and
the number of pages used for testing;

•OCRAccuracy at the character level with the use of the word dictionary;
• OCR Accuracy at the word level with the use of the word dictionary;
• OCR Accuracy at the character level without the use of a word dictio-

nary;
• OCR Accuracy at the word level without the use of a word dictionary.
We will mention that accuracy evaluation is performed through two

methods. The first method is manual and involves a person counting the
incorrect characters/words on a single page from the test set. The second
method automatically compares the differences between the document veri-
fied beforehand and the document recognized by the newly trained model.

Next, we will iteratively train a model with 1, 2, 5, 7 pages. Additionally,
at each stage, wewill test the trainedmodel together with the word dictionary,

Chapter 4. Recognition of the oldest Romani… 63

but we will also conduct experiments without involving the dictionary in the
recognition process.

First Experiment: We trained the FR 15 model with one page from the
training set. From this page, 662 glyphs were extracted in the training process
using the GUI interface provided by FR 15. The most frequent characters
are ’и’ and ’a’, which occurred 51 and 48 times respectively, while the least
frequent glyph is the character ’ѳ’, which occurred only once in the training
set. In this iteration, we evaluated the OCR model, both with and without the
word dictionary. With the dictionary, we counted 132 incorrect characters
out of a total of 1460 characters, and out of 256 words in total, 69 had at
least one incorrect character. Without the word dictionary, we observed the
presence of 171 incorrect characters and 108 words with at least one incorrect
character.

Second Experiment: We trained the FR 15 model with 2 pages from
the training set. From these pages, 1275 glyphs were extracted. The glyph ’a’
appears 95 times in this training set, and on average, there are over 30 glyphs
per character. When recognizing a page from the test set with the word
dictionary, we counted 99 incorrect characters out of 1460 characters, and 56
words had at least one incorrect character. Without the word dictionary, 134
incorrect characters were identified, and 76 words out of a total of 256 were
incorrect.

ird Experiment: We continued by training the OCR model with 5
pages from the training set, containing over 2500 glyphs. When recognizing
with the word dictionary, out of 1460 tested characters, 73 were recognized
incorrectly, and out of 256 evaluated words, 50 were found to be incor-
rect. Without the word dictionary, 86 incorrectly identified characters were
observed, as well as 69 words with errors. The majority of errors in this
experiment are caused by ligatures, with 44 out of 56 ligatures being incorrect.

Fourth Experiment: The OCR model was trained with 7 pages from
the training set. The number of glyphs in the set is over 3600. With the word
dictionary, 59 characters out of 1460 were recognized incorrectly, and 52 out
of 256 words had at least one incorrect character. Compared to Experiment 3,
the character-level accuracy gained in this experiment continued to increase
by approximately 1%, but the word-level accuracy remained at the same level.

64 Section 4.7. Classification of 17th Century F…

In fact, we have 2 more incorrect words than in the previous experiment
when using the dictionary.

Experiments With dict. Without dict.
Nr. Antrenare Testing Ach Acuv Ach Acuv

1 1 page (662 glyphs); 1 page; 0.91 0.73 0.88 0.57
2 2 pages (1275 glyphs); 1 page; 0.93 0.78 0.90 0.70
3 5 pages (2540 glyphs); 1 page; 0.95 0.80 0.94 0.73
4 7 pages (3668 glyphs); 1 page; 0.96 0.796 0.95 0.75

Table 4.1: OCR Accuracy in Recognizing 17th Century Documents

The training and evaluation mode of the OCR model using FR 15 for the
recognition of Romanian Cyrillic characters from the 17th century, presented
above, allows us to conclude that the respective software system contains the
major components necessary for training, making it possible to apply it also
for the case of old Romanian printings (in our case – from the 17th century),
which were not foreseen in the initial set. An approach based on such tools
equipped with a graphical user interface allows also non-advanced users to
train OCR engines and to participate in digitization projects.

The training approach was evaluated using several training and testing
pages in an iterative process, from one training page up to seven pages. As
the number of training data increased, significant improvements in the accu-
racy of the model were observed. Examples of recognition, transliteration,
and alignment of a 17th-century document are presented in Fig. 4.14, p. 65,
Fig. 4.15, p. 65, Fig. 4.16, p. 65, Fig. 4.17, p. 66.

4.7 Classification of 17th Century Fonts

The printing presses of the 17th century used several fonts or, more precisely,
several sets of distinct characters in the printing of documents. However, of
these, for now, two completely different fonts stand out, both in the style of
writing/printing and in the use of characters [31],[32].

The problem of identifying the font in a document printed in the 17th
century can be formulated as follows: Given a document X printed in the

Chapter 4. Recognition of the oldest Romani… 65

Figure 4.14: Fragment from the New Testament printed in the year 1648 in
Balgrad

Figure 4.15: The document from Fig.4.14 following the OCR stage

Figure 4.16: The text from Fig.4.15 after the transliteration stage

17th century with Romanian Cyrillic characters and a set N of OCR models
trained on documents from this period. The task is to choose the most suitable
model M from set N for the recognition of document X [32].

A solution would be to recognize a sample (a page/a page fragment) from

66 Section 4.7. Classification of 17th Century F…

56. Intre care erau Maria Magdalena si Maria, mama lui Iacob si a lui
Iosif, si mama fiilor lui Zevedeu.
57. Iar in amurgul zilei a venit un om bogat din Arimateea, cu numele
Iosif, care era si el ucenic al lui Iisus.
58. Acesta, ducandu-se la Pilat, a cerut trupul lui Iisus. Atunci Pilat a
poruncit sa i se dea.
59. Si Iosif, luand trupul, l-a infasurat in giulgiu curat.

Figure 4.17: Fragment from the Gospel according to Matthew, the current
version aligned with the text from Fig.4.16

document X with all the templates trained in FR12 on documents from the
17th century and based on the obtained results, to choose the template that
provides the highest accuracy. This solution is easy to implement, but the
time complexity is too high, as we need to load each model M in turn. The
loading time of a model plus the recognition of the sample can exceed 2
minutes depending on the page size. For 5 different OCR models, we would
have to wait approximately 10 minutes to find the most suitable model M.

Given that the number of the first printing houses was not too large, we
could approach another direct solution, where all OCR models are classified
according to Printing Houses, and in which the user can choose the printing
house. This solution has been implemented and is described in the following
section.

4.7.1 OCR Model Selection Program Based on Printing House

In this program [31], the user can choose the century, and from the following
options, they might select one of the regions where the Romanian Cyrillic
script was used, namely: Iași, Bucharest, Târgoviște, Alba Iulia (Bălgrad),
Chernivtsi (Uniev), Sebeș (Sas Sebeș), Snagov, Buzău.

We will proceed with the selection of the printing house from one of
these regions.

Thus, for Iași, the following printing houses are available:
1. Tipariul cel Domnesc/ The Royal Printing House;

Chapter 4. Recognition of the oldest Romani… 67

2. Casa Sfintei Mitropolii/ The House of the Holy Metropolitan Church;
3. Tiparnița Tărâi/ The Country’s Printing Press;

In Bucharest, the following printing houses were present:
1. Scaunul Mitropolii Bucureștilor/ The Seat of the Metropolitan of

Bucharest;
2. Tipografia Domnească/ The Royal Typography; In Balgrad the follow-

ing printing presses were operational:
1. Tipografia Domnească/ The Royal Typography;
2. The Metropolitanate of Alba Iulia. The other regions had only one

printing press each; we will present their names in the original form:
• Târgoviște – Sfânta Mitropolie a Târgoviştii/ Târgoviște – The Holy

Metropolitanate of Târgoviște;
• Uniev – Sfînta Mănăstire Uniev/ Uniev – The Holy Monastery of Uniev;
•Sas Sebeș – Tipograf[ia] Noao/ Sas Sebeș – The New Printing House;
• Snagov - Tipografiia Domnească în Sfânta Mănăstire în Snagov/ Snagov

– The Royal Printing House at the Holy Monastery in Snagov;
• Buzău - Tipografiia Domnească, la Episcupiia dela Buzău/ Buzău – The

Royal Printing House at the Episcopal See of Buzău;
Documents and books that were printed in these printers will be able to

be recognized using the most suitable template. The main window of FR 12
will open with the set template, and further the optical character recognition
process will take place. Next, Fig. 4.18, p. 68 shows the graphical interface
of the application for selecting the most suitable recognition template. The
”Model Selector” application is written entirely in Java and works with any
installed FR version.

The third solution would be to train a neural network to classify a sample
from document X based on samples from multiple Romanian documents
printed in the years 1640-1700 at various printing houses. We will use a
neural network that will employ a dataset consisting of pairs in the form of
<character from the image, class>. We will describe the implementation of
this solution further.

68 Section 4.7. Classification of 17th Century F…

Figure 4.18: The main window of the Model Selector application

In Fig. 4.19, p. 69 , we can observe two pages from two books from the
17th century that were printed with two different fonts - with two different
sets of characters. It is noticeable that the two texts have different styles and,
besides this, characters with very distinct shapes are used. If we choose a
template that was trained on the first text and apply it to the second text
displayed in figure 5.17, then we will obtain a result with a high error rate.
In this case, the most appropriate solution would be to create a new template
trained on the second text. In what follows, we will describe how to address
this problem by creating a neural network, trained to perform classification
of two distinct fonts used in the 17th century for printing documents in
Romanian.

4.7.2 Classifying fonts using neural networks

In the following, we will describe the solution to the problem of classifying
characters from the 17th century. It’s worth noting that there are several
useful free tools available that can contribute to the development of this
chapter. And, of course, one of the main aspects specific to any application
based on neural networks is the creation of a dataset for training machine
learning algorithms.

Chapter 4. Recognition of the oldest Romani… 69

Figure 4.19: Texts printed in the 17th century in Romanian Cyrillic alphabet
at two different printing houses, each with distinct fonts [32]

Creating the dataset. The dataset will be created from 10 scanned books
selected from the Digital Library of Romania, which are as follows:

1. „Noulu Testamentu sau Înpacarea” tipărit în 1648 în Cetatea Bălgradu-
lui. /„The New Testament or The Reconciliation” printed in 1648 in the City
of Bălgrad.

2. „Liturghie şi rugăciuni” tipărită în 1683 în Casa Sfintei Mitropolii de la
Iași de mitropolitul Dosoftei. / „Liturgy and Prayers” printed in 1683 in the
House of the Holy Metropolitan Church of Iași by Metropolitan Dosoftei.

3. „Parimiile preste an” tiparită în 1683 în Tiparniţa Ţărâi de la Iași. /
„The Prayers Throughout the Year” printed in 1683 at the Country Printing
House in Iași.

4. „Psaltirea a prorocului şi înpăratului D[a]v[i]dŭ Cu m[o]l[i]tve la toate
Cathizmele Şi cu pashalii de 50 de ani. După orânduiala grecească. Şi la
săvârşitŭ exapsalmu” tipărită în 1694 la Tipografia Domnească în Sfânta
Mitropolie din București. /„The Psalter of the Prophet and King David with
prayers for all Catechisms and with paschal prayers for 50 years. According
to the Greek rite. And in the end, exapsalm” printed in 1694 at the Royal
Printing House in the Holy Metropolitan Church of Bucharest.

5. „Carte sau lumină cu dreapte dovediri din dogmele Besearicii Răsăritu-
lui, asupra dejghinării Papistaşilorŭ” tipărită în 1699 în Tipografia Domnească
în Sfânta Mănăstire în Snagov. „Book or Light with Right Proofs from the

70 Section 4.7. Classification of 17th Century F…

Dogmas of the Eastern Church Concerning the Thawing of the Papists”
printed in 1699 at the Royal Printing House in the Holy Monastery of Snagov.

6. „Pravoslavnica mărturisire a săborniceştii, şi apostoleştii Besearecii
Răsăritului Dupre Grecească” tipărită în 1691 În tipografia Domnească, la
Episcupiia de la Buzău de Petru Movilă, mitropolit al Kievului. / „The Ortho-
dox Confession of the Catholic and Apostolic Church of the East According
to the Greek Rite” printed in 1691 at the Royal Printing House, Episcopal See
of Buzău, by Petru Movilă, Metropolitan of Kiev.

7. „Septembrie-Decembrie Vol. 1” tipărită în 1682 în Tipografia Sfintei
Mitropolii de la Iași. / „September-December Vol. 1” printed in 1682 at the
Printing House of the Holy Metropolitan Church of Iași.

8. „Mineiulŭ. Luna lui Dechemvrie” tipărită în 1698 în Sfânta Episcopie
de la Buzău. / „The Minei. The Month of December” printed in 1698 at the
Holy Episcopate of Buzău.

9. „Apostolul cu Dumnezău Svântul Carea întru acesta chip tocmită
depre orânduiala grecescului Apostol” tipărită în 1683 în Scaunul Mitropolii
Bucureştilor. / „The Apostle with God the Holy Carea thus arranged by the
priests according to the greek Apostolic order„ printed in 1683 at the Seat of
the Metropolitan of Bucharest.

10. „Sfânta şi Dumnezeiasca Evanghelie” tipărită în 1697 în Sfânta Mănă-
stire în Sneagovŭ din Snagov. / „The Holy and Divine Gospel” printed in 1697
at the Holy Monastery in Snagov from Snagov. In the ten selected books,
two distinct sets of characters used for printing were observed, which we
will refer to as fonts A and B. Thus, the books used for forming the dataset
were divided into two groups: books numbered 1, 8, 9, and 10 were grouped
in the set with font A, and books numbered 2, 3, 4, 5, 6, and 7 were grouped
in set B (the second font). In the formation of the dataset, a total of 22 pages
were processed, including 13 pages extracted for set A and 9 pages for set B.
In Figure 5.18, two collages composed of selected pages are presented.

In the ten selected books, two distinct sets of characters used for printing
were observed, which we will refer to as fonts A and B. Thus, the books used
for forming the dataset were divided into two groups: books numbered 1, 8,
9, and 10 were grouped in the set with font A, and books numbered 2, 3, 4,
5, 6, and 7 were grouped in set B (the second font). In the formation of the

Chapter 4. Recognition of the oldest Romani… 71

Figure 4.20: Collage from books 1, 8, 9, 10 with character set A

Figure 4.21: Collage from books 2, 3, 4, 7 with character set B

dataset, a total of 22 pages were processed, including 13 pages extracted for
set A and 9 pages for set B. In Fig. 4.20, p. 71 and Fig. 4.21, p. 71 two collages
composed of selected pages are presented.

72 Section 4.7. Classification of 17th Century F…

To address the problem of font classification, it is necessary to perform
the following actions:

1. Segmentation and cropping of text blocks from the selected pages.
2. Detection of individual characters within the text blocks.
3. Creating the training and testing dataset from the characters detected

in step number 2 through clustering/grouping of the extracted characters.
4. Training a multi-layer neural network (MLP) to classify the characters

and evaluating it.
5. Utilizing the trained algorithm (model) to classify characters in a new

image.
In the following, we will describe in detail the process of executing the

tasks listed above.
Task 1. Segmentation and cropping of text blocks
From the prepared pages for the dataset, we will segment and crop text

fragments using Detectron24, a platform for object detection, segmentation,
and other visual recognition tasks developed by Facebook, as well as the
document segmentation model based on the PrimaLayout5 dataset with the
mask_rcnn_R_50_FPN_3X configuration implemented in the LayouParser6
package.

In the model with the PrimaLayout dataset, text portions are labeled with
the „TextRegion” label, (region/text block) which has the ID 1. Based on
this ID, we will select the text blocks.. Considering the complexity of the
layout in 17th-century documents, such as titles, verse numbers in a new line,
numbers written in Cyrillic letters, chapter headings, etc., we will segment
and cut more than one text block from a single page. For this reason, it is
possible that two text blocks may contain the same characters, and as a result,
our dataset may contain similar training and testing examples. This is not a
problem at the initial stage, and the optimization of the dataset can be done
later in step 3 when creating the training and testing dataset.

When applying the segmentation tool to the selected pages, wewill obtain
portions with text blocks that will help us crop the necessary fragments. An
example of segmentation is shown in Fig. 4.22, p. 73. From this image, we
can see that two rectangles have been outlined, intersecting and delineating
two text blocks, even though the page/image is actually composed of a single

Chapter 4. Recognition of the oldest Romani… 73

block. However, as mentioned earlier, at the initial stage, the repetition of
the same characters from different text blocks is not a hindrance.

Figure 4.22: A page from book number 2 that has been segmented with
PrimaLayout

After segmentation, the text blocks need to be cropped and placed into

74 Section 4.7. Classification of 17th Century F…

a list of text block fragments. On average, four text block image fragments
were obtained for each of the 22 pages. In the next step, from these fragments,
we will identify and extract characters through cropping. Characters include
letters, punctuation marks, accents, some lines outlining tables, pixels of
stains or page damage.

Task 2. e detection of individual characters from the text blocks
So, the next task is to find a way to extract characters from the text block

fragments. In the next step (step 3), we can then create a dataset from the
extracted letters and ultimately train a classifier on this dataset.

Inputs into our system are pages from documents printed in the 17th
century. These inputs can be images from various sources (smartphone or
digital camera, scanner, etc.), with different resolutions. Our goal is to process
each image, regardless of its source, in a way that the character detection
algorithm can find as many letters as possible. It’s worth noting that digital
cameras store images in three separate channels: red, green, and blue (RGB).
In our case, these three channels contain redundant information because
letters can be identified in each of these three channels separately. Therefore,
we will first convert all images to grayscale, so instead of three channels, we
work with just one, which should increase the learning speed. As a result,
the processed image will consist of only black and white pixels. We can
then further optimize the image for letter detection. In addition to existing
software, a Python function has been developed to convert images from RGB
to grayscale using the OpenCV library.

To detect characters, we will use the findContours() method from the
OpenCV library. We can then map the bounding boxes of the contours found
by this function back onto the original RGB image to see what was actually
detected. The result of this processing step is exemplified in Fig. 4.23, p. 75.

The identified characters have been cropped and saved in two folders,
one for each font. From the 10 pages in set A, we obtained 17,155 characters,
while from the 9 pages in set B, 8,799 characters were saved. The difference
in the number of extracted characters for sets A and B can be explained
by the sizes of the characters used in the two distinct fonts, the number of
characters per page, and the number of cropped text block fragments. Among
the extracted characters, some may be noise elements from the image, such

Chapter 4. Recognition of the oldest Romani… 75

Figure 4.23: Identification of character contours in a text block fragment

as stains, accents without the base character (letter), tildes, etc.
In the next step, we will remove unnecessary characters and keep only

the letters using the K-Means7 clustering model and Principal Component
Analysis8 (PCA).

Task 3. Clustering characters for the creation of the training and
testing dataset

The next task to be accomplished is to eliminate images that do not
contain letters and cluster all the remaining images (meaning that all the
letters from collection ”A” go into one folder, and all the letters ”B” go into
another folder). To obtain a high-quality dataset, we will combine manual
processing with automated data grouping using PCA and K-Means.

PCA and K-Means methods address different tasks. PCA is used for
dimensionality reduction or feature selection when the feature space contains
too many irrelevant or redundant features. Its goal is to find the intrinsic
dimensionality of the data. On the other hand, K-Means is a clustering
algorithm that returns the natural grouping of character vectors based on
their similarity.

Before beginning clustering, we need to ensure that all images have the
same dimensions. As seen in Figure 5.20, the characters have been saved with

76 Section 4.7. Classification of 17th Century F…

different dimensions. Each image has the size of its bounding box, which
varies widely. So, in the first step, we will resize all images to 50x50 pixels
and concatenate them into a matrix using the NumPy9 library. Then, we will
need to reduce the dimensionality of the characters. Each image contains
50x50 (2500) pixels or features. This quantity is too large for a clustering
algorithm, so we will use Principal Component Analysis (PCA) to reduce the
dimensionality from 2500 to 25.

After these steps, the data is prepared to be clustered so that the unlabeled
dataset is turned into a labeled state. Wewill apply K-Means clustering, which
is a simple and fast method. The only thing we need to provide is the number
of clusters we expect. If K-Means were to give us a perfect result, we would
get exactly the number of letters in the Romanian Cyrillic alphabet - 47, but
it’s less likely to achieve such an ideal result, considering variations in the
differences between uppercase and lowercase letters. Each of the 47 letters
can also appear in both uppercase and lowercase forms, which means we
could expect a total of 47x2 (94) clusters. There will also be punctuation
marks and noise in the data, which may have been detected. Therefore, it is
reasonable to set the output parameter to 100 clusters. This is more than we
need, but it will be easier to merge clusters later than to separate them.

The clustering process for the approximately 25,000 characters took less
than a minute, and the result of clustering will be moved into separate folders
based on cluster labels (Fig. 4.24, p. 76).

Figure 4.24: Folders with characters grouped into cluster

After automatic clustering, manual processing is performed, which in-

Chapter 4. Recognition of the oldest Romani… 77

cludes the following actions: moving misclassified images to the correct
folders, merging folders with identical letters, identifying noises, etc.

Some of the resulted clusters are composed of parts of characters (angles,
curves, lines) (Fig. 4.25, p. 77).

Figure 4.25: Cluster with parts of characters

Another part of the resulted clusters is formed by letters of the Romanian
Cyrillic alphabet. For example, in Fig. 4.26, p. 77 the cluster is formed of the
font B letter (the letter t in the Latin), in Fig. 4.27, p. 78 - by the glyphs of
the font A letter ѣ(the combination of letters ‘ea’ in the Latin).

Figure 4.26: Cluster formed by the glyphs of the letter

After the manual cleaning and adjustment of clusters, we will place the
images from them into two folders, one for the set with font A and the other
for characters with the font represented by set B. The result of this process is
two folders named fontA and fontB. In the fontA folder, there are over 21,000
characters, and the fontB folder contains over 8,700. The imbalance in the

78 Section 4.7. Classification of 17th Century F…

Figure 4.27: Cluster formed by the glyphs of the letter ѣ

number of examples for each of the two fonts can be managed in the dataset
splitting stage if we encounter low accuracy in classification.

The final step to complete the formation of a well-organized dataset will
be to convert the dataset into IDX10 format, a format known for its use in
presenting the well-known MNIST11 handwritten digits database. We will
do this using the idx_converter() function from the idx_tools package, which
takes a file structure directly from the operating system and saves it in IDX
format. Since we want to train a neural network, we should split the images
into a training and testing dataset. For this, we will move 30% of the images
from each set A and B to a testing folder. The output will consist of 4 files:
2 files with images for training and testing, and another 2 files with the
corresponding labels for the image files. The class labels for the characters
will be values 0 and 1, where 1 represents the class of characters from fontA,
and 0 represents the class of characters from fontB. After these operations,
we will have over 21,200 training examples and over 9,000 testing examples.

Next, we will train a neural network (NN) using the dataset prepared up
to this stage.

Task 4. Training a NN for character classification and evaluating
it

We will train a multilayer neural network (MNN) on the dataset prepared
in the previous stage to classify characters into the two different fonts. This
approach will follow the example from the Tensorflow12 website, but the
architecture of the MNN model will be tailored for binary classification.

First, we need to load the data we saved earlier in the IDX data format.
We have already split it into a training and a test dataset, and each of these

Chapter 4. Recognition of the oldest Romani… 79

two datasets comes with a label file that we will load. Fig. 4.28, p. 79 shows
some random examples to verify that the dataset has been saved correctly.

Figure 4.28: Random examples from the training set [32]

Beforewe begin constructing theMNN architecture, we need to normalize
all the images so that pixel values are real values between 0 and 1 instead of
0 to 255. To do this, we will scale the pixel values in the images to 255.

The multilayer neural network described here (Fig. 4.29, p. 79) is struc-
tured into three main layers: an input layer, a hidden layer, and an output
layer. The input layer consists of neurons representing each distinct feature

Figure 4.29: Neural network architecture for font classification

Xi of the character in the image. In this case, there are 2,500 such features
being represented. The hidden layer of this network consists of 128 neurons
and uses the (Rectified Linear Unit) ReLU13 activation function. ReLU is a
popular activation function in neural networks because it does not saturate
to a fixed upper bound during backpropagation, making network training
more efficient. The output layer of the network contains a single neuron,

80 Section 4.7. Classification of 17th Century F…

using a sigmoid activation function σ defined as

σ(x) =
1

1 + e−x
(4.2)

where x is the weighted sum of the outputs Sy from the hidden layer. Sigmoid
functions have an „S” shape and are often used in neural networks for binary
classification because they produce an output between 0 and 1, which can be
interpreted as a probability.

The construction of the neural network begins with transforming the
input data from a matrix of size x by y (in our case, 50*50) into a vector
of length. This is done using the keras.layers.Flatten14 layer. Then we add
128 neurons in the hidden layer, which is fully connected to the last layer.
A single neuron in the output layer is sufficient because we have binary
classification. The neural network was trained over 300 epochs and took
approximately 55 minutes without using a graphics processing unit (GPU15).

The training results show an accuracy of 96.7% (Fig. 4.30, p. 80).

Figure 4.30: The accuracy history for each epoch individually

Chapter 4. Recognition of the oldest Romani… 81

The confusion matrix, which shows the model’s predictions compared to
the actual classes, is presented in Fig. 4.31, p. 81.

Figure 4.31: The illustration of the confusion matrix on the test dataset

If we calculate the classification error using the false positives and false
negatives from the confusion matrix, we get a (128 + 174) ∗ 100%/9093 =
3.3% error rate.

We will save the MNN model structure in a json file and the network
weights in an HDF516 file. When using the model, we will input a set of
characters from pages with text blocks in Romanian Cyrillic alphabet printed
in the 17th century. We will classify the document based on the class that
obtained the highest number of predictions. After classifying the document,
FR 12 will be used with the corresponding OCR model for the document’s
font.

4.8 Post-OCR text improvement

The improvement of the recognized text following OCR has been extensively
discussed in [121]. In our experimentation with post-OCR spell checking
for old Romanian texts, a key challenge arose: the absence of dictionaries
tailored to old Romanian from various centuries. Consequently, our strategy
involved leveraging existing software and substituting the dictionary.

The choice between commercial software (e.g., MS Word) and free Open

82 Section 4.8. Post-OCR text improvement

Source alternatives (such as LibreOffice Writer) was considered. All spell
checkers support user dictionaries, making the process seemingly straightfor-
ward: designate the text’s language with installed proofing tools and compile
the user dictionary with essential words.

In MS Word, this approach yielded partial success (Fig. 4.32). Certain
old Romanian Cyrillic letters, such as ꙟ, ɣ, ω, and the ligature ia, were not
recognized as letters in the spell checker (Fig. 4.33). Transliteration of these
no-letters may resolve the issue.

Figure 4.32: Successful work of MS Word over an old Romanian text

Figure 4.33: Invalid work of MS Word over an old Romanian text

In contrast, using LibreOffice Writer under Linux SuSe proved successful
in our experiment, particularly in testing the aforementioned no-letters. New

Chapter 4. Recognition of the oldest Romani… 83

words could be added directly to the user dictionary, or a file could be dupli-
cated and configured accordingly. User dictionaries, residing in a dedicated
directory, are simple text files with a standard four-line header, containing
one word per line. Users can configure one or more files as current user
dictionaries.

Finally, let’s present post-OCR statistics for a geography book from 1795
[122]. Texts from the 18th century share a language model similar to that of
the 17th century, being nevertheless relatively simpler, and partially sharing
spelling dictionaries.

The book comprises a total of 5,066 words. In comparison with modern
orthography, 613 words (12.1%) exhibit differences. There were 75 OCR errors,
with word accuracy exceeding 98.5% and character accuracy surpassing 99.7%.

To assess against modern orthography, our transliteration utility identi-
fied 31 erroneous words in the modern script (0.6%). We analyzed these words
to refine transliteration, promptly incorporating them into the exception
dictionary accompanying the transliteration utility.

Furthermore, 188 words (3.7%) differ in writing, either in a single word
or separately, reflecting the historical evolution of orthography.

The remaining 319 words (6.3%) warrant philological expertise to com-
prehend why their spelling differs. For instance, the word meaning up to
was printed as both până (modern norm) and pănă. This discrepancy may
result from local or historical variations, or a misprint. While this approach
ensures reliable results, it may pose challenges for non-professionals.

84

Chapter 5

Recognition of texts printed
with transitional alphabets

5.1 What is transitional alphabets?

The author of high detailed work “A History of Romanian Spelling” [11]
termed transitional Romanian alphabet as the most original graphic systems
in the modern history of European cultures. The necessity of transitional
alphabet, however, sprang from the common European phenomenon. The
majority of the first printed books were the cult books. The originality is
based on a combination of two factors specific to the Romanian language.
The cult books in Romanian regions are written by Cyrillic scripts. However,
the Romanian language belongs to Latin Group and its natural script is Latin.
The transition of all Romanian writing to Latin scripts was declared at 1830,
but the process was not quick and easy. Thus, transitional alphabets were
used in the Romanian typography since 1830 until 1870.

The specific work, that concerned transitional alphabet[123], shows de-
tailed process of migration. This process was so complicated and intricate
that the author called it a “saga”. This process was not even straight-forward,
being performed in ”trial and error” way. After unsuccessful attempts, the
printing house temporarily returned to Cyrillic letters.

The migration process was performed by one of two techniques. The first

Chapter 5. Recognition of texts printed wit… 85

technique consists in direct transliteration. This technique succeeded, for
example, in transition of specific Cyrillic letters of diphthong: ѥ→ia, ѣ→ie.
But direct transliteration was rejected as representation of ”phonetic” sense.
In traditional Latin orthography ”phonetic” sense is, usually, represented
by several letters, like, for example, in English: sh /S/, ch /tS/. But multi
letters printing was often not accepted by readers, so direct transliteration
technique was rejected. The second technique consists in the interpretation
of the transitional alphabet to the extent that the sound meaning of the
syllables and the letters was as close as possible. This technique was accepted
as the main one. The transition rules have been discussed and tested for a
long time. For some sounds, the multi-letter representation was replaced by
the design of own, specific Romanian, letters, and as a result, the Romanian
diacritics was born.

Such a complex and lengthy transition process leads to difficulties with
the formal definition of the transitional alphabet. But the general answer
to the question: what are transitional alphabet? - follows. The transitional
alphabet is defined as 36 letters, 27 of which are modern ones, plus 9 old
letters: Ѣ ѣ, Ѥ ѥ, Ѧ ѧ, Ꙟ ꙟ, Ꙋ ꙋ, Ĭ ĭ, Ъ ъ, Щ щ, Џ џ.

5.2 Specific aspects of transitional alphabets digiti-
zation

The formal content of the transitional alphabet exists mainly for reference,
because, actually, Cyrillic and Latin letters were mixed in different propor-
tions depending on the time, place, preferences of the typographer, editor or
author of texts.

Book [123] count up to 17 variants of the transitional alphabets, but
some other authors declared about 20 variants. These transitional alphabets
variants cannot be ranged in any order. Book [123] shows the ”highest score”
example of 1840 where the title page was printed in four different scripts
simultaneously (old Cyrillic, simplified Cyrillic, transitional, and Latin).

From the point of digitization, such an irregular variety of transitional
alphabets creates additional problems in both OCR and the visual represen-
tation of resulted document.

86 Section 5.2. Specific aspects of transitional…

The visual representation problems can be solved by usage of our specific
font[85] as it was described in previous chapter. The maximum number of
Cyrillic letters used in different variants of transitional alphabet is 43.

The problems of OCR of transitional alphabet are more complicated.
To get acceptable accuracy, OCR tools have to be prepared for a particular
variant of transitional alphabet: to be configured, be trained and be supplied
by the proper dictionary.

During the development of our platform, two approaches were tested.
The firstly tested approach is to reproduce the resulted text in its original

variant of transitional alphabet. AFR, prepared as it was described above,
produces 7% of erroneous words. This is a good result, but the preparation
process takes a lot of time and resources.

To achieve more effectiveness, the second approach was tested. This
approach uses the general feature of large OCR systems, in our case AFR, to
output the result both using original glyphs and substituting them by any
sequence of letters from the selected alphabet of recognition. This is called
ligatures in AFR documentation. So, the second approach consist in using
as ligature the Latinized version of the transitional alphabet that we the
specifically developed. This intermediate alphabet can be set in one-to-one
mapping with any transitional alphabet. For example, both т(Cyrillic) and
t (Latin) will be recognized as t. Because of one-to-one letter mapping, the
utility added to the our package converts the OCR output into the desired
variant of the transitional alphabet.

The second approach proved fruitful. The OCR errors reduced to 4.8%.
This approach also reduces the volume of the dictionary. For example, trekut
(modern Latin script trecut) in the recognition dictionary may check up to
16 variants obtaining by independently replacing t→т, r→ р, k→к, u→ ꙋ.

The second approach as well solves technical problem of OCR engine
setting. AFR, for example, does not support arbitrary Unicode glyphs in its
dialogs and forms. Old Romanian letter Ꙟ was introduced in Unicode only
after 2009. Standard system fonts do not contain some Romanian Cyrillic
letters. As a result, we see in AFR empty boxes instead of letters during
training, alphabet formation, etc. The use of ligatures allows to employ fonts
only at the stage of converting the output data, when we control the view.

Chapter 5. Recognition of texts printed wit… 87

Another problem of OCR of transitional alphabet printings arose during
OCR engine training. There are very few of the existing historical lexicons
for results validation. Actually, we had to create all required resources from
scratch. We repeated recognition several times using the results as sources
for the addition to both dictionary and glyph patterns library.

Resuming, the OCR of texts printed by Romanian transitional alphabet
differs from described above OCR of Romanian Cyrillic alphabet by more
complex reconstruction procedure. Depending on particular task, user can
use or does not use the utility for full reconstruction of original text in digital
form.

5.3 OCR of Romanian transitional alphabet by ex-
amples

In this section we demonstrate the variations of Romanian transitional alpha-
bet depending on time and region. For the demonstration we extracted from
[11] the list of examples which have some particular and interesting features.
The scanned sources according this list were obtained from free web bases.

5.3.1 Initial usage

The arrival of a transitional alphabet, both in Muntenia and Moldova, dates
back to 1829-1830. One of the most known examples of the initial transitional
alphabet usage is Iasi newspaper Albina româneasca. Initially, the appearance
of Latin letters was very rare, as we can see in an example taken from[124]
on Fig. 5.1, which is a fragment of the first issue on June 1, 1829. The text
is practically entirely printed in Cyrillic script, except for a single Latin
letter i. The low quality of the original text has been improved by image
pre-processing; however, two recognition errors remain.

In later issues, especially in the literary supplement Alăuta Româneasca
[124], Latin characters become more and more frequent (Fig. 5.2). One can
see that the title is printed entirely in Latin letters and the following text is
in Cyrillic with full replacement of the Cyrillic и with the Latin i. For the
spelling of the letter t, two variants are used: т and . The word кɣрс is

88 Section 5.3. OCR of Romanian transitional alp…

Ешїи 1 юнїе 1829.

АЛБИНА ΡОМѪНѢСКЪ

ГАЗЕТЪ ПОЛИТИКО-ЛИТЕΡАЛЪ.

ꙞНАИНТЕ КꙊВѪНТАΡЕ.

Епоχа ꙟ карѣ тρъим поартъ семне
ѫсꙋшите ши вредниче де мираре! Дорꙋл
ꙟвъцътꙋрилоρ нꙋнꙋмай къ ꙟфръцеще пе
лъкꙋиторїй ѹнеи цери ꙟтрꙋ кѫщигаρѣ
ачестеи моралниче авꙋціи, прин карѣ ѡ
нацїе се фаче пꙋтеρтикъ ши феричитъ,
чи ꙟкъ ши ѡамени не асемънаци кꙋ
Ρелігїа, кꙋ лимба ши кꙋ леџиле сѫнт

Въцйндꙋсе ши сꙋпꙋиндꙋсе дρептелоρ
леџй. Оаре пꙋтемꙋ нои приви ла
ачѣсте бꙋне ѹрмате ꙟнаинтѣ ѡкилоρ
ностри, фъръ а ни ꙟчρиста къ нꙋмай
нацїа ноастръ ꙟчѣ маи маре парте
есте лиψитъ де ачести ꙟбꙋнътъциρй
ши ꙟнапоетъ де кѫт тоате нѣмꙋриле
Еѵропей, ши де кѫт мꙋлте алтеле че
лъкꙋескꙋ пре челе лалте пърцй але
пъмѫнтꙋлꙋй? Чине нꙋ сѫмте ꙟ цара
ноастρъ лиψа ашезъмѫнтꙋрилор

Figure 5.1: The first issue of Albina româneasca, June 1, 1829.

recognized erroneously as коре.

5.3.2 Complete usage

The next example presents full version of transitional alphabet how Heliade
Radulescu, Balcescu, Treboniu proposed it and Laurian, Asachi, Kogalniceanu,
etc. used it. We selected as an example an excerpt from the famous author
Vasile Alecsandri’s novel Suvenire din Italia: Buchetiera de la Florența (Sou-
venirs from Italy: A Florist from Florence) [125, 126] (Fig. 5.3) because theworks
of the classical authors were re-published by modern Romanian alphabet.
Modern re-publications are a useful source for verifying the transliteration
tool. The transliteration tool, in turn, can be used for creation of datasets for
both training and validation of the OCR engine. The quality of OCR is very
good, with only one error in this fragment (the Latin letter d recognized as

Chapter 5. Recognition of texts printed wit… 89

ALÂUTA ROMÂNEASCÂ.
S U P P L Е M Е N T L I T T Е R А L
АLВINЕI R О M Â N Е Ѕ С I.
IАЅЅI. 1. I U L L I Е 1838.
Ачест Суплеменm а Газетеі, есъ де доуъ оρі пе лунъ
ла
банmоρа Албінеі Ромънещі Ꙟн Еші.
Дін паρтеа Редакціеї.
Ρедакціа Албінеі Ρoмѫнещї, нꙋ аꙋ кρꙋцат, Ꙟн коре де
ноꙋъ анї, нічї о жъртфъ спре а 'шї мꙋлцъмі абонації.
Доρінд съ лі дее о ноъ довадъ де вꙋна еї воінцъ, ел
аꙋ лꙋат мъсꙋріле кꙋвіїнчоасе ка Алъꙋта Ромѫнеаскъ,
каре пънъ акꙋм се да неχотъріт, съ еасъ Ꙟн віігоріе,
регꙋлат де доꙋъ орї пе лꙋнъ, ла 1 ші ла 15 а
лꙋнеї, кꙋпрінзінд нꙋмаї лꙋкрꙋрї лїтерале прекꙋм ачест
Ꙟнтъї нꙋмър. Редакціа се ва сіргꙋі ка Алъꙋта съ
ръсꙋне прꙋдꙋктꙋріле дꙋχꙋлꙋї челе маї нсъ ші челе
маї інтересанте пентрꙋ четіторї. Еа Ꙟшї ва Ꙟмпліні
скопосꙋл кꙋ ажꙋторꙋл мꙋлтор тінерї літерарї, карії аꙋ
БІНЕВоіт а фагъдꙋі лꙋкръріле лор ачестеї пꙋблікації
періодіче.

Figure 5.2: Alăuta Româneasca, July 1, 1838.

the Cyrillic letter б). Most of the letters are Cyrillic, with the letters D, d, i,
m, n being written in Latin script. In the case of the last letter, the Cyrillic
spelling н is also found. Note that all proper names: Sinor Alsari, Norma,
and Pergola are written in Latin characters.

Another example of using the transitional alphabet in its mature state
is interesting by the confident use of the transitional alphabet in secular
literature. The example is from the novel Radu VII from Afumați [127] by
Stefan Andronic (Fig. 5.4A, p. 91). The Dictionary of Romanian literature
declares this novel as the first Romanian historical roman.

5.3.3 One direction conversion Cyrillic – Transitional — Latin

The book[11] presents the examples which are named effective transition.
The definition of effective here means that the mentioned printed publica-
tions: started issuing using the transitional alphabet immediately after the

90 Section 5.4. Accuracy evaluation

Ꙟптρ'о саρъ Ѕіnог АІѕагi Ꙟnтρъ Ꙟn кабінетꙋл mеꙋ,
ші ъmї ζісъ:
— В*** фост'аї de mꙋлт ла театρꙋ? —
— De къnd аꙋ mꙋρіт біеції mеї пъρінцї нꙋ аm ФОСТ...
Ъї ρъспꙋнсъїꙋ.
— Вреї съ mеρџеm de саρъ съ вedem Norma?... Къчї
вре съ жоаче о актρіцъ поꙋъ...
— Xaїdeцї...
— Гътештете дегρабъ къї вρеmе...
Мъ Ꙟmбρъкъїꙋ їꙋте, ші не dꙋcъpъm ла театρꙋ де Іn
Pergola.
Сала ера тіксітъ de аmатоρї, ші ложііле пліnе de dame,
елегаnте ші фρꙋmоасе...
De о daтъ се фъкꙋ о mаρе тъчеρе; тоцї се ашеζаρъ
пе ла локꙋρіле лор, ші оρχестρꙋл Ꙟпчепꙋ ꙋвеρтꙋρа,
—Аче mꙋζікъ пліnъ de о meлodie чеρеаскъ іскъ Ꙟn
mіnте'mї о mꙋлціmе de ideї тρісте, ші de сꙋвеnіρе...
А6ꙋкъndꙋmї аmіnте къ, Ꙟпаіnте de ζече аnі, mъ
гъсїаm тот ла ачел театρꙋ кꙋ іꙋбіції mеї пъρіnцї, ші
се пъρꙋ

Figure 5.3: Fragment of Souvenirs from Italy: A Florist from Florence by V. Alec-
sandri, 1840

announcement; used the transitional alphabet only for a few years; finally,
were issued entirely in the Latin alphabet without any returns.

The presented example is the fragment from Magazinu istoricu pentru
Dacia[128] (Fig. 5.4B, p. 91), edited by Laurian and Balcescu, that used the
transitional alphabet in 1845−1847 and then was issued by pure Romanian
Latin alphabet.

5.4 Accuracy evaluation

Here we propose analysis of accuracy in recognition of p. 20 of the novel
Radu VII from Afumați (see Sec. 5.3.2 above).

The most frequent errors were observed in the letter б (changed to в)
and the letter n (changed to п). With total 1172 characters on the page and
93 erroneous characters, we have the 92.1% accuracy.

Chapter 5. Recognition of texts printed wit… 91

A. B.

Figure 5.4: A. Cover of Radu VII from Afumați by S. Andronic, 1846
B. Title page of History Magazin for Dacia, 1845

This result could be improved by adding a user dictionary as part of the
FineReader language model. With the dictionary, we got only 31 erroneous
characters, and the accuracy became 97.4% that seems to be a good result.

However, after adding the dictionary, while most errors with the letter n
were resolved (as similar words were added to the dictionary), there were
still recognition errors with the letters ш, б, m, and some others. Also, the
word іɣбеще was incorrectly recognized this second time, even though the
model recognized it correctly without the dictionary.

The model almost flawlessly recognizes special characters and punctua-
tion, often erring in the letters n, п, ш, m, б, and џ. The model learned to
recognize the letter ɣ well and also correctly recognizes the letter л.

The letter ε was not on this particular page, but it was often identified as
е in other pages, although in reality, this letter later transitioned into the е.

Later it was observed that the letter î also appears in texts but was always
replaced with i. The letter which looks like ɣ with a line over it was counted
as a simple ɣ.

92 Section 5.5. Final remarks

-- Дꙋмнезеꙋ е мартꙋрꙋл меꙋ ! еꙋ нам
лiпсит нiчĭ одатъ дiн даторiiле меле кътре нацiа чемь а фост ꙟнкредiнцатъ. Тꙋ
ворбещĭ ꙟн нꙋмеле Църiĭ-Ромънещĭ, дар цара ачеаста е стреiнъ ла фаптеле
тале, тꙋ ворбещĭ ꙟн нꙋмеле Боерiлор, шi сꙋ мъ ꙟнтемеезꙋ асꙋпра реазiмꙋлꙋĭ
лор; тꙋ ворбещĭ ꙟн нꙋмеле нородꙋлꙋĭ, дар нородꙋл щiе фоарте бiне къ еꙋ сꙟнт
ачела кареле лам скос дiн пръпастiа ꙟнтрꙋ каре се афла, шi къ еꙋ ачела кареле

'iам асiгꙋрат бꙋнꙋрiле лꙋĭ, лiнiщеа лꙋĭ шi вiiторꙋл лꙋĭ.

Figure 5.5: Digitization of Radu VII from Afumati fragment

Ноĭ кpedem къ о аѕémіне Istopie este
кꙋ пꙋtinцъ. Пеntрꙋ ачеаѕtа soкotim къ чеї че ѕе окꙋпъ кꙋ Istopia nóѕtρъ, нꙋ
tребꙋе а ѕе ціné nꙋmаї de чееа че аꙋ̆ лꙋкρат ші аꙋ̆ zіѕ іѕторічіĭ nostpiĭ чеĭ

modepnĭ; dap, tot ꙟntp'o вреmе, фoлosindꙋse de аdевърꙋрĭ desкoпepite de dъnшii
ѕъ méргъ mаĭ deпapte, ѕъ алерџе ла іѕвóръле оріџіпале, sъ каꙋtе ші ѕъ adꙋne

tóte datꙋріле пꙋtinчіóѕе, ші аtꙋnчĭ вор пꙋté цеѕе о Бꙋнъ Istopie.

Figure 5.6: Digitization of Magazinu istoricu pentru Dacia fragment

5.5 Final remarks

Digitization of texts printed in transitional alphabets is an important element
of digitization of Romanian historical printed publications. The period of
using transitional alphabets coincided with the era when printed publications

Chapter 5. Recognition of texts printed wit… 93

became a necessary part of everyday life. Thus, this period gave a rich
legacy of both periodicals and literature, which can be called the first purely
Romanian. So, digitized copies of transitional alphabets prints are interesting
not only for linguists but also for historic and literature researchers.

94

Chapter 6

Transliteration

6.1 Introduction

Transliteration is a type of conversion of a text from one alphabet to another
that involves changing letters in predictable ways, such as for Cyrillic д→d,
Greek χ →ch/h, Latin æ→ ae, or old Romanian Cyrillic ꙟ → î/în/îm
depending on the context [31, 129]. Therefore, transliteration consists of
representing the characters of a given alphabet X through the characters
of another alphabet Y , maintaining (as much as possible) the reversible
operation.

Up to now, several transliteration techniques between two scripts have
been proposed. Particular interest has been aroused by works focused on the
orthographic transliteration of English proper names into Chinese, Japanese,
Korean, or Arabic. In 1997, a method of transliteration between Japanese and
English was introduced, using translation algorithms based on finite state
machines, and this method was adapted the following year for bidirectional
transliteration between English and Arabic [130].

In [131], a transliteration technique called Direct Orthographic Mapping
(DOM), or in other words, an n-gram based transliteration model, is proposed.
The DOM approach attempts to model the phonetic equivalent association
by fully exploring orthographic contextual information and orthographic
mapping. In the DOM technique, a common transliteration model is pre-

Chapter 6. Transliteration 95

sented to capture the source-target orthographic mapping relationship and
contextual information. The proposed framework is applicable to all pairs of
foreign languages.

The transliteration of Romanian texts from the „Moldovan” script to
the Latin script in our country began in 1989 with the application of Law
No. 3462 of August 31, 1989, adopted by the Parliament of the Republic of
Moldova [132]. The standards of transliteration to English can not be adopted
directly, because of Romanian Latin script specific features. For example, in
the tradition of the Romanian language, the Cyrillic letter х is transliterated
by the Latin letter h, but in the tradition of English-speaking countries, the
same letter is transliterated as kh. Thus, in Romanian, the token Сахалин
is transliterated as Sahalin, while in English it is Sakhalin [133].

6.2 Transliteration Rules for Romanian Cyrillic

The presentation of digitized Romanian Cyrillic documents was described in
previous chapters: for Romanian Cyrillic (RC) in Chapter 4, for Transitional
Romanian (TR) in Chapter 5. Summarizing, the digital Romanian Cyrillic
letters are mapped by their Unicode values and presented by special fonts.

The representation of Moldavian Cyrillic (MC) poses no problems, be-
cause the only difference with the Russian is letter ӂ that is presented in
commonly used fonts.

The correspondence of specific letters from the RC with the modern
Romanian Language (MRL) and their mapping into Unicode is presented in
Table 6.1, p. 96.

Some accented or combined letters are meanwhile missing and should
be specially treated, for example, ꙋ̆ (ŭ) or i- ꙋ̆ (iŭ) in TR. To present them
in Unicode, it is necessary to use combining accents, and we can’t fully
reproduce subtle details of the graphical presentation of the original text.

6.3 MC: Bidirectional Transliteration

The transliteration MC→MRL was discussed in detail in [134]. There are
three groups of rules. Most letters (26 of 31) can be mapped directly as shown

96 Section 6.3. MC: Bidirectional Transliteratio…

Table 6.1: Correspondence of some specific letters from the RC with MRL

RC MRL
e Unicode code
for the letters
from the RC

“ Ѣ” “Ea” 0462
“ ѣ” “ea” 0463
“ Ѩ” “Ia” 0465
“ ѩ” “ia” 0464
“ Ꙟ” “Î”, “În”, “Îm” A64E
“ ꙟ” “î”, “în”, “îm” A65F
“ Ꙋ” “U” A64A
“ ꙋ” “u” A64B
“ К” “C”, “Ch” (before e, i) 041A
“ к” “c”, “ch” (before e, i) 043A
“ Ъ” “Ă” 042A
“ ъ” “ă” 044A
“ Щ” “Șt” 0429

in Table 6.2, p. 96.

Table 6.2: MC→MRL: direct letter mapping
MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL

а→a б→b в→v д→d е→e ж→j ӂ→g з→z
и→i й→i л→l м→m н→n о→o п→p р→r
с→s т→t у→u ф→f х→h ц→ț ш→ș ь→i
э→ă ю→iu

Context rules exist for three letters as shown in Table 6.3, p. 97.
The letter ы→â, î, where î is written at the beginning or end of words,

while â inside words. The difficulty is that î is kept after prefix, for example,
ne+însoțit = neînsoțit (unaccompanied).

The letter я→ea, ia, a presents the biggest problem that can’t be fully
solved without access to dictionaries. Rules are mostly heuristic and statisti-

Chapter 6. Transliteration 97

Table 6.3: MC→MRL: Context Rules in the Order of Application
MC MRL Context
г gh before е, и, ь, ю, я
г g otherwise
кс x as exception, examples: eczema and derivatives, Alecsandri
к k as exception, examples: kilogram, Kogălniceanu, etc.
к ch before е, и, ь, ю, я
к c otherwise
ч c before е, и, ь, я
ч ce before а
ч ci otherwise

cal, and over 20 rules do not cover all cases. This situation exists because
MC was not thoroughly designed but is an irregular mapping of Romanian
sounds to the Russian letters.

Some words can’t be transliterated according to these rules: foreign
proper nouns and words of foreign origin that keep their writing in MRL.
We use the exception dictionary for them.

The inverse transliteration MRL→MC (1967–1989) was mainly necessary
to produce a word list in MC from the existing word list in MRL. This task
equally meets difficulties, mainly with the letter i. In particular, at the word
ends i may be omitted, or converted to и, й, ь. Examples: arici→арич
(hedgehog, singular), arici→аричь (hedgehogs, plural), [a] cheltui→[а]
келтуи ([to] count; stress on i), [eu] cheltui→[еу] келтуй (I count: stress
on u). Analogous problems appear at the transliteration of diphthongs and
triphthongs. For example, diphthong ia→я, ия, иа: soia→соя (soybean),
caucazian→кауказиян (Caucasian), cartezian→картезиан (Cartesian).

Some of these problems could be solved by consulting Morpho-Syntactic
Data (MSD), which was proposed in the framework of the project MULTEXT-
East [135]. In the remaining cases, context analysis or even manual interven-
tion could be performed.

The whole transliteration process is implemented as a set of filters each
modeling a separate situation. The filters are:

98 Section 6.4. Transitional Alphabets

• prefix filters;
• suffix filters;
• diphthong and triphthong filters;
• final filters (letter→letter).
Prefix filters are created separately for words that begin with the same

letters (creast*→кряст*, crea*→креа*, paie*→пае*, etc.). At translitera-
tion, these filters are applied at first.

Suffix filters are common for all words in the lexicon. They can be divided
into two classes: conditional depending on the MSD value, and unconditional.

Diphthong and triphthong filters aim to transliterate some letter combi-
nations like ie, io, eio, chio, etc. They are applied independently of position
and context.

Final filters transliterate all letters that remain after the application of
other filters. For example, d→д, c→к, ș→ш.

Some filters can use results from the previous filters. Such filters may
look like: celуй→челуй, ienь→ень, combining Latin and Cyrillic letters.

If the situation is ambiguous, and expert’s intervention (manual selection)
is necessary, alternatives can be generated, for example кафен[иул][юл]
with the result →кафениул (brownish, coffee color; with the definite
article); ча[иул][юл]→чаюл (the tea; with the definite article).

This algorithmwas applied to the lexicon elaborated at the Al. I. Cuza Uni-
versity in Iași [136]. The automation rate of transliteration was approx. 90%.

6.4 Transitional Alphabets

In chapter 5 the problem of multiple (more than 17) variants of TR alphabet
is discussed in details. For initial transliteration tool performing the starting
variant had to be selected.

The transliteration tool of HeDy deals with the variant from formal
definition: 36 letters, 27 of which are modern ones, plus 9 old letters: Ѣ ѣ,
Ѥ ѥ, Ѧ ѧ, Ꙟ ꙟ, Ꙋ ꙋ, Ĭ i,̆ Ъ ъ, Щ щ, Џ џ.

In the case when a different variant of the TR alphabet is used in the
digitized document, the basic algorithm of the HeDy transliteration tool
allows you to simply add new letters.

Chapter 6. Transliteration 99

The TR transliteration rules are more simple then ones for MC, because
TR has not dubious rules.

Transliteration of 32 letters is performed under direct rules (Table 6.4,
p. 99).

Table 6.4: TR→MRL: direct letter mapping
MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL MC→MRL

а→a б→b в→v д→d е→e ж→j з→z и→i
й→i л→l м→m н→n о→o п→p р→r с→s
т→t ф→f х→h ц→ț ш→ș щ→șt ь→i* э→ă
ю→iu ѣ→ea ѥ→ia ѧ→â ꙋ→u* ĭ→i* ъ→ă џ→g
* At linguists’ request, rules й,ь, ĭ→ ĭ, and ꙋ̆→ŭ may be applied.
** Before e, i only.

The four remaining letters are transliterated under context rules (Table
6.5, p. 99).

Table 6.5: TR→MRL: Context Rules in the Order of Application
TR MRL Context
г gh before е, и, ю
г g otherwise
кс x exceptions: Table 6.3, p. 97
к ch before е, и, ю
к c otherwise
ч c before е, и
ч ce before а
ч ci otherwise
ꙟ î* before m, n
ꙟ îm before b, p
ꙟ în otherwise
* In some texts, always ꙟ→î (simple rule).

100 Section 6.6. Examples of Transliteration

6.5 Glyphs and Transliteration Rules for RC

As it was declared in Chapter 4, RC contains 43 letters: Аа Бб Вв Гг Дд Єє
Жж Ѕѕ Зз Ии Її Кк Лл Мм Нн Оо Пп Рр Сс Тт ꙋꙋ Ѹѹ Фф Хх Ѡѡ

Цц Чч Шш Щщ Ъъ Ыы Ьь Ѣѣ Ѫѫ Юю Ꙗꙗ Ѧѧ Ѳѳ Ѱѱ Ѯѯ Ѵѵ Ꙟꙟ
Џџ.

Glyphs like й and ꙋ̆ weren’t treated as separate letters in RC, but as и
and ꙋ with diacritic signs.

37 letters are transliterated under direct rules (Table 6.6, p. 100).

Table 6.6: RC→MRL: direct letter mapping
RC→MRL RC→MRL RC→MRL RC→MRL RC→MRL RC→MRL RC→MRL RC→MRL

а→a б→b в→v д→d е→e ж→j s→dz з→z
и→i ї→i л→l м→m н→n о→o п→p р→r
с→s т→t ꙋ→u ѹ→u ф→f х→h ѡ→o ц→ț
ш→ș щ→șt ъ→ă ы→î ь→i ѫ→â ю→iu ꙗ→ia
ѳ→t ѱ→ps ѯ→x ѵ→i џ→g
* Before e, i only.

The remaining 6 letters need context rules (Table 6.7, p. 100).

Table 6.7: RC→MRL: Context Rules in the Order of Application
RC MRL Context RC MRL Context
г gh before е, и, ї, ю ѧ a at the beginning of word
г g otherwise ѧ a after ї, ц
кс x ѧ e after ч
к ch before е, и, ї, ю ѧ ea after another consonant
к c otherwise ѧ ea at the end of word
ч c before е, и, ѣ ѧ ia otherwise
ч ce before а ꙟ îm before b, p
ч ci otherwise ꙟ în otherwise
ѣ e after ч (exception ч ѣ→cea)
ѣ ea otherwise

Chapter 6. Transliteration 101

6.6 Examples of Transliteration

This section provides examples of transliteration that demonstrate how useful
this HeDy tool is for historians and linguists, especially for those who are
not familiar with Cyrillic writing.

The example in Table 6.8, p. 101 is the text from the ”New Testament”
book printed in 1648, in Balgrad (Alba-Iulia) (described in Chaper 4).

Table 6.8: Example of 17 century document transliteration
Text after OCR Transliterated text
Де ꙟчепꙋт Ера кꙋвънтꙋл, ши
кꙋвънтꙋл ачела Ера ла дꙋмнеζъꙋ,
ши дꙋмнеζъꙋ Ера кꙋвънтꙋл ачела.
Ачеста кꙋвънт Ера деꙟчепꙋть ла
дꙋмнеζъꙋ. Тоате пре ꙞЕль фꙋрѫ
фъкꙋте; ши фърѫ Ель немикѫ
нꙋ фꙋ фъкꙋть варе че е фъкꙋть.
ꙟтрꙋ Ел Ера вїѩца ши вїѩца
Ера лꙋминѫ ѡаменилѡр. Ши
лꙋмина ачѣѧ Ꙟтрꙋ ꙟтꙋнѣрекь
стрълꙋчїѧ ши ꙟтꙋнѣрекꙋль преѧ
нꙋѡ кꙋпринсе.

De început Era cuvântul, și cuvân-
tul acela Era la dumnezău, și dum-
nezău Era cuvântul acela. Acesta
cuvânt Era deînceput la dumnezău.
Toate pre ÎNEl fura făcute; şi făra
El nemica nu fu făcut vare ce e fă-
cut. îtru El Era viața şi viața Era lu-
mina oamenilor. Și lumina aceaia
Întru întunearec strălucia şi întun-
earecul preia nuo cuprinse.

The example in Table 6.9, p. 102 is the text from the novel “Radu VII from
Afumati”(1846) by Stefan Andronic (described in Chapter 5).

6.7 Transliteration utility

This section introduces a tool designed for transliteration from RC, TR, and
MC to MRL.

The essence of this tool lies in its algorithmic approach to transliteration.
It functions based on a system of parameterized rules applied to each char-

102 Section 6.7. Transliteration utility

Table 6.9: Example of transitional alphabet document transliteration
Text after OCR Transliterated text
Дръган зикꙟнд ачесте ворбе, се лъсасе
а се стъпꙟнї де патима са, де ꙋръ, шї
де ресбꙋнаре; фокꙋл мънїеї ї се ꙋркасе
ꙟн ображї; џестеле сале ера смѧчїтеѣ,
кꙋ вїоїчїꙋне мїшкате; къꙋтътꙋра
са ꙟшї ре- лꙋасе ꙟндръзнеала, ачеа
ꙟндръзнеалъ ꙟнсъ че карактерїзеазъ
пе омꙋл че се сїмте слаб, шї кареле
креде къшї а редобꙟндїт вреднїчїа са.
Радꙋ, дїн потрївъ, ера лїнїщїт, шї,
аскꙋлтꙟнд їнсꙋлтеле че протївнїкꙋл
съꙋ ꙟї адреса, нꙋ дете нїчї ꙋн семн де
тꙋлбꙋраре, нїчї де мꙟнїе, дар ръспꙋнсе:
- Дꙋмнезеꙋ е мартꙋрꙋл меꙋ ! еꙋ нам
лїпсит нїчї одатъ дїн даторїїле меле
кътре нацїа чемь а фост ꙟнкредїнцатъ.
Тꙋ ворбещї ꙟн нꙋмеле Църїї-Ромънещї,
дар цара ачеаста е стреїнъ ла фаптеле
тале, тꙋ ворбещї ꙟн нꙋмеле Боерїлор,
шї сꙋ мъ ꙟнтемеезꙋ асꙋпра реазїмꙋлꙋї
лор; тꙋ ворбещї ꙟн нꙋмеле нородꙋлꙋї,
дар нородꙋл щїе фоарте бїне къ
еꙋ сꙟнт ачела кареле лам скос дїн
пръпастїа ꙟнтрꙋ каре се афла,шї къ
еꙋ ачела кареле Їам асїгꙋрат бꙋнꙋрїле
лꙋї, лїнїщеа лꙋї шї вїїторꙋл лꙋї.

Drăgan zicînd aceste vorbe, se lăsase
a se stăpîni de patima sa, de ură, şi
de resbunare; focul măniei i se urcase
în obraji; jestele sale era smiacitea, cu
vioiciune mişcate; căutătura sa îşi re- lu-
ase îndrăzneala, acea îndrăzneală însă
ce caracterizează pe omul ce se simte
slab, şi carele crede căşi a redobîndit
vrednicia sa. Radu, din potrivă, era
liniștit, şi, ascultînd insultele ce pro-
tivnicul său îi adresa, nu dete nici un
semn de tulburare, nici de mînie, dar
răspunse:
- Dumnezeu e marturul meu ! eu nam
lipsit nici odată din datoriile mele către
nația cem a fost încredințată. Tu vor-
bești în numele Țării-Romănești, dar
țara aceasta e streină la faptele tale, tu
vorbești în numele Boerilor, şi su mă în-
temeezu asupra reazimului lor; tu vor-
bești în numele norodului, dar norodul
știe foarte bine că eu sînt acela carele
lam scos din prăpastia întru care se
afla,şi că eu acela carele Iam asigurat
bunurile lui, liniștea lui şi viitorul lui.

Chapter 6. Transliteration 103

acter of a word in the source alphabet (RCA). The algorithm translates each
character xn, to its corresponding character yn, in the target alphabet (MRA),
forming a sequence that replicates the transliterated form of the word. The re-
sult represents a sequence of characters whose concatenation reproduces the
transliterated form of the word Y . In the given context, we have the following
definitions for the variables in the formula: yn = Trans (xn, Pos(n,X))

1. yn: the n-th character of the transliterated word Y .
2. xn: the n-th character of the transliterated word X .
3. X : the original word in the source writing system.
4. Y : the transliterated word in the target writing system.
5. n: the current position of the character in the word (starting from 0).
6. Trans(): a function that applies the transliteration rules for a given

character (xn) and its position (n) in the word X .
7. Pos(n, X): a function that determines the position of the character xn

in the word X .
Despite its structured approach, the tool accounts for exceptions like

foreign words, proper names, etc., employing specialized methods, such as
dictionaries, for these cases.

The back-end part of the application is written in Java, using technologies
compatible with all Unicode characters. If the font is registered and installed
in the operating system, the Java methods used for the interface solve the
issue of displaying characters with a simple reference to the specific font.

The first graphical interface of the transliteration utility is built using
JavaFX and has a design suitable for a desktop application. The application
is compatible with the following file formats: .doc, .docx, .rtf, .txt.

Considering the requirement to ensure broad access to this service, a web
version of the transliteration tool has also been developed, called AAConv1,
which consists only of the front-end part, connected to the previously devel-
oped back-end. The technologies used for developing the web application
are the usual ones, such as HTML, CSS, and JavaScript.

The desktop application is shown in Fig. 6.1 on p. 104.
Figure Fig. 6.2 on p. 104 illustrates the corresponding web application.

104 Section 6.8. Comparative Analysis of the Tran…

Figure 6.1: The Desktop Transliteration Application AAconv

Figure 6.2: The Desktop Transliteration Application AAconv

6.8 Comparative Analysis of the Transliteration
Process for Cyrillic Script of Different Periods

In this section, we present a comparative analysis of the transliteration
process for historical Romanian Cyrillic scripts of different periods.

The best result is obtained for RC, the accuracy of conversion being up to
98%. Comparing transliteration of 1830–1860 and 1945–1989 Cyrillic scripts
we will mention the following important aspects. For letters that are identical
in both scripting and are transliterated applying elementary rules, the process
is the same. There are some letters (г, к ч, џ) the transliteration rules for
which are not so elementary but are also identical for any Cyrillic scripting.

Chapter 6. Transliteration 105

Transliteration of 1830–1860 Cyrillic script gives, nevertheless, better
results than processing of 1945–1989 Cyrillic script.

Transliteration of transitional alphabets was successful for 96% of words
while for MC this fraction was 95%. TR of 1830–1860 has no problems
with letters ы and я. The rule for ы that should be converted to â or î
has some fuzziness, namely, keeping î after prefixes. Transliteration of я
from MC creates several ambiguous situations and strongly depends on the
context. Themost complicated case is the occurrence of я inside words. Three
variants are я→ea, я→ia, я→a. We use some heuristically and statistically
motivated rules but most cases imply addressing external dictionaries. In
1830–1860 TR did not provoke such issues because the letter я was not used
in every phonetically suitable situation. The same situation is attested in RC,
which contains specific letters, for example, ѣ→ea; ѥ→ia.

106

Chapter 7

Heterogeneous documents
processing

7.1 Definition of heterogeneous content

In most documents, whether they are old or contemporary, you can find
structured elements beyond the text itself and images. A good example is an
encyclopedia, which usually contains not only text but also various content
types like mathematical and chemical formulas, musical scores, diagrams,
technical drawings, chess notations, electronic circuits, etc. When digitizing
such documents, it’s essential not only recognize the text but also handle
these diverse components.

Heterogeneous content is associatedt with the possibility to present it in a
scripting language [8]. It exhibits the following characteristics:

• it’s not exclusively in natural language;
• it involves one or more scripting languages than can present its com-
ponents;

• the graphical representation can be regenerated using these scripts.
The rapid development of digitization textual documents has resulted in

numerous robust and efficient solutions. Researchers often leverage these
methods to address the broader challenge of digitizing heterogeneous con-
tent. However, handling heterogeneous content poses unique challenges that

Chapter 7. Heterogeneous documents processi… 107

cannot be resolved solely by adapting methods for processing pure textual
scans. Broadly, many of these approaches use Deep Learning with additional
techniques, such as dynamic programming [137] or SVM [138]. A compre-
hensive review of 29 script text mining techniques, along with accuracy
assessments, is available in [139].

Recent research has introduced comprehensive frameworks for digitizing
heterogeneous content [138, 140–143]. These frameworks vary in architec-
ture, serving either for whole-archive digitization or partial processing on
request. Despite their differences, the architecture and workflow of these
frameworks share common patterns. Online services can either be integrated
into the overarching framework or establish their independent online sys-
tems [144, 145]. The set of services required by domain researchers can also
be well-defined.

Recognizing documents with heterogeneous content is a complex task,
necessitating a thorough analysis of the image and its segmentation into
homogeneous segments. The development of digitizing standard scanned
text documents has yielded numerous reliable solutions to the problem of
recognizing homogeneous content. However, addressing the specific chal-
lenges of heterogeneous content requires more than just adapting methods
designed for pure text scans. In most cases, these methods involve Deep
Learning with additional enhancements.

Therefore, there is a pressing need to establish a framework that can
support the digitization of heterogeneous texts, automate processes where
possible, and engage with users when manual intervention or expert opinions
are required. This will be discussed in the next chapter.

This chapter discusses the problems at the recognition of documents that
contain heterogeneous formalized script-presentable content (mathemati-
cal and chemical formulas, music scores, etc.). Due to its great diversity,
recognition of such content can’t be performed by universal software sys-
tem. Equally, there isn’t any uniform script presentation of the recognition
results. State of the art in this area is reviewed. The relevant achievements
are systematized. Problems, further development directions and possible
solutions are identified. Functionality of Web platform for recognition of
heterogeneous documents will be discussed in Chapter 8 below.

108 Section 7.2. Layout analysis

7.2 Layout analysis

Concerning the digitization of heterogeneous content, the main problem is
layout analysis[146]. The complex page physical layout is converted into
logical structure according type of content. Due to the high accuracy of mod-
ern OCR systems, today the majority of implementations of heterogeneous
documents images digitization don’t include the layout segmentation. The
engine of any OCR system performs layout segmentation when recognizing
plain text document images. Having non plain text regions marked, the
process of digitization of heterogeneous content consists in classification,
recognition and scripting[147]. The classifier of elements in heterogeneous
documents was proposed by [148].

Initially the research was performed to automate classification of hetero-
geneous content [149], [150], [151]. However, today the classification stage in
most works has been separated from the workflow. The main reason for the
separation is that the digitization of heterogeneous content in general cases is
a time and resources consuming process. Another reason for such separation
is that heterogeneous document image classification problem arises mostly
once in the process of document archive digitization. After the digital archive
is created, new documents are added through an interface, where the type of
heterogeneous content is set. The one-time nature of heterogeneous docu-
ment image classification problem makes it very suitable for online platform
processing. Today the set of such platforms includes such giant commercial
systems as Cannon IRIS [110] and Kofax Layout Classifier [111]. Beside
the commercial systems, many particular projects, especially research ones,
develop their own platforms and systems, mostly based on Deep Learning
[112]. Some of particular projects concern general classification cases, but
their majority consider some particular type of heterogeneous content.

Works on general case classification predominantly employ Deep Learn-
ing [114], [115]. An interesting study [116] addresses the processing of
heterogeneous document images distorted during scanning. Another unique
approach is presented in [117], introducing a hybrid cross-modal method-
ology that learns simultaneously from a text corpus and image structural
information. An alternative to Deep Learning is proposed in [118], where
the authors suggest a novel technique for document classification based on

Chapter 7. Heterogeneous documents processi… 109

Formal Concept Analysis.
For cases focusing on classification rather than layout analysis, the pro-

cessing of images with strict layout patterns is notable. An illustrative exam-
ple is the handling of legal heterogeneous document images [119], where each
image must be classified as a specific legal document, with content extraction
considering the corresponding pattern. Another example is the standard
layout case of newspaper digitization [140], where text and illustrations
adhere to strict, usually rectangular, shapes. Additionally, the processing of
text type layout elements offers interesting applications, such as identifying
specific text areas on identity cards [120].

To mitigate the expenses of general case classification, researchers often
confine themselves to a specific set of heterogeneous elements. Numerous
content types, with well-developed digitization due to widespread usage, have
tools ranging from commercial systems to free online platforms and open-
source custom solutions. Noteworthy among them is the table content type,
where images of simple tables are routinely recognized alongside plain text
by modern OCR systems. Although table recognition tools are now included
in software like MS Excel, handling specific or complex tables remains an
area in development. Current table detection research relies on pre-trained
models [152], while some researchers develop their own models and reusable
deep learning elements like transformers [153].

Other well-digitized heterogeneous content types encompass mathemat-
ical formulae, music scores, technical drawings, data charts, and chemical
structures.

7.3 Specifics of heterogeneous document recogni-
tion

Content recognition began with text recognition (optical character recogni-
tion, OCR). Currently it’s an advanced technology, and we describe here state
of the art in this area as a point of reference. See more detailed discussion on
OCR in Chapter 3 above.

On OCR software, let us take as an example commercial ABBYY Fine-
Reader [21] (AFR), and open source free Tesseract [35] and OCRopus [52].

110 Section 7.3. Specifics of heterogeneous docum…

Currently two basic technologies used in text recognition are character
patterns and neural networks. Development of neural networks evolved
text recognition from recognition of separate characters to the upper levels,
namely, to intellectual character recognition and, further, to intellectual
words recognition (recognition of whole phrases and lines in a text at once).

OCRopus and Tesseract permit to switch between these technologies.
In comparison with open-source free OCRopus and Tesseract, AFR has

numerous advantages. It proposes to its users a convenient graphical shell
from which the entire document recognition cycle is available, starting with
scanning. It provides complex image correction (for example, correction
of trapezoid distortion), page segmentation with automatic detection of
the segment type (text, table, or picture), analysis of the table structure,
dehyphenation, manual editing after recognition, etc. The user can to input
a new language specifying its alphabet, as well as download an additional
user dictionary. In difficult cases, AFR can be trained, and the accumulated
character patterns (OCR models) can be downloaded and uploaded in new
projects.

OCRopus and Tesseract do not provide a single product with a full recog-
nition cycle, as well as a graphical shell. These are packages of separate
programs managed from the command line. Ready models exist only for a
small number of languages and fonts; for others, it is necessary to perform
training and model building from scratch.

The newest AFR 16 is heavy-weight application. Its Windows issue is
restricted to 64 bit Windows 10/11.

AFR 16 recognizes texts in 198 languages in any combination, of which
vocabulary support is provided for 53.

There are other text recognition systems, but many of them are no longer
supported. This is because the OCR system is complex and time consuming
to develop. If the system does not meet the enthusiasm of users or does
not stand up to competition, the investment of forces and finances in the
development instantly loses its meaning. This happened, for example, with
CuneiForm that in the beginning of 2000s successfully competed against AFR
but was discontinued since 2008.

SomeOCR systems that were updated during 2020−2023 are: AFR, Tesser-

Chapter 7. Heterogeneous documents processi… 111

act, Ocropus, CIB OCR [154, online, 4 languages only], OCRSpace [155, online,
24 languages], Infty Reader [156, Math also], ReadIris [157], TopOCR [158].

OCRopus was changed the last time in December 2020. TopOCR site is
dated 2021.

The universal recognizer Nebo[159] is also noteworthy. Nebo turns
handwritten notes, math and diagrams into professional typeset documents.
Nebo is AI powered. Its main usage is the recognition of texts and images
handwritten on touchscreens, mostly on smartphones.

7.4 Music

The recognition of musical scores (OMR), both printed and handwritten, is a
well-developed area. The platform needs to provide specialized OMR scans
of scans of historical documents. We obtained the subject area requirements
for these items from our past projects [160, 161]. Example of musical score
from [162] is shown in Fig. 7.1.

Figure 7.1: Example of musical score (G. Rossini, William Tell, overture, solo
piano, arr. F. Liszt)

The oldest interpreted record of a religious song (Hurrian Hymn to Nikkal
[163]) is dated back to 1400 B.C. The method of melody fixing is scripting,
and the script even contains metadata. The graphical presentation of music
was developed later.

Most music editors use their own file formats. De facto exchange stan-
dards between systems are MIDI (Musical Instrument Digital Interface [164])

112 Section 7.5. Mathematics

and the scripting fromat MusicXML [165]. For example, an open source free
music editor Musescore [166] provides MusicXML and MIDI data exchange,
as well as export and import of some other formats. MSCX, one of its own
formats, is also scripting.

MIDI is primarily an industry-standard communication protocol for elec-
tronic musical instruments. Information is transmitted in the form of binary
messages. Except of music itself, MIDI provides control messages for perfor-
mance effects, light sources, etc. therefore controlling any attached musical
instrument or scenic apparatus.

MusicXML is an XML file with specific tags and attributes for music.
Today the digitization of sheet music both printed and handwritten is

well developed domain. There are several free and commercial OMR (Optical
Music Recognition) tools. They interpret even manually written scores. The
recognition is sometimes less successful on textual parts of music score as
these programs are not oriented to OCR.

The list of currently available developments can be found at [167]. The
list include both powerful desktop applications for music scores archives
creation and online platforms for particular music research. We tested [168],
as example, Visiv SharpEye Music Scanning [169] that is one of the most
popular OMR platform and has 30-day trial version. SharpEye saves result
in MusicXML, NIFF, and MIDI.

Besides full-sized OMR systems, there are a number of small free tools
and open source Deep Learning projects for personal purposes, for example,
programming of synthesizers. We tested popular solutions like Mozart [170],
Orchestra [171], and Audiveris [172].

Commercial score editor Sibelius Ultimate [173] includes AudioScore Lite
that can input notes by singing or playing a monophonic instrument through
a microphone, and PhotoScore & NotateMe Litethat turns printed, PDF, JPEG,
and even handwrite sheet into editable scores.

Site Musipedia [174] proposes search for music in Internet. The melody
can be played from MIDI or virtual keyboard, or whistled in front of mi-
crophone. There are also search by contour (graphical pattern formed by
sequential notes) and search by rhythm tapped on a specified key.

AnthemScore [175] converts sound (MP3, WAV) to sheet music.

Chapter 7. Heterogeneous documents processi… 113

7.5 Mathematics

Standard scripting languages for mathematics are LATEX [176, 177] and
MathML [178].

In general, LATEX is a huge collection of scripts and scripting tools, includ-
ing, in particular, nonspecialized vector graphics subsystem MetaPost, and
MetaFont to describe fonts. Example of LATEX script and the resulting formula
is shown in Fig. 7.2.

$e^x = \sum\limits_{n=0}^\infty \frac{x^n}{n!}$ ex =
∞∑
n=0

xn

n!

Figure 7.2: Example of LATEX script and resulting formula

MathML is based on XML and exists in two variants: content MathML,
and presentation MathML. The content MathML describes sequence of op-
erations being LISP-like XML implementation of Polish Inverse Notation.
This corresponds the newer LATEX approach to scripting. The presentation
MathML directly describes display of formula ignoring its meaning like older
TEX.

LATEX is widely used in the publication of mathematical works and in
many other areas. This language is constantly evolving and complemented,
in particular in the aspect of the presentation of non-textual elements. For
example, in mathematics, very complex commutative diagrams for which the
earlier available LATEX tools (XYpic) were weak had to be drawn in a vector
graphics editor. Drawing of one chart took 2-3 hours. After the appearance
of more advanced tools (TikZ) in LATEX [179, 180], the production of the same
diagram requires no more than 15 minutes.

There are also scripting languages for computer algebra software like
commercial Maple [181] and Mathematica [182], or free Maxima [183, 184].
These languages describe sequences of operations.

For mathematics, simple formulas can be OCRed, but OCR systems fail
on complicated formulas. The problem was solved after introduction of Deep
Learning. Online platform MathPix [185], that has inexpensive license and a
number of free access permissions, is today a standard generally accepted
solution. Mathpix recognizes text in 32 languages, mathematics, and chemical

114 Section 7.6. Chemistry

diagrams. It also recognizes handwritten mathematics, chenical diagrams,
all Latin alphabet languages and Hindi.

Besides this, a number of Deep Learning open source solution can also
provide accurate result if there is computing resources and proper dataset to
train them[186].

7.6 Chemistry

One important challenge in chemistry is the unequivocal identification of
chemicals for production and trade, given the vast assortment (millions) with
multiple trade names and numerous image variants, especially for structurally
complex chemicals.

International industry standards in chemistry are established by IUPAC
(International Union of Pure and Applied Chemistry [187]). These standards
include IUPAC nomenclature for inorganic and organic chemistry. Addition-
ally, InChI (IUPAC International Chemical Identifier) is supervised by InChI
Trust [188]. InChI represents a molecule as a unique text string, and each
molecule’s description is unique. An example is the InChI for ethyl alcohol
(CH3CH2OH):

InChI = 1S/C2H6O/c1-2-3/h3H,2H2,1H3
A hash code (InChI key) of constant length is generated from the InChI

string, and InChI keys, like LFQSCWFLJHTTHZ-UHFFFAOYSA-N for ethanol,
are used for chemical database searches.

InChI has expanded beyond molecules to describe chemical reactions
through the RInChI project [189].

Like InChI, IUPAC nomenclatures provide unambiguous descriptions of
molecules but in a more human-readable form.

Other scripting languages for writing chemical formulas include LATEX,
which offers over 55 packages for chemistry [190], and SMILES (Simplified
Molecular Input Line Entry System [191]), allowing both molecular formulas
and reaction equations.

MDL MOLfiles [192] provide a specific scripting notation with coordi-
nates of atoms in the 3D structure of the molecule, but it lacks unambiguity.

Chapter 7. Heterogeneous documents processi… 115

For recognizing chemical formulas and equations in linear form, tools
like Mathpix can be employed.

Recognizing images of chemical (molecular) structures is a long-standing
text recognition task. Solutions like OSRA[193] and IMAGO[194] have
gained popularity due to their advanced features, including support for
various operating systems and online/desktop versions. A recent application,
MolVect[195], has gained popularity for its jar-based solution with advanced
features.

Deep learning techniques have also introduced widely used solutions,
with DECIMER[196] emerging as a competitor to previously popular solu-
tions.

In recent years, many free and commercial solutions for chemistry using
optical character recognition have been developed. Another application is
reviving the chemical structure recognition task, stemming from the modern
establishment of stereochemistry standards [197] for any organic chemistry
publication.

To address the recognition of chemical molecular structure images in
vector formats, the IMAGO [194] and MolVec [195] tools, both recognizing
in the Mol format, were chosen for the server side of the HeDy platform.
These tools were selected due to their implementation as jars, making them
cross-platform and easy to use.

The choice for the frontend proved more complex due to the variety of
free online chemical structure editors. Consulting with scientific researchers
in organic chemistry led to the selection of the Ketcher editor [198] for
the HeDy interface. This editor meets specific requirements for editing
recognized chemical structure vectors, including a stereo element toolbar
and a 3D editing mode.

7.7 Technical drawing

We should mention here languages used with CAD software.
In mechanical engineering and building, the most known CAD is Au-

toCAD. This is a commercial system, and its language doesn’t even have
open specifications as it is used interactively. However, there are a lot of

116 Section 7.7. Technical drawing

CAD products including free open-source ones, which makes obvious the
necessity to develop standards to exchange CAD projects in the electronic
form. For example, it was estimated [199] that as on 2004 the USA capital
facilities industry had lost annually $15.8 billions due to inadequate inter-
operability arising from “the highly fragmented nature of the industry, the
industrys continued paper based business practices, a lack of standardization,
and inconsistent technology adoption among stakeholders”.

Several project exchange languages for CAD are standardized on inter-
national or industry level. All are scripting, although some of them have
two variants: textual (scripting) and binary. Thanks to this, CAD not only
provides a graphical representation of design objects, but also, for example,
strength calculations use the same script as the source code. It is also possible
to generate commands for CNC machines or 3D printers. This proves the
necessity and usefulness of the standard script description as opposed to any
other.

Examples of manufacturer-neutral scripting standards for CAD file ex-
change are IGES and STEP (ISO 10303, Standard for the Exchange of Product
model data). IGES scripts consist of 80-character records to be punched on
cards. Since the initiation of STEP in 1994, IGES stopped its development, its
last version being dated by 1996. Nevertheless, old IGES files since 1980s can
be reused today.

Let us take the concept of BIM (Building Information Modeling, or Build-
ing Information Model). In this concept, the only information model of the
building is provided by a single script. It is used at all stages, from design and
construction to the operation of the building inclusive. A three-dimensional
model of a building object is associated with an information database, in
which additional attributes can be assigned to each element of the model.
The building object is actually designed as a whole. Changing anyone of
parameters entails an automatic change of the other parameters and objects
associated with it, up to drawings, visualizations, specifications, financial
calculations and calendar schedules.

For graphical design content, the situation with recognition is similar to
that for diagrams and drawings in chemistry and mathematics.

The recognition of technical drawing documents is part of CAD industry.

Chapter 7. Heterogeneous documents processi… 117

CAD professionals use commercial systems, which are expensive but provide
99% accuracy for example[200].

The majority of these systems allows disposable free access, for example
[201] or trial version for example [202], [203]. So, we can omit processing of
examples of CAD drawing, when such elements exists in tutorials or scientific
papers, and address to one of these systems.

Heterogeneous content types of technical drawing, which are usually
met in printed documents, are graphs and flowcharts. For these types of
heterogeneous content, the main purpose of digitization is the reuse. The
task of reuse arises mostly once, so modern solutions are either open source
or online systems. Another specific feature is that output format has to
be suitable for reuse. Modern systems chose formats of vector editors or
of diagram creation software. The employment of Deep Learning supplies
also the output of shape containers, for example: Python dictionaries or
JSON, which can be easy convert to any required format. We tested several
open source GitHub solutions. For our task the most accurate results were
obtained by Handwritten-Flowchart-with-CNN [204] and Image2CAD[205]
projects. These solutions are based on Deep Learning and provide output in
the form of Python dictionaries.

7.8 Charts

Charts are important and omnipresent elements of any kind of heterogeneous
documents: personal, business and scientific. The digitization of charts
mainly consists in chart type classification and extracting of dataset. Having
type and dataset, the chart can be easily reconstructed due to the existing
numerous software. Charts wide spreading supposes that the digitization
tools exist for any specific problem. However, most tasks suppose digitizing
charts whose type is known. In consequence of this, the classification task
was separated as an optional subtask like popular ChartReader[206] or even
the main task of the project like Chart-Image-Classificatio[207]. Digitization
of particular type of charts is today ordinary task. The solutions can be
obtained by a number of tools both online and desktop. Some popular
desktop solutions like PlotDigizer[208] and EngaugeDigitizer[209] are not

118 Section 7.9. Chess

only free and open source, but included in many package managers like
Python PIP. Despite this fact, the WebPlotDigitizer[210] online solution is
often used today because of its convenience and accuracy. Many developers
propose the interfaces to work with WebPlotDigitizer at desktop. In addition
to the available software, personal solution can be developed using of free
libraries of several programming languages, mostly Python. The popular
commercial software systems also have today chart digitization tools. The
most known example is plot digitization option in MS Excel.

7.9 Chess

The standard script language for chess is PGN (Portable Game Notation
[211]). PGN may describe positions, moves, and possible move variations.
PGN scripts contain metadata like name of the tournament, names of players,
date, etc. Example of PGN is shown in Tab. 7.1.

Table 7.1: Portable Game Notation for chess
[Event "F/S Return Match"]

[Site "Belgrade, Serbia JUG"]

[Date "1992.11.04"]

[Round "29"]

[White "Fischer, Robert J."]

[Black "Spassky, Boris V."]

[Result "1/2-1/2"] Position after 14. Bg5…

1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7

6. Re1 b5 7. Bb3 d6 8. c3 O-O 9. h3 Nb8 10. d4 Nbd7

11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15. Nb1 h6

16. Bh4 c5 17. dxe5 Nxe4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6

21. Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxe1+

26. Qxe1 Kxf7 27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6

31. axb4 cxb4 32. Ra5 Nd5 33. f3 Bc8 34. Kf2 Bf5 35. Ra7 g6

36. Ra6+ Kc5 37. Ke1 Nf4 38. g3 Nxh3 39. Kd2 Kb5 40. Rd6 Kc5

41. Ra6 Nf2 42. g4 Bd3 43. Re6

1/2-1/2

Notations for some specific tasks are FEN (Forsyth-Edwards Notation)

Chapter 7. Heterogeneous documents processi… 119

and EPD (Extended Position Description), which are defined in [211, Sec. 16].
LATEX permits to generate chess diagrams and game notation. Search

[212] results in 21 packages for this purpose.
There are several tools to recognize chess diagrams for the purpose of

further position analysis. The first one is ChessOcr [213] for Android dated
back to 2015. ChessOcr exports its results in a PGN file, and puts the most
recent position in the clipboard as a FEN string. This is a simple scripting
format to record chess games.

Chessify [214] is a modern commercial AI-based application for Android
andMacOSwith rich set of features. It is positioned as the ultimate supporting
tool for any chess player. Between their features we find optical recognition
of chess books in PDF, and recognituion of chess diagrams including photos
of real chessboard.

7.10 Final remarks

More scripting languages exist, e.g., for geographic maps: GeographyMarkup
Language (GML) – XML based; older VRML [215] and newer X3D [216] for
3D objects, etc.

And, finally, it is not clear what to do with the results of such recognition.
How to integrate them into the script image of the page?

Integration of heterogeneous content recognition results can be solved by
export or conversion of those in the same format. The first candidate for this
role is LATEX but the implementation may require significant improvements
in it. The second obvious option is to use XML-based formats.

120

Chapter 8

Platform for recognition of
heterogeneous documents

8.1 Introduction

In this chapter, we present a web platform, or a digitization platform, that
evolved along two branches. The first branch is tailored for documents with
homogeneous content, specifically old Romanian Cyrillic texts. The second
branch expands the functionality of the first, enabling the processing of
documents with heterogeneous content [8, 160]. Modules for page structure
analysis, page segmentation into homogeneous fragments, and integration
of tools for recognizing not only texts but also music, formulas, and more,
have been added to this branch.

The first branch includes modules to perform four main tasks related
to digitizing old Romanian Cyrillic and other language documents with
homogeneous content. This encompasses image preprocessing, document
recognition, transliteration of recognized text from Cyrillic to Latin script,
and the management and publication of digitized documents. The platform
can be used both as a web application and as a desktop application.

The second branch extends the functionality of the first one introducing
steps for page layout analysis, recognition of non-textual page fragments, and
assembly of the resulting document. Both branches share common modules

Chapter 8. Platform for recognition of hete… 121

for image preprocessing, text recognition and more. The second branch pro-
vides additional tools for processing documents with heterogeneous content.

In cases of heterogeneous content, the platform incorporates function-
ality for assembling the resulting document from diverse scripts obtained
through the recognition of heterogeneous content. This process is realized by
incorporating script files as applications into a PDF file. Thus, the platform
integrates various scripts into a single document, offering users a convenient
tool for compiling and formatting digital materials.

The generalized functionality of a platform for recognition of heteroge-
neous documents is presented in Tab. 8.1.

Table 8.1: Recognition of heterogeneous documents: platform functionality

A: Graphical
document (paper,
photocopy, etc.)

(P1):
Imaging/scanning

B: Page image(s) in
electronic form

B: Page image(s) in
electronic form

(P2): Image quality
improvement

B: Page image(s) in
electronic form with
better quality

B: Page image(s) (P3): Page layout
(structure) analysis

C: Page map(s)
D: Page fragment(s)
(smaller files)

D: Page fragment(s) P4: Fragments
recognition according
to type(s) of
fragment(s)

E: Script equivalent(s)
of page fragment(s)
F: Extracted metadata

Input data Process Resulting data

Continued on next page

122 Section 8.1. Introduction

Table 8.1: Recognition of heterogeneous documents: platform functionality
(Continued)

E: Script equivalent(s)
of page fragment(s)
F: Extracted metadata
C: Page map(s)
D: Page fragment(s)
B: Page image(s)

P5: Task distribution
for manual
verification

E: Script equivalent(s)
of page fragment(s)
F: Extracted metadata
C: Page map(s)
D: Page fragment(s)
B: Page image(s)

[P6]: Human
verification;
correction if
necessary

E: Script equivalent(s)
of page fragment(s)
F: Extracted metadata

E: Script equivalent(s)
of page fragment(s)
F: Extracted metadata
C: Page map(s)
D: Page fragment(s)

P7: Assembly of
script presentation of
page(s) and metadata
integration

G: Script equivalent(s)
of page(s)

G: Script equivalent(s)
of page(s)

P8: Reconstruction of
page image(s) from
the script

H: Reconstructed
page(s)

H: Reconstructed
page(s)
B: Page image(s)

P9: Automated
verification

I: Verification log(s)
J: Error report(s)

H: Reconstructed
page(s)
B: Page image(s)
I: Verification log(s)
J: Error report(s)

P10: Task distribution
for manual
verification

Input data Process Resulting data

Continued on next page

Chapter 8. Platform for recognition of hete… 123

Table 8.1: Recognition of heterogeneous documents: platform functionality
(Continued)

G: Script equivalent(s)
of page(s)
H: Reconstructed
page(s)
B: Page image(s)
I: Verification log(s)
J: Error report(s)

[P11]: Human
verification;
correction if
necessary

G: Script equivalent(s)
of page(s) for further
use

Input data Process Resulting data

A-J: letters permit to follow data usage
P4: automated processes
(P1): semi-automated processes with little or medium manual intervention
[P6]: manual processes

8.2 General structure of the HeDy platform

The HeDy platform is developed based on advanced computational methods
and technologies derived from our experience in natural language processing,
machine learning, and web development.

As we noted above (Sec. 8.1), the platform comprises two branches: for
documents with homogeneous and heterogeneous content. Despite their
distinct focuses, these branches share some functional modules.

The HeDy platform is presented as an application with an interactive
React-based GUI and a set of APIs managed through Django and Django
Rest Framework, connecting the GUI to tools and resources for digitizing
Romanian Cyrillic documents. Users can create their digitization applications
using existing tools or by adding new ones, such as OCR models, image
processing modules, or word dictionaries. The graphical interface extends
the Stepper component, providing a wizard-like workflow.

Access to a variety of digitization tools is a key feature, facilitating the
digitization [160].

The platform toolkit includes image pre-processing/processing mech-

124 Section 8.2. General structure of the HeDy pl…

anisms like Scan Tailor, ABBYY FineReader, and OpenCV. Additionally, it
incorporates an image slicing module into fragments with homogeneous
context, and virtual keyboards for alphabets such as Romanian Cyrillic, Tran-
sitional Alphabet, and Moldavian (Soviet) Cyrillic.

The integration of these tools into a single platform aims to provide users
with a unique graphical interface, enabling control over the entire document
digitization process.

The software part of the platform is available on Github [217]. The
web application allows the development and integration of separate Python
modules. These modules can run independently, with Django serving as a
hub connecting the UI to the outputs of the required modules.

The digitization platform addresses several key tasks, including:
Image Pre-processing. Currently offering two main preprocessing mod-

ules (image binarization and image resolution correction), with addi-
tional modules integrated through third-party applications like ScanT-
ailor and FineReader.

Splitting Heterogeneous Content. Dividing heterogeneous content into
homogeneous fragments and categorizing them based on content types.

Optical Content Recognition and Editing. Employing an OCR system
for Romanian historical documents, based on pre-trained models span-
ning the 17th-20th centuries. Administrators can add new models,
with OCR templates provided in FineReader XML format.

Post-Recognition Processing. Involving tasks such as transliteration of
recognized text, editing the text obtained during transliteration, and
saving the results.

The digitization platform is structured into functional groups that facili-
tate specific tasks:
Image Processing Group. Includes basic preprocessing modules (image

binarization and resolution correction) and additional modules inte-
grated with third-party applications.

Document Recognition Group. Involves selecting OCR models, using
word dictionaries for recognition, editing recognized text, and incor-
porating OCR exception dictionaries.

Text Transliteration Group. Manages the transliteration of recognized

Chapter 8. Platform for recognition of hete… 125

text, updating spelling, using exception dictionaries, and editing text
post-transliteration.

Management and Publication Group. Covers saving recognized/translit-
erated texts, downloading processed images, uploading original doc-
uments to the cloud, saving digitized object status, and expanding
exception dictionaries. It also includes a module for the publication of
digitized documents, considering factors like copyright laws, document
conservation, and public access.

Fig. 8.1 illustrates the structure of the digitization platform, showcasing
the four functional groups (G1–G4).

Input - Document scan

G1 - Image

preprocessing

nu �
Convert to black and white

Correct the resolution

Fix page orientation

Other image preprocessing

G3 - Transliteration

and saving the digitized

object

A ,.A Conv

Updated spelling

Edit the transliterated text

Save the digitized object

Output - transliterated

text, recognized text,

processed image

Preprocessed document
Recognized and edited text

G2 - Optical Character Recognition (OCR)

Select the OCR model

' ,

Start OCR

' ,

Check and edit recognized text

Word

dictionaries Special virtual

keyboard layouts

FineReader POF 15

Corporate =

Recognized redacted text

G4

Figure 8.1: The structure of the platform.

126 Section 8.4. Image preprocessing modules

8.3 Platform architecture details

The digitization platform contains a set of modules that facilitate the tasks of
image processing, dividing an image with heterogeneous context into homo-
geneous parts, recognizing homogeneous parts of documents, assembling
them into a single document, saving the result. These modules are organized
into functional blocks or groups. There are also common modules that are
not explicitly included in functional groups.

The first functional group deals with image processing. This group is
equipped with two basic preprocessing modules: image binarization and
resolution correction, which are extended by additional modules due to
integration with third-party applications such as Scan Tailor, FineReader,
OpenCV, GIMP, etc.

The second functional group contains modules for optical document
recognition. This group includes: splitting an image with heterogeneous con-
text into homogeneous parts, recognizing homogeneous parts of documents,
editing recognized text.

Optical recognition mechanism is based on FineReader 15 and other
special programs for recognition of mathematical texts, notes, etc. There is
a set of trained models. For example, for text the models are presented in
FineReader XML format (.fbt files) and contain OCR model configurations, a
set of training data, the necessary alphabet, and word dictionaries.

The third functional group contains components related to the layout of
the whole document, its checking by the user.

The fourth functional group contains modules for managing and publish-
ing digitized documents. Includes: saving recognized/transliterated texts in
various formats; uploading processed images; uploading original documents
and processed images to the cloud ; saving the state of the digitized object in
the database; expanding exception dictionaries based on retrieved texts.

The graphical interface of this application extends a component Step-
per [218] which displays the progress through numbered steps, providing
a workflow like a wizard [219]. The digitization application allows for the
recognition of Romanian Cyrillic documents from the 17th to 20th centuries,
the transliteration of texts into Latin script, the editing of recognized/translit-
erated texts, as well as the downloading or publishing of the results.

Chapter 8. Platform for recognition of hete… 127

8.4 Image preprocessing modules

The initial functional group, denoted as G1, is dedicated to image preprocess-
ing, and its modules are shared between both branches of the platform. The
aforementioned challenges related to this aspect were previously explored in
detail in Chapter 2. For the sake of clarity and convenience, we will provide
a brief recapitulation of the primary issues here

In the context of optical recognition over text and other types of content,
preprocessing typically refers to the steps taken to prepare a text image for
analysis by the OCR engine. The OCR engine may sometimes struggle to
correctly interpret images that are blurry, distorted, or have low contrast.
Preprocessing can help improve OCR accuracy by preparing the image to be
more suitable for recognition. Some common preprocessing steps for OCR
include:
Image Quality Enhancement: This may involve techniques such as ad-

justing the image’s contrast or brightness to improve readability, or
sharpening the image to reduce blurriness.

Binarization: This involves converting the image to black and white, which
can help improve contrast and make text recognition easier.

Noise Removal: This can involve removing extra black pixels from the
image that might create obstacles in the functioning of the OCR engine.

Distortion Correction: If the image is not perfectly aligned, the OCR soft-
ware may have difficulty correctly interpreting the text. Correcting
distortion involves rotating the image to align it properly.

By preprocessing the image before sending it to the OCR engine, the
accuracy and reliability of the OCR process can usually be improved.

In this functional group, preprocessing modules from software such as
Scan Tailor, FineReader 15, and the Python package OpenCV are integrated.
These tools are presented in Tab. 8.2.

8.5 Optical Character Recognition (OCR) modules

The modules in this functional group are used for managing OCR models,
actual document recognition, and editing the recognized text. Recognition

128 Section 8.5. Optical Character Recognition (O…

Table 8.2: Image preprocessing modules and integrated software for imple-
menting the modules in the functional group G1.

Image preprocessing module Integrated engines/tools to imple-
ment the module

Selection of the preprocessing engine Scan Tailor, FineReader 15, OpenCV
Image binarization Scan Tailor, FineReader 15, OpenCV
Manual image resolution setting Scan Tailor, OpenCV
Automatic page orientation correc-
tion

FineReader 15, OpenCV

ISO noise reduction FineReader 15, OpenCV
Image splitting into multiple pages FineReader 15
Automatic image resolution correc-
tion

FineReader 15

Straightening text lines FineReader 15
Manual page orientation correction Scan Tailor
Removing image stains Scan Tailor
Image illumination correction Scan Tailor
Managing character thickness Scan Tailor

of non-textual fragments for heterogeneous pages will be described later in
this chapter.

The actions in group G2 begin with selecting the document’s historical
period. Typically, the user knows the historical period of the document to be
digitized. Moreover, the user can even specify the year of publication. This
information can be obtained from the book cover, the source from which
the document was obtained, by checking the document’s history if it has a
known history, or by analyzing the style and type of writing. For example, if
the document contains both Cyrillic and Latin letters in the same word, it
may date from the period between 1830 and 1860 when transitional alphabets
were used.

Additionally, examining any dates mentioned in the document or con-
sulting an expert in the field can provide insights into its historical period.
However, there are cases where the user has a few random images from a
document and doesn’t know anything more about it than the fact that it’s in
Cyrillic script. For such cases, an automatic period detection module would

Chapter 8. Platform for recognition of hete… 129

be useful and is planned to be developed within the platform. One approach
to solving this problem is based on the experience of font detection in Cyrillic
documents printed in the 17th century, where certain neural network models
were trained to automatically recognize the document’s font. Such a module
that handles the detection of fonts from the 17th century is included in G2.

The most important module in G2 is the selection of the OCR model. The
user has the option to choose an OCR model from those included by default
or to add a new model according to the platform’s established conditions. By
default, a total of 8 OCR models are included. There is one model for the 20th
century, 2 models for the 19th century, 3 models for the 18th century, and 2
models for the 17th century. These OCR models were obtained by training
the OCR engines from FineReader 12 and FineReader 15.

The model for the 20th century extends through the transfer learning The
OCR model for the Russian language integrated by default in the FineReader
15 language package was primarily trained to recognize the letter ӂ, which
does not exist in the Russian alphabet. The training dataset consisted of 1040
training examples and was based on the following sources: the newspaper
Literatura și Arta from the years 1988-1989, the magazine Femeia Moldovei
from the years 1960-1970, and the book Folclor din părțile Codrilor from 1973.
An important advantage of this model is its dictionary with over 447,000
words. This dictionary includes bothword roots and their inflected forms. The
generation of the word dictionary for this model is based on a backtracking
algorithm that generates the lexicon in Cyrillic script, using certain rules of
reverse transliteration, where modern Romanian words written in Latin script
were transposed into their equivalents in Cyrillic script. The character-level
accuracy of this model exceeds 98%.

Considering that documents in the 19th century were printed in different
alphabets, two OCRmodels were trained, one based on the Romanian Cyrillic
alphabet and the other based on the transitional alphabet. The first model,
trained with characters from the Romanian Cyrillic alphabet, is based on
datasets from the books Legiuire from 1818 and Epistolariu românesc from
1841. The training dataset contains 2800 examples, and the word dictionary
has over 3000 words. The second model was trained on datasets from doc-
uments printed with the transitional Cyrillic-Latin alphabet. In particular,

130 Section 8.5. Optical Character Recognition (O…

Gheorghe Asachi’s book Elemente de aritmetică from 1836 was used for this
purpose.

The models for the 18th century were trained using datasets taken from
the following documents: Fiziognomie from 1785; Așezământ from 1786; and
De Obște Geografie from 1795. The word dictionary is common to all three
models and contains over 3000 words. In particular, the model based on
the book Fiziognomie was trained with 3600 training examples and has a
dictionary of 1800 words.

The training and evaluation of OCR models for the Romanian Cyrillic
alphabet used in 17th-century prints were described in Sec. 4.5. Specifically
for this case, the font problem was identified, and classification solutions
were proposed. We will mention here that the baseline model for the 17th
century was trained on a dataset consisting of 3668 training examples ex-
tracted from the New Testament from Bălgrad from 1648, accompanied by a
dictionary of 4582 words. The accuracy (at the character level) of this model
is approximately 95%.

The process of document recognition can be divided into several parts
that can be performed in parallel to improve efficiency (processing speed for
multiple documents). The use of ABBYY Hot Folder (continuing with Hot
Folder), an agent that allows the application of the necessary OCR model to
a folder of images, which will be automatically processed by the FineReader
15 OCR engine when new images appear in the folder, can help parallelize
the process. This can be achieved by using multiple instances for each OCR
model, thereby dividing the preprocessed images into multiple folders, which
can improve efficiency when multiple users are working simultaneously on
the platform. The execution of the loaded models on the platform is managed
through the Hot Folder agent.

Recognizing a single page of text on average takes 30 seconds, although
sometimes recognizing such a page can take up to two minutes. This is
because the instances created in the Hot Folder check every minute (this
is the minimum time option in Hot Folder) if new processed images have
appeared in the processed image folders. Therefore, if a document was
processed in the 55th second, the OCR process will start in 5 seconds, and
if a document was processed in the 5th second, it will have to wait for 55

Chapter 8. Platform for recognition of hete… 131

seconds before the OCR process starts. A PDF document with 50 pages of
text will be recognized in about 90 seconds; a PDF with 100 pages of text took
150 seconds; a PDF with 360 pages of text took over 385 seconds (more than
6 minutes). Text documents in PDF format take approximately 1.2 seconds
per page. For PDFs with images, there is no consistent duration observed.
The criterion for OCR accuracy at the character and word levels is analyzed
in Chapter 5. For example, the OCR model for the 20th century provides an
accuracy of over 98% at the character level; models from the 18th century
offer over 92% accuracy at the word level; and the model for the 17th century
provides an accuracy of over 95% at the character level and word dictionaries,
considering proper image preprocessing, document scanning quality, wear
and tear, etc.

In addition to the word dictionaries used within the OCR engine, the
platform also includes OCR exception dictionaries consisting of tuples formed
by an expression containing recognition ambiguities and the correct variant
of that expression. The term recognition ambiguities is used simply because
some letters have extremely close graphic similarities, and sometimes the
OCR engine recognizes the wrong variant with very high probability. In
such cases, the internal dictionary cannot propose the correct candidate
even if the correct variant were in the dictionary. For example, the letter
и is confused with the letter н in the expression сърачїн, and the OCR
exception dictionary could contain the exception: (сърачїн, сърачїи). To
address such situations, we have included a post-processing component in
G2 that uses the exception dictionary. Exception dictionaries are also used
for transliteration, and a similar module is available in G3.

Within the functional group G2, we have included a module for editing
the recognized text. This text editor features a web-based virtual keyboard
that adapts its character composition based on the document’s historical
period, relying on the JavaScript simple-keyboard. There is also a module
dedicated to managing virtual keyboards for the desktop. By default, we have
a virtual keyboard loaded for Windows with Romanian Cyrillic characters.

The spell checker in the text editor is based on the JavaScript simple-
spellcheker and the dictionaries used in OCR modules. In addition to the
integrated spell checker in functional group G2, some browsers like Mozilla

132 Section 8.6. Text Transliteration Modules

Firefox and Google Chrome offer their own spell-checking services, but they
are not yet useful for texts in Romanian language written in Cyrillic script
because they do not allow the addition of custom dictionaries. At least these
services are useful for transliterated text.

8.6 Text Transliteration Modules

TheG3 group includesmodules for transliteration and editing of transliterated
text. Transliteration can be done through two methods. The first method
is using the web-based transliteration application AAConv [220], and the
second option is using the same application but in a desktop version. A
notable difference between these two variants is that the web version can
only accept limited volume of text in a single processing.

The historical period of the document retains the state from G2 when the
user uses the selection module; otherwise, the period selection is accessible
from G3. The document’s historical period is, in fact, an attribute of all
modules in both G2 and G3.

An important module for the user is the spelling update module, where,
upon request, the modern Romanian language spelling norms are considered.
An example is the use of â (from a). In the transliteration process, the
transition to writing with â is achieved through transliteration, only if the
spelling update option is activated; otherwise, the original spelling is retained.
It should be noted that according to the recommendations of the Romanian
Academy, the letter î will always be written at the beginning and end of a
word (început, înger, în, întoarce, a coborî, a urî). Inside a word, â is
usually written (cuvânt, a mârâi). However, there are some exceptions to
this rule. Prefixed words that start with the letter î will retain the î inside.
For example, neîmpăcat, neîngrijit, preîntâmpinat, reînarmat. The same
rule applies to compound words: bineînțeles, semiînchis, etc. [221].

During transliteration, we may encounter deviations from the general
rules that cannot be controlled through preset rules, and for this reason, group
G3 includes a module for using the exception dictionary. The transliteration
exception dictionary contains words that cannot be correctly transliterated
using only transliteration rules. For example, the word амязэ according to

Chapter 8. Platform for recognition of hete… 133

transliteration rules is transformed into amează, while the correct variant is
amiază, which is found in this dictionary. In this module, it is possible to
manage the list of exceptions. Exceptions are handled after transliterating
the text from Cyrillic script to Latin script according to the rules but before
viewing and verifying the text in the text editor. Many exceptions come from
the different spelling of foreign-origin words, especially proper nouns.

Additionally, group G3 shares the same text editing module with group
G2, and the virtual keyboard and word dictionaries for the spell checker are
adapted to transliterated text. It should be noted that the virtual keyboard
contains letters from themodern Romanian alphabet, and the word dictionary
is written in the modern Romanian alphabet.

An experimental module is the correction of transliterated text using
a state-of-the-art artificial intelligence system. This system is called GPT-
3 developed by OpenAI [222]. The machine learning models, also known
as linguistic models, in GPT-3 can solve natural language processing tasks
such as generating summaries, paraphrasing text, automatic translation, text
classification, converting natural language text into programming language
code, text correction, and more. GPT-3 performs these tasks with very good
accuracy, both in English and Romanian. In the module implemented in
G3, we use the text-davinci-003 model [223] (referred to as Davinci) for text
correction by providing the condition: correct the text X, where X is the
transliterated text. The model can process up to 4000 tokens per request.
One token in Davinci, on average, consists of about 4 English characters,
and 100 tokens would roughly equate to approximately 75 words. An im-
portant point to note about correction is that this model does not preserve
the original version of archaic expressions from the transliterated text. For
example, Davinci corrected the expression “Knowing and understanding Your
Majesty, we Romanians who are in Your Majesty’s land, do not have either the
New Testament or the Old Testament in our language.” to the transliterated
expression “How can one know that, seeing and understanding Your Majesty,
we Romanians who are in Your Majesty’s land. We do not have either the New
Testament or the Old Testament fully in our language.” Given that this text was
written in the 17th century, what GPT-3 has done is more akin to aligning
the old text with modern text. However, this is not the case for texts from

134 Section 8.7. Modules for managing digitized d…

the 20th century, where the text differs insignificantly from modern texts. In
this case, Davinci corrects quite well. As mentioned earlier, text correction
with GPT-3 is an experimental module that needs more exploration to draw
more general conclusions.

Other modules in G3 deal with stylistic correction of the transliterated
text. This may include replacing the apostrophe with a hyphen (example:
s’ar with s-ar) or removing the hyphen from a word at the end of a line
(example: ră- pirea becomes răpirea).

8.7 Modules for managing digitized documents

The digitized document refers to the original and preprocessed images, the
recognized texts, and the transliterated ones. The functional group G4 in-
cludes modules for managing the digitized document. Modules described
below are used in both branches of the platform.

A module in G4 is the downloading of preprocessed images. The user
can download the images to their personal device for later needs. The format
of the downloaded images is JPG.

Similar are also the modules for downloading recognized and transliter-
ated texts. The formats of the downloaded files include TXT and DOCX. The
DOCX version is nothing but a packaging of the raw text (without formatting),
without retaining the styles or illustrations from the original document.

An important module in G4 is saving the digitized document in the
platform’s database. In addition to storing texts and links to files, a digi-
tized object is also stored, which represents a JavaScript object that helps
to preserve the state of each step taken through the digitization application
described in the following section. The object includes preprocessing param-
eters, recognition and transliteration parameters, the recognized and edited
text, the transliterated and edited text, etc.

To cope with the multitude of images uploaded to the platform, we have
included in G4 a module for uploading original documents and preprocessed
images to the Cloud. In developing this module, we created a bucket using
the Amazon S3 service [224] (Simple Storage Service), a cloud storage service
developed by Amazon Web Services (AWS). An Amazon S3 bucket is a con-

Chapter 8. Platform for recognition of hete… 135

tainer for storing files in Amazon S3. We can store any type of file in a bucket,
from images, music, and videos to applications, websites, etc. A bucket is
identified by a unique name in Amazon S3 and can be accessed via a URL that
starts with ”https://s3.amazonaws.com/”. It can be configured with various
security options to protect its content and can be used to distribute content
through Amazon CloudFront [225], a content delivery network (CDN).

A set of very important modules in G4 refers to the publication of the
digitized document. Being aware of the issue of copyright and opting to
solve it while respecting legal regulations, in the following, we will propose
only technical solutions that could work assuming the resolution of legal
aspects. The publication module is focused on the eMoldova portal [226,
227], especially based on a portlet named the National Digital Treasury [228]
(continue Digi). This portlet contains resources from the Moldovan digital
treasury, as well as some simplified services for digitizing and managing
digitized documents (called digital articles in Digi). Digi includes special
working groups to provide the public with high-quality digital articles in
terms of the accuracy of the recognized/transliterated text. The working
groups are divided into two. There is the digitizer working group, those who
upload a digitized document to the platform, and the editor working group,
those who check and approve the digital article for final publication. For
metadata labeling, Digi offers a large selection of tags, which come from
the metadata of different publications. This allows for simple searching
and filtering of articles based on the type of document (magazines, books,
manuscripts), a specific year or period. Internal tags are also included in
labeling. Articles marked with these tags have limited access, being visible
only to users with special roles or privileges. An example is the For editing
tag, which is used for articles uploaded by a digitizer. Articles tagged with
this tag are only accessible to the group of editors. When an editor approves
a digital article for publication to all users, the For editing tag will be replaced
with Verified by editor. Digi plans to add a condition that several editors must
approve a digital document for final publication.

Other features of Digi include: notification of work groups; creation of
article drafts; versioning of edits made to a digital article; adding bookmarks
for efficient monitoring of user-focused articles; a system for rewarding users

136 Section 8.8. Digitization process overview fo…

for their activity; appreciation of digital articles; adding comments on a
digital article or another; merging several digital articles into a single digital
article (which can be useful when digitizing a book or magazine), etc. In
Fig. 8.2, a page [229] of such digital article is presented, which includes the
original document, the recognized text, the transliterated text, and a side
menu on the right side of the page to switch the desired content.

Figure 8.2: Page of a digital article published in Digi

8.8 Digitization process overview for historical doc-
uments

The digitization application is a practical showcase of our platform’s capa-
bilities. It exemplifies various modules and their functionalities through a
7-step digitization cycle for historical Romanian documents. The graphical
interface in Fig. 8.3 on p. 138 illustrates three states of the digitization cycle.
Step 1. Uploading Files:

– Acceptable file types: png, jpeg, tiff.
– Total size limit: 700MB; individual file limit: 100MB.
– Multiple files processed in a cycle should share the same charac-

teristics.

Chapter 8. Platform for recognition of hete… 137

Step 2. Preprocessing of Uploaded Images:
– Choose from Scan Tailor, FineReader 15, or OpenCV engines. -

Scan Tailor (desktop) offers extensive options; Scan Tailor (web)
streamlines basic preprocessing.

– FineReader 15 handles resolution correction, orientation, black-
and-white conversion, noise reduction.

– OpenCV provides manual resolution setting and integrated filters
for cleaning images.

Step 3. Optical Character Recognition (OCR):
– Select document period and recognition model (Fig. 8.4 on p. 138).
– Example output displayed in Fig. 8.5 on p. 139.

Step 4. Verification and Editing of Recognized Text:
– Manual text processing with virtual keyboard and word dictio-

naries (Fig. 8.6 on p. 139).
Step 5. Transliteration of Recognized and Edited Text:

– Integrates transliteration modules and exception dictionaries
(Fig. 8.7 on p. 140).

Step 6. Verification and Editing of Transliterated Text:
– Similar to the previous step, operates with the same dictionaries.

Step 7. Saving the Results:
– Download recognized text, transliterated text, and preprocessed

images using modules from the G4 group (Fig. 8.8 on p. 140).
Please note that the user can skip certain verification and correction steps

based on their needs, ensuring flexibility in the digitization process.

8.9 Digitization steps for heterogeneous content

The Heterogeneous Content Platform integrates many tools for such pro-
cessing and allows converting images of printed pages into a set of texts
and scripts depending on the content type. Unrecognizable parts of the page
remain in the image format. The resulting page fragments can be recon-
structed from the original image. Fig. 8.1 on p. 125 shows the structure of
the platform.

The following types of fragments are provided: images, text, notes, math-

138 Section 8.9. Digitization steps for heterogen…

Figure 8.3: Three states of the document digitization cycle

Figure 8.4: Available options in step 3

ematical formulas, chemical formulas and structures, chess diagrams.
The platform implements a user interface that serves as a bridge between

the user and a variety of tools for solving specific subtasks (see below),
including third-party developments.

The platform is extensible and uses convergent technology to seam-
lessly integrate external subsystems [7]. The platform supports step-by-step
processing of heterogeneous documents. Each step performs a completed
operation, the results of which can be passed to the next step or used directly.
Some steps can be skipped or repeated.

Document processing starts by loading one or more page images. PNG,
JPEG, GIF, TIFF and PDF files are supported. You use a standard dialog box
or drag and drop to select files. The loaded pages are displayed on the screen.

Chapter 8. Platform for recognition of hete… 139

Figure 8.5: Execution of step 3 in the digitization application

Figure 8.6: Verification of Recognized Text

The next step is to refine the images so that they are ready for recognition.
Tools for such processing are external programs such as Open CV, FineReader,
ScanTailor, Gimp, ImageMagick, selectable through the menu.

If there are pages with heterogeneous content, image fragmentation
is performed. It segments page images basing on content type with man-
ual intervention. Our Python program for image fragmentation uses the
FineReader Engine (FRE) command line interface to analyze page layout. The
resulting XML file contains coordinates, content types (text, image, table,
separator, etc.), and recognized text for text segments. The restructuring
module enables the reconstruction of fragment geometry.

To address limitations in FRE v.12, we have introduced manual inter-
vention capabilities. Users have the option to manually segment the image,

140 Section 8.9. Digitization steps for heterogen…

Figure 8.7: Transliterating Recognized Text

Figure 8.8: Step 7 in the digitization application

correct segment boundaries, and set segment types. This manual intervention
provides a method to refine the segmentation process.

At this stage, image areas with homogeneous content are selected and
their type is determined. For this purpose, ABBYY FineReader Engine is
called via a Python middleware module. Fig. 8.9 shown platform screenshot
during heterogeneous page fragmentation.

The fragments are displayed on the screen (Fig. 8.10). There is also a
file with the coordinates of fragments. Fragmentation can be corrected
manually. The type of fragment is selected from a drop-down list: text, notes,
mathematical formulas, chemical formulas and structures, chess diagrams.
Other fragments are assigned the “image” type by default. Fig. 8.12 on p. 147
shows another available view on fragments, namely, ribbon of fragments.

Chapter 8. Platform for recognition of hete… 141

Figure 8.9: Platform HeDy during fragmentation of a heterogeneous page.

Specialized programs (FineReader, Mathpix, etc.) are used to recognize
fragments by content type. The result will be a text (see Fig. 8.11) or script
representation of the fragment: natural language text, LATEX script for math
calculations, MusicXML for notes, etc. Recognition results are displayed and
can be checked and corrected. In some cases you may need to transliterate
the recognized text, e.g. from the old Romanian Cyrillic alphabet to the
modern Latin alphabet. A special AAconv application is called for this task.

The recognition results, together with images of the original pages, are
collected in a PDF file. The PDF file may contain other files as attachments.
All recognition results are attached to each page. Also attached are page
maps containing the coordinates of each fragment on the page.

The assembled file, which combines the original images with the recog-
nition results and page maps, is available to the user and can be used for
a variety of purposes, such as recreating a graphical representation of the
original document.

142 Section 8.10. Recognition of mathematical text…

Figure 8.10: Platform HeDy: manual selection of types for page fragments.

8.10 Recognition of mathematical texts

In 2017 we republished the book [230] in the modern Romanian Latin script.
Then there were no available tools to recognize formulas, and we had to
retype all formulas in LATEX manually by a highly qualified mathematician. It
results in the time consumption shown in Tab. 8.3. Proportion formulas/text
is 50/50.

Table 8.3: Manual retype of formulas in 2017.
Work mode Work Time
Automated Scan text, OCR, transliteration 3 man-hours
Manual Text editing 2 man-days
Manual Retype of formulas in LATEX 2 man-months

In just 4 years, the situation has drastically changed. With the advent of
deep learning, in 2021 formula recognition has become a common topic of
student thesis, and Github is full of them. A number of commercial systems
have emerged that recognize complex handwritten and printed formulas.

Chapter 8. Platform for recognition of hete… 143

Figure 8.11: Recognized textual fragment in HeDy.

We tested several several open source systems: im2latex [231], image2la-
tex [232], [233], SESHAT [234]. Of these, LaTeX-OCR seemed the most
suitable being written in Python, and completed with installation and startup
tutorials and with a test set of 200,000 sample formulas that can be expanded
by users. However, follow-up testing of LaTeX-OCR revealed its extremely
high hardware requirements. To get the best result, we needed to perform a
full training on all 200,000 available samples. We failed to run this even after
hardware upgrade.

As to the commercial systems, many have only limited capabilities, for
example, InftyReader [156]. Here we should note Mathpix [185] that demon-
strated the best results. It recognizes complex formulas and texts in many
languages, printed and handwritten. Mathpix exports results in LaTeX and
has a graphical shell. We tested Mathpix on a page [230, p. 110], and it
made only two errors because of scan quality This result is achieved on a
page with a language unsupported directly by Mathpix, namely, Romanian
in the Cyrillic script. Fig. 8.13-8.14 on pp. 148-148 below demonstrate the
processing by Mathpix of the said page. The errors are: 1) absent $ signs
around the \beta command for the letter β; 2) the letterЫ in the wordЫнсэ

144 Section 8.11. Digitized Document Management Mo…

was erroneously recognized as Ь.
We can conclude that commercial Mathpix gets the best results in recog-

nition of printed formulas with text. Commercial formula recognizers are
implemented as web-based frameworks while open source tools are stan-
dalone modules. Deep learning techniques give brilliant results but are
extremely dependent on both hardware and software. For example, LaTeX-
OCR requires high version of modules and libraries; these high versions in
their turn require high version of hardware.

8.11 Digitized Document Management Modules

A digitized document refers to original and pre-processed images, recognized
and transliterated texts.

The module uploads pre-processed images. The user can download the
images to their personal device for further use. The format of downloaded
images is JPG.

The modules for downloading recognized and transliterated text are
similar. Downloaded file formats include TXT and DOCX. The DOCX variant
is nothing but a raw text shell (without formatting) without preserving the
styles or illustrations of the original document.

An important module is storing the digitized document in the platform’s
database. In addition to storing texts and file references, the digitized object is
also saved, which is an object. The object includes preprocessing parameters,
recognition and transliteration parameters, recognized and editable text,
transliterated and editable text, etc.

To cope with the large number of images uploaded to the platform, we
included a module in G4 to upload original documents and pre-processed
images to the Cloud . In developing this module, I created a cart , using
Amazon S3 (Simple Storage Service), a cloud storage service developed by
Amazon Web Services (AWS). Amazon S3 shopping cart is a container for
storing files in Amazon S3. We can store any type of files in the Recycle
Bin : from images, music and videos to apps, websites, etc. The Recycle
Bin is identified by its unique name in Amazon S3 and can be accessed by a
URL starting with https://s3.amazonaws.com/. It can be customized with

Chapter 8. Platform for recognition of hete… 145

different security settings to protect content and can be used to distribute
content through Amazon CloudFront, a content distribution network (CDN).

A set of very important modules in G4 deals with publishing a digitized
document. Realizing the existence of the copyright problem and choosing
to solve it according to regulations, in the following we will only propose
technical solutions that can work with the presumption of solving the legal
aspects. The publishing module is centered on the eMoldova portal, in
particular based on a portlet called Tezaurul Național Digital (hereafter Digi).
This portlet contains resources from Moldova’s digital treasure trove, as well
as some simplified services for digitization and management of digitized
documents (so-called Digi articles). Digi includes special working groups
to provide the general public with digital articles of the highest quality in
terms of the correctness of the recognized/transliterated text. The working
groups are divided into two. There is a working group of digitizers, those
who upload the digitized document to the platform, and a working group of
editors, those who check and approve the digital article for final publication.

The digitization platform integrates a set of external programs for image
preparation, recognition and processing, transliteration and other tasks.

The web application is written in Django, which allows for the develop-
ment of new modules in Python and for the integration of external programs
via Python.

All necessary platform operations are performed by an integrated external
application such as Imagemagick, ScanTailor, GIMP, FineReader, etc.

We use a special convergent application integration technique [7]. We
will discuss one of the image set processing applications available on the
platform.

The page layout is repeated in documents of the same origin, e.g., journal
collections for several years. Each book, magazine, or newspaper uses only a
limited number of page layouts. These are the design of even and odd pages,
beginning and end of chapters, table of contents, etc. About the revitalization
of books, this means that the page fragments are placed in approximately
the same place. The page layout is repeated in serial books as well.

A subsystem based on a deep learning neural network trained to recognize
layout pages is implemented. This is followed by fragmentation of pages

146 Section 8.11. Digitized Document Management Mo…

according to their composition. This greatly facilitates further extraction of
sub-fragments with homogeneous content, since the possible content of each
element of a given layout is more or less fixed.

Additionally, the following tasks were solved: accumulation of files on
disk and session management.

File management. We have a client-server program. The client is in
JavaScript/Django, the server is in Python. When running, files are uploaded
to the server, processed, and the resulting files are generated and accumulated
on the server. We considered the following options formanaging the resulting
files on the server:

• Cleaning up old files: Regularly check and delete old and unused files.
To do this, a task is created in Django that will periodically check the
creation date of files and delete files that need to be deleted.

• Once the files are processed on the server, they can be uploaded to
cloud storage and references to them stored in the database.

• Limit storage size: Set the maximum size for file storage on the server.
When the size reaches the limit, notify the client by prompting them
to upload the files to external storage.

Session Management. Since the client is written in JavaScript/Django,
session management from Django: Django provides a built-in session man-
agement system that allows storing and retrieving session data for each client.
Sessions in Django are implemented using cookies or session IDs in URLs.
When using session IDs in URLs, the session ID is included in the URL of
each page. Django automatically extracts the session ID from the URL and
associates it with the session data. In Django code, you can access session
data, add and remove values from a session using the request.session object.
You can perform the following operations on session data.

• Retrieve a stored value using the key with which it was stored. Values
can be of any type, such as strings, numbers, lists, and dictionaries.

• Get the unique identifier of the current session. The identifier associates
the session data on the server with a particular client.

• Check for the presence of a key in the session.
• Get all the keys of the session.
• Remove a value with the given key from the session.

Chapter 8. Platform for recognition of hete… 147

• Clear session: remove all values from the session.
Access to a session is done through a subroutine that requires a file name

as an argument. The corresponding file name can be obtained by accessing
the database using the session ID or another unique identifier associated with
the user’s current session. A Django model can be created that represents
uploaded files and associates them with a session ID or user. In the context
of Django, a Model is a class that defines the data structure and behavior for
working with a database. Models in Django represent tables in the database
and provide a convenient way to interact with the data.

A Django model is defined in a models file (models.py) inside a Django
application. It inherits from the base class django.db.models.Model and
defines fields, relationships to other models, methods, and other attributes.

Figure 8.12: Platform HeDy: ribbon of page fragments.

148 Section 8.11. Digitized Document Management Mo…

Figure 8.13: Page of a book in Mathpix: source image and resulting LATEX
script.

Figure 8.14: Control for errors in Mathpix recognition.

149

Conclusion

The digitization of historical Romanian documents using our developed
technology, as described above, has proven successful, particularly for homo-
geneous documents. Within our platform, we achieved high accuracy across
all processing stages: 95-96

Despite notable achievements, automating the recognition of heteroge-
neous content remains a challenging problem. The classification of homoge-
neous fragment types is not entirely resolved, both in academic publications
and existing software. Future endeavors may include:

• Enhancing OCR models and transliteration algorithms by incorporat-
ing advanced techniques in natural language processing and machine
learning to boost accuracy and efficiency.

• Creating a user-friendly interface for bulk OCR model training, broad-
ening accessibility and enabling the construction of practical OCR
models for diverse timeframes and printing contexts.

• Addressing font classification issues by grouping fonts into multiple
classes, utilizing a combination of convolutional neural network and
recurrent neural network architectures to consider the character order
in text and improve accuracy.

• Expanding the digitization platform to encompass various document
types like manuscripts, maps, etc., thereby broadening access to a
diverse range of cultural and historical resources.

• Integrating the digitization platform with other digital tools and re-
sources, such as digital libraries and archives, to facilitate collaboration
among researchers and enhance access to additional information.

Moreover, formulating the alignment problem between old and modern

150 Conclusion

texts requires creating large text corpora encompassing both eras. While
these challenges aren’t core to our current project, they remain relevant and
intriguing for future exploration.

Additional potential tasks involve low-level conversions, such as raster to
vector graphics, font extraction from text images, and describing dependent
parts of a document. For instance, a table’s content visualized as a chart
should be accompanied by script files detailing chart parameters. This ensures
efficient regeneration and synchronization when the underlying table is
modified.

Further potential tasks include font selection and representation in mod-
ern formats, analysis and generalization of page structures, grouping identical
ornaments, recreating idealized document forms, and the ability to import
data from other programs like Excel or Word. Undertaking these tasks im-
plies leveraging Deep Learning methods and conducting in-depth research
within new projects.

151

Bibliography

[1] Commission recommendation of 27 October 2011 on the digitisation
and online accessibility of cultural material and digital preservation.
2011. url: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32011H0711 (visited on
12/18/2023).

[2] Project Gutenberg. 2023.
url: http://www.gutenberg.org/ (visited on 12/18/2023).

[3] HathiTrust. 2023.
url: https://www.hathitrust.org/ (visited on 12/18/2023).

[4] The Universal Digital Library. Million Book Collection. 2008.
url: http://ulib.isri.cmu.edu/ (visited on 12/18/2023).

[5] Google Books. 2023.
url: https://books.google.com/ (visited on 12/18/2023).

[6] Europeana. Collections. 2023.
url: https://www.europeana.eu/en/collections (visited on
12/18/2023).

[7] S. Cojocaru et al.
“On convergent technology in development of information systems
for processing of documents with heterogeneous content.”
In: Proceedings of the Workshop on Intelligent Information Systems.
Chișinău, Republic of Moldova, Dec. 5, 2020, pp. 61–68.

152 Bibliography

[8] A. Colesnicov, S. Cojocaru, and L. Malahov.
“Recognition of heterogeneous documents: problems and challenges.”
In: Proceedings of the 5th Conference on Mathematical Foundations of
Informatics. Iași: Alexandru Ion Cuza University Publishers, 2019,
pp. 231–245. isbn: 978-606-714-481-9.

[9] Tetraevanghelul. Romanian. Brașov: Coresi, 1561.

[10] Petre P. Panaitescu.
Începuturile şi biruința scrisului în limba română. Romanian.
București: Editura Academiei, 1965. 232 pp.

[11] Pârvu Boerescu. Din istoria scrierii românești. Romanian.
București: Editura Academiei Române, 2014. 400 pp.
isbn: 978-973-27-2459-0.

[12] Radu Tempea. Gramatică românească. Romanian.
Sibiu: publisher, 1797. 228 pp.

[13] Noul Testament. Romanian. Bălgrad, 1648.

[14] Gheorghe Asachi. Elemente de matematică. Aritmetică. Romanian. .1.
Iași: Tipografia Albinei, 1836.

[15] Ștefan Ciobanu.
Cultura românească în Basarahia sub stapânirea rusă. Romanian.
Chișinău: Asociatia ”Uniunea Culturală Bisericească din Chisinău”,
1923. 344 pp.

[16] Adina Dragomirescu. “Ortografia limbii române: definiţie, scurt
istoric, instrumente. Principiul fonologic.” Romanian.
In: Limba română XXII.1-2 (2012). issn: 0235-9111.
url: https://limbaromana.md/index.php?go=articole&n=1353
(visited on 10/05/2023).

[17] Dicţionarul ortografic, ortoepic şi morfologic al limbii române.
Romanian. II. Bucureşti: Editura Univers Enciclopedic, 2005.

[18] Limba română.
url: https://ro.wikipedia.org/wiki/Limba_rom%C3%A2n%C4%83
(visited on 10/05/2023).

Bibliography 153

[19] Victor Ufnarovski. Acvariu matematic. Romanian. Trans. by S. Guțu.
Mica bibliotecă a elevului: matematică, informatică.
Chișinău: Editura ”Știința”, 1988. 240 pp. isbn: 5-376-00427-9.

[20] Scan Tailor. An interactive post-processing tool for scanned pages. 2021.
url: https://scantailor.org/ (visited on 11/17/2023).

[21] ABBYY FineReader PDF. Specifications for Win.
url: https://www.abbyy.com/en-eu/finereader/tech-specs/
(visited on 10/28/2023).

[22] Nobuyuki Otsu.
“A Threshold Selection Method from Gray-Level Histograms.”
In: IEEE Transactions on Systems, Man, and Cybernetics 9.1 (1979),
pp. 62–66. doi: 10.1109/TSMC.1979.4310076.

[23] S.J. Lu and C.L. Tan. “Binarization of Badly Illuminated Document
Images through Shading Estimation and Compensation.”
In: Ninth International Conference on Document Analysis and
Recognition (ICDAR 2007). IEEE, Sept. 2007.
doi: 10.1109/icdar.2007.4378723.

[24] Abraham Savitzky and Marcel J. E. Golay. “Smoothing and
Differentiation of Data by Simplified Least Squares Procedures.”
In: Analytical Chemistry 36.8 (July 1964), pp. 1627–1639.
issn: 0003-2700. doi: 10.1021/ac60214a047.

[25] David Doermann and Karl Tombre.
Handbook of document image processing and recognition.
Springer London, 2014. isbn: 9780857298591.
doi: 10.1007/978-0-85729-859-1.

[26] Michael Piotrowski. Natural Language Processing for Historical Texts.
Springer International Publishing, 2012. isbn: 9783031021466.
doi: 10.1007/978-3-031-02146-6.

[27] Carolyn Strange et al.
“Mining for the Meanings of a Murder: The Impact of OCR Quality
on the Use of Digitized Historical Newspapers.”

154 Bibliography

In: Digital Humanities Quarterly 8.1 (2014). url: http://www.
digitalhumanities.org/dhq/vol/8/1/000168/000168.html.

[28] Thorsten Vobl et al. “PoCoTo - an open source system for efficient
interactive postcorrection of OCRed historical texts.” In: ACM
International Conference Proceeding Series (May 2014), pp. 57–61.
doi: 10.1145/2595188.2595197.

[29] ABBYY. How AI Powers PDF Software & Technology Trends. 2023.
url: https://pdf.abbyy.com/blog/finereader-powered-by-ai/
(visited on 12/10/2023).

[30] U. Springmann and A. Ludeling.
“OCR of historical printings with an application to building
diachronic corpora: A case study using the RIDGES herbal corpus.”
In: Digital Humanities Quarterly 11, 2 (2017) (Aug. 2016).
doi: 10.48550/ARXIV.1608.02153. arXiv: 1608.02153 [cs.CL].

[31] T. Bumbu et al. “User Interface to Access Old Romanian Documents.”
In: Proceedings of the 4th Conference of Mathematical Society of
Moldova CMSM4-2017, June 25-July 2. 2017, pp. 479–482.

[32] Tudor Bumbu. “Towards a Font Classification Model for Romanian
Cyrillic Documents.”
In: Computer Science Journal of Moldova 29.3(87) (2021), pp. 291–298.

[33] Thomas M. Breuel et al. “High-Performance OCR for Printed English
and Fraktur Using LSTM Networks.” In: 2013 12th International
Conference on Document Analysis and Recognition. 2013, pp. 683–687.
doi: 10.1109/ICDAR.2013.140.

[34] RIDGES - Register in Diachronic German Science. 2020. url:
http://korpling.german.hu-berlin.de/ridges/index_en.html

(visited on 12/10/2023).

[35] Tesseract.
url: https://github.com/tesseract-ocr/ (visited on 10/28/2023).

Bibliography 155

[36] Adam Dudczak, Aleksandra Nowak, and Tomasz Parkoła.
“Creation of custom recognition profiles for historical documents.”
In: Proceedings of the First International Conference on Digital Access
to Textual Cultural Heritage. DATeCH 2014. ACM, May 2014.
doi: 10.1145/2595188.2595209.

[37] eMOP. Franken+. 2023.
url: https://emop.tamu.edu/outcomes/Franken-Plus (visited on
12/10/2023).

[38] Text Creation Partnership. Eighteenth Century Collections Online.
2019.
url: https://quod.lib.umich.edu/e/ecco/ (visited on 12/10/2023).

[39] Taylor Berg-Kirkpatrick and Dan Klein.
“Improved Typesetting Models for Historical OCR.”
In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers).
Association for Computational Linguistics, 2014.
doi: 10.3115/v1/p14-2020.

[40] Marcin Helinski, Milosz Kmieciak, and Tomasz Parkola. Report on
the comparison of Tesseract and ABBYY FineReader OCR engines. 2012.
url: https://api.semanticscholar.org/CorpusID:6341954
(visited on 12/14/2023).

[41] ABBYY. Research Guides: ABBYY FineReader Tutorial: Creating and
Training a User Pattern. 2023.
url: https://guides.nyu.edu/abbyy/training-abbyy (visited on
12/10/2023).

[42] N. White. “Training Tesseract for Ancient Greek OCR.”
In: Eutypon 28-29 (2012), pp. 1–11.
eprint: https://ancientgreekocr.org/e29-a01.pdf.

[43] Mamata Nayak and Ajit Kumar.
“Odia Characters Recognition by Training Tesseract OCR Engine.”
In: International Journal of Computer Applications (July 2013),
pp. 975–8887.

156 Bibliography

[44] C. Clausner, A. Antonacopoulos, and S. Pletschacher.
“Efficient and effective OCR engine training.” In: International
Journal on Document Analysis and Recognition 23.1 (2020), pp. 73–88.
issn: 1433-2833.

[45] C. Clausner, S. Pletschacher, and A. Antonacopoulos.
“Aletheia - An Advanced Document Layout and Text
Ground-Truthing System for Production Environments.” In: 2011
International Conference on Document Analysis and Recognition.
IEEE, Sept. 2011. doi: 10.1109/icdar.2011.19.

[46] Stefan Pletschacher and Apostolos Antonacopoulos. “The PAGE
(Page Analysis and Ground-truth Elements) format framework.” In:
Aug. 2010, pp. 257–260. doi: 10.1109/ICPR.2010.72.

[47] Christian Clausner, Apostolos Antonacopoulos, and
Stefan Pletschacher. “ICDAR2019 Competition on Recognition of
Documents with Complex Layouts - RDCL2019.”
In: 2019 International Conference on Document Analysis and
Recognition (ICDAR). IEEE, Sept. 2019.
doi: 10.1109/icdar.2019.00245.

[48] IMPACT Centre of Competence — digitisation.eu. 2023.
url: https://www.digitisation.eu/ (visited on 12/10/2023).

[49] Library: Archival Skills: Transcription — libguides.hull.ac.uk. 2023.
url:
https://libguides.hull.ac.uk/archival-skills/transcription

(visited on 12/10/2023).

[50] PRImA. Text Evaluation tool. 2023. url:
http://www.primaresearch.org/tools/ (visited on 12/10/2023).

[51] Stephen Vincent Rice.
“Measuring the accuracy of page-reading systems.” PhD thesis. 1996.
doi: 10.25669/HFA8-0CQV.

[52] OCRopus.
url: https://github.com/ocropus (visited on 12/16/2023).

Bibliography 157

[53] Mittagessen. Kraken: OCR engine for all the languages. 2023. url:
https://github.com/mittagessen/kraken (visited on 12/10/2023).

[54] Calamari-OCR: Line based ATR Engine based on OCRopy. 2023.
url: https://github.com/Calamari-OCR/calamari (visited on
12/10/2023).

[55] M. V. Valueva et al.
“Application of the residue number system to reduce hardware costs
of the convolutional neural network implementation.”
In: Mathematics and Computers in Simulation 177 (2020), pp. 232–243.
issn: 0378-4754.
doi: https://doi.org/10.1016/j.matcom.2020.04.031.

[56] Uwe Springmann et al. “OCR of historical printings of Latin texts:
problems, prospects, progress.”
In: Proceedings of the First International Conference on Digital Access
to Textual Cultural Heritage. 2014, pp. 71–75.
doi: 10.1145/2595188.2595205.

[57] Faisal Shafait. “Document image analysis with OCRopus.”
In: 2009 IEEE 13th International Multitopic Conference (2009), pp. 1–6.

[58] Christoph Wick, Christian Reul, and Frank Puppe.
“Calamari - A High-Performance Tensorflow-based Deep Learning
Package for Optical Character Recognition.”
In: Digital Humanities Quarterly 14 (2), 2020 (July 2018).

[59] David M. Allen. “The Relationship Between Variable Selection and
Data Agumentation and a Method for Prediction.”
In: Technometrics 16.1 (Feb. 1974), pp. 125–127. issn: 1537-2723.
doi: 10.1080/00401706.1974.10489157.

[60] M. Stone.
“Cross‐Validatory Choice and Assessment of Statistical Predictions.”
In: Journal of the Royal Statistical Society: Series B (Methodological)
36.2 (Jan. 1974), pp. 111–133. issn: 2517-6161.
doi: 10.1111/j.2517-6161.1974.tb00994.x.

158 Bibliography

[61] R. Christensen. Thoughts on prediction and cross-validation. 2015.
url: https://math.unm.edu/~fletcher/Prediction.pdf (visited
on 12/10/2023).

[62] Senka Drobac and Krister Linden. “Optical character recognition
with neural networks and post-correction with finite state methods.”
In: International Journal on Document Analysis and Recognition
(IJDAR) 23.4 (Aug. 2020), pp. 279–295. issn: 1433-2825.
doi: 10.1007/s10032-020-00359-9.

[63] Christoph Wick, Christian Reul, and Frank Puppe.
“Comparison of OCR Accuracy on Early Printed Books using the
Open Source Engines Calamari and OCRopus.”
In: Journal for Language Technology and Computational Linguistics
33.1 (July 2018), pp. 79–96. issn: 2190-6858.
doi: 10.21248/jlcl.33.2018.219.

[64] Digital Materials of Finland: The newspaper collection. 2023. url:
https://digi.kansalliskirjasto.fi/search?formats=NEWSPAPER

(visited on 12/10/2023).
[65] P. Kauppinen. OCR Post-Processing by Parallel Replace Rules

Implemented as Weighted Finite-State Transducers. Master’s thesis.
2016. url: https://helda.helsinki.fi/handle/10138/162866
(visited on 12/10/2023).

[66] Senka Drobac, Pekka Kauppinen, and Krister Lindén. “Improving
OCR of historical newspapers and journals published in Finland.”
In: Proceedings of the 3rd International Conference on Digital Access to
Textual Cultural Heritage. DATeCH2019. ACM, May 2019.
doi: 10.1145/3322905.3322914.

[67] Standards - Library of Congress.
ALTO: Technical Metadata for Optical Character Recognition. 2023.
url: https://www.loc.gov/standards/alto/techcenter/use-
with-mets.html (visited on 12/10/2023).

[68] Vladimir I. Levenshtein. “Binary codes capable of correcting
deletions, insertions, and reversals.”
In: Soviet physics. Doklady 10 (1965), pp. 707–710.

Bibliography 159

[69] Ladislav Lenc et al.
“HDPA: historical document processing and analysis framework.”
In: Evolving Systems 12.1 (May 20, 2020), pp. 177–190.
issn: 1868-6478. doi: 10.1007/s12530-020-09343-4.

[70] OCR Corpora and Tools. 2022.
url: http://ocr-corpus.kiv.zcu.cz (visited on 12/10/2023).

[71] Django — djangoproject.com. 2023.
url: https://www.djangoproject.com (visited on 12/10/2023).

[72] J. Sauvola and M. Pietikäinen.
“Adaptive document image binarization.”
In: Pattern Recognition 33.2 (Feb. 2000), pp. 225–236. issn: 0031-3203.
doi: 10.1016/s0031-3203(99)00055-2.

[73] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net:
Convolutional Networks for Biomedical Image Segmentation.” In:
Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015. Springer International Publishing, 2015, pp. 234–241.
isbn: 9783319245744. doi: 10.1007/978-3-319-24574-4_28.

[74] Christian Clausner et al.
“The ENP image and ground truth dataset of historical newspapers.”
In: 2015 13th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, Aug. 2015.
doi: 10.1109/icdar.2015.7333898.

[75] Bavarian-Czech network of digital historical sources. 2023.
url: https://www.portafontium.eu (visited on 12/10/2023).

[76] Baoguang Shi, Xiang Bai, and Cong Yao. “An End-to-End Trainable
Neural Network for Image-Based Sequence Recognition and Its
Application to Scene Text Recognition.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
39.11 (Nov. 2017), pp. 2298–2304. issn: 2160-9292.
doi: 10.1109/tpami.2016.2646371.

160 Bibliography

[77] Henry S. Baird. “Anatomy of a versatile page reader.”
In: Proceedings of the IEEE 80.7 (July 1992), pp. 1059–1065.
issn: 1558-2256. doi: 10.1109/5.156469.

[78] Roldano Cattoni et al. “Geometric Layout Analysis Techniques for
Document Image Understanding: a Review.” In: (Nov. 2000).

[79] Tobias Strauss et al. “System Description of CITlab’s Recognition &
Retrieval Engine for ICDAR2017 Competition on Information
Extraction in Historical Handwritten Records.” In: (Apr. 2018).
doi: 10.48550/ARXIV.1804.09943. arXiv: 1804.09943.

[80] readcoop. Transkribus project. 2023.
url: https://readcoop.eu/transkribus (visited on 12/10/2023).

[81] OCR-D — DFG-funded Initiative for Optical Character Recognition
Development. 2023.
url: https://readcoop.eu/transkribus (visited on 12/10/2023).

[82] Christian Reul et al. “OCR4all – An Open-Source Tool Providing a
(Semi-)Automatic OCR Workflow for Historical Printings.”
In: (Sept. 9, 2019). issn: 2076-3417. arXiv: 1909.04032.

[83] Yulia Chernyshova, Alexander Gayer, and Alexander Sheshkus.
“Generation method of synthetic training data for mobile OCR
system.”
In: Tenth International Conference on Machine Vision (ICMV 2017).
Ed. by Jianhong Zhou et al. SPIE, Apr. 2018.
doi: 10.1117/12.2310119.

[84] V. Margner and M. Pechwitz.
“Synthetic data for Arabic OCR system development.”
In: Proceedings of Sixth International Conference on Document
Analysis and Recognition. ICDAR-01. IEEE Comput. Soc, 2001,
pp. 1159–1163. doi: 10.1109/icdar.2001.953967.

[85] L. Malahov et al. “Optical Character Recognition Applied to
Romanian Printed Texts of the 18th-20th Century.”
In: Computer Science Journal of Moldova 24.1 (2016), pp. 106–117.

Bibliography 161

[86] DeLORo Team.
Deep Learning for Old Romanian — Academia Romana. 2023. url:
http://deloro.iit.academiaromana-is.ro (visited on 12/10/2023).

[87] Padurariu C. and D. Cristea. “Solution for scanned documents
segmentation and letter recognition.” In: Proceedings of the 14th
edition of the International Conference on Linguistic Resources and
Tools for Natural Language Processing – ConsILR-2019. 2019,
pp. 127–137.

[88] D. Cristea et al.
“From Scan to Text. Methodology, Solutions, and Perspectives of
Deciphering Old Cyrillic Romanian Documents into the Latin Script.”
In: Knowledge, Language, Models.
INCOMA Ltd., Shoumen, Bulgaria, 2020, pp. 38–56.

[89] D. Cristea et al. “Data Structure and Acquisition in DeLORo – a
Technology for Deciphering Old Cyrillic-Romanian Documents.”
In: Proceedings of ConsILR. 2021, pp. 59–74.

[90] Colectia Monumenta Linguae Dacoromanorum - Editura Universitii
”Alexandru Ioan Cuza” din Iasi, 2015.
url: https://www.editura.uaic.ro/produse/colectii/
monumenta_linguae_dacoromanorum/1 (visited on 12/10/2023).

[91] Ludmila Malahov, Catalina Maranduc, and Alexandru Colesnicov.
“A Diachronic Corpus for Romanian (RoDia).”
In: Proceedings of the First Workshop on Language technology for
Digital Humanities in Central and (South-)Eastern Europe.
Varna: INCOMA Inc., Sept. 2017, pp. 1–9.

[92] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
“Sequence to Sequence Learning with Neural Networks.” In: (2014).
arXiv: 1409.3215.

[93] Radu Tudor Ionescu, Marius Popescu, and Aoife Cahill.
“String Kernels for Native Language Identification: Insights from
Behind the Curtains.”
In: Computational Linguistics 42.3 (Sept. 2016), pp. 491–525.
issn: 1530-9312. doi: 10.1162/coli_a_00256.

162 Bibliography

[94] Ery Arias-Castro, Guangliang Chen, and Gilad Lerman.
“Spectral clustering based on local linear approximations.”
In: Electronic Journal of Statistics 5.none (Jan. 2011). issn: 1935-7524.
doi: 10.1214/11-ejs651.

[95] Steffen Eger, Tim vor der Brück, and Alexander Mehler.
“A Comparison of Four Character-Level String-to-String Translation
Models for (OCR) Spelling Error Correction.” In: The Prague Bulletin
of Mathematical Linguistics 105.1 (Apr. 2016), pp. 77–99.
issn: 1804-0462. doi: 10.1515/pralin-2016-0004.

[96] Rafael Llobet et al.
“OCR Post-processing Using Weighted Finite-State Transducers.”
In: 20th International Conference on Pattern Recognition, ICPR 2010,
Istanbul, Turkey, 23-26 August 2010, pp. 2021–2024.

[97] Jorge Ramon Fonseca Cacho.
“Improving OCR Post Processing with Machine Learning Tools.”
PhD thesis. 2019. doi: 10.34917/16076262.

[98] Christian Reul et al. “Improving OCR Accuracy on Early Printed
Books by utilizing Cross Fold Training and Voting.”
In: (Nov. 27, 2017). arXiv: 1711.09670.

[99] Miikka Silfverberg, Pekka Kauppinen, and Krister Linden.
“Data-Driven Spelling Correction using Weighted Finite-State
Methods.” In: Proceedings of the SIGFSM Workshop on Statistical NLP
and Weighted Automata.
Association for Computational Linguistics, 2016, pp. 51–59.

[100] Michel Genereux et al.
“Correcting OCR errors for German in Fraktur font.”
In: Proceedings of the First Italian Conference on Computational
Linguistics (CLiC-it 2014). 2014, pp. 186–190.

[101] Grigori Sidorov et al.
“Syntactic Dependency-Based N-grams as Classification Features.” In:
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 1–11. doi: 10.1007/978-3-642-37798-3_1.

Bibliography 163

[102] Ido Kissos and Nachum Dershowitz. “OCR Error Correction Using
Character Correction and Feature-Based Word Classification.”
In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS).
2016, pp. 198–203. doi: 10.1109/das.2016.44.

[103] S. Cojocaru et al. “Optical Character Recognition Applied to
Romanian Printed Texts of the 18th-20th Century.”
In: Computer Science Journal of Moldova 1(70) (2016), pp. 106–117.
issn: 1561-4042.

[104] Veronica Romero, Alejandro Hector Toselli Rossi, and Enrique Vidal.
“Multimodal Interactive Handwritten Text Transcription.”
In: Series in Machine Perception and Artificial Intelligence. 2012,
pp. 63–73.

[105] Tobias Englmeier, Florian Fink, and Klaus Schulz. “A-I-PoCoTo:
Combining Automated and Interactive OCR Postcorrection.” In:
May 2019, pp. 19–24. isbn: 978-1-4503-7194-0.
doi: 10.1145/3322905.3322908.

[106] Mika Hamalainen and Simon Hengchen.
“From the Paft to the Fiiture: a Fully Automatic NMT and Word
Embeddings Method for OCR Post-Correction.” In: Oct. 2019,
pp. 432–437.

[107] Tomas Mikolov et al.
“Efficient Estimation of Word Representations in Vector Space.”
In: (Jan. 2013). arXiv: 1301.3781.

[108] Martin Reynaert. “OCR Post-Correction Evaluation of Early Dutch
Books Online - Revisited.”
In: International Conference on Language Resources and Evaluation.
2016, pp. 967–974.

[109] A. Colesnicov et al. “Development of a platform for processing
heterogeneous printed documents.” In: Proceedings of the Conference
on Mathematical Foundations of Informatics MFOI-2020.
Kyiv, Ukraine, 2021, pp. 108–122. isbn: 978-966-999-143-0.

164 Bibliography

[110] I.R.I.S. A Canon Company. IRIS S.A. 2023.
url: https://iriscorporate.com/ (visited on 11/17/2023).

[111] Kofax Intelligent Automation for Digital Workflow Transformation.
2023. url: https://www.kofax.com/products/intelligent-
automation-platform (visited on 11/17/2023).

[112] Nishant Subramani et al. “A Survey of Deep Learning Approaches
for OCR and Document Understanding.” In: (Nov. 2020).
doi: 10.48550/ARXIV.2011.13534. arXiv: 2011.13534 [cs.CL].

[113] Velibor Ilić et al. SCyDia – OCR for Serbian Cyrillic with Diacritics.
2022. url: https://www.academia.edu/88712331/SCyDia_OCR_for_
Serbian_Cyrillic_with_Diacritics (visited on 12/04/2023).

[114] Xingjiao Wu et al. “Document image layout analysis via explicit
edge embedding network.”
In: Information Sciences 577 (Oct. 2021), pp. 436–448.
doi: 10.1016/j.ins.2021.07.020.

[115] Jaya Krishna Mandivarapu et al. “Efficient Document Image
Classification Using Region-Based Graph Neural Network.”
In: (June 2021). doi: 10.48550/ARXIV.2106.13802.
arXiv: 2106.13802 [cs.CV].

[116] Goutham Kallempudi et al. “Toward Semi-Supervised Graphical
Object Detection in Document Images.”
In: Future Internet 14.6 (June 2022), p. 176. doi: 10.3390/fi14060176.

[117] Souhail Bakkali et al. “Visual and Textual Deep Feature Fusion for
Document Image Classification.” In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, June 2020, pp. 2394–2403.
doi: 10.1109/cvprw50498.2020.00289.

[118] Mouli Rastogi et al.
“Information Extraction from Document Images via FCA based
Template Detection and Knowledge Graph Rule Induction.”
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern

Bibliography 165

Recognition Workshops (CVPRW). IEEE, June 2020, pp. 2377–2385.
doi: 10.1109/cvprw50498.2020.00287.

[119] Frieda Josi, Christian Wartena, and Ulrich Heid.
“Preparing Legal Documents for NLP Analysis: Improving the
Classification of Text Elements by Using Page Features.”
In: (2022), pp. 17–29. doi: 10.25968/OPUS-2161.

[120] Francesco Visalli, Antonio Patrizio, and Massimo Ruffolo.
“A Two Step Fine-tuning Approach for Text Recognition on Identity
Documents.” In: Proceedings of the 13th International Conference on
Agents and Artificial Intelligence.
SCITEPRESS - Science and Technology Publications, Jan. 2021,
pp. 837–844. doi: 10.5220/0010252208370844.

[121] L. Malahov et al. “On text processing after OCR.” In: Proceedings of
13-th International Conference on Linguistic Resources and Tools for
Processing Romanian Language, Iasi, 22 – 23 November 2018. 2018,
pp. 53–60.

[122] Amfilohie Hotiniul. De obște gheografie. Romanian. 1795.
url: https://dspace.bcucluj.ro/bitstream/123456789/67742/1/
BCUCLUJ_FCS_BRV594.pdf (visited on 12/15/2023).

[123] Ștefan Cazimir. Alfabetul de tranziție ; Jurnal de tranziție.
Oscar Print, 1996. 197 pp. isbn: 9789739757348.

[124] Tipărituri vechi [Old printings]. Romanian. 2023.
url: https://tiparituriromanesti.wordpress.com/ (visited on
12/16/2023).

[125] Vasile Alecsandri.
“Suvenire din Italia. Buchetiera de la Florența.” Romanian.
In: Dacia literară 1 (1840). Ed. by Mihail Kogălniceanu, pp. 355–407.
url: http://dspace.bcu-
iasi.ro/bitstream/handle/123456789/813/BCUIASI_PER_X-

1640_1840%2c%20Tom.1.pdf (visited on 12/16/2023).

166 Bibliography

[126] Vasile Alecsandri. Buchetiera de la Florența. Romanian. 1840.
url: https://www.vasilealecsandri.eu/opere/nuvele/
buchetiera_de_la_florenta.html (visited on 12/17/2023).

[127] Stefan Andronic. Radu VII de la Afumați. 1846. url: https:
//revistatransilvania.ro/wp-content/uploads/2019/11/1846.-

S.-Andronic-Radu-VII-de-la-Afumati.pdf (visited on 11/27/2023).

[128] Magazi Istoric pentru Dacia. Romanian. 1845. url:
https://archive.org/download/magazinuistoric01unkngoog/

magazinuistoric01unkngoog_tif.zip (visited on 12/14/2023).

[129] G. Baiculescu and
Academia Republicii Socialiste România. Biblioteca.
Publicațiile periodice românești (ziare, gazete, reviste).: Catalog
alfabetic: 1919-1924. Publicațiile periodice românești.
Editura Academiei Republicii Socialiste România, 1987.
url: https://books.google.md/books?id=chkzAQAAIAAJ.

[130] Tiberiu Boros and Adrian Zafiu.
“Transliterare automata din engleza în romana. Aplicatii si rezultate.”
In: Romanian Journal of Human - Computer Interaction 5.3 (2012),
pp. 1–14.

[131] Min Zhang, Haizhou Li, and Jian Su.
“Direct Orthographical Mapping for Machine Transliteration.”
In: International Conference on Computational Linguistics. 2004,
pp. 716–722.

[132] Marius Mioc. 31 August 1989 — adoptarea legilor despre limba de stat
şi grafia latină în RSS Moldovenească. 2014.
url: https://mariusmioc.wordpress.com/2009/08/30/31-august-
1989/ (visited on 12/10/2023).

[133] Ioana Vintilă-Rădulescu. DIN – Dicționar normativ al limbii române:
ortografic, ortoepic, morfologic și practic.
București: Editura Corint, 2009. isbn: 9789731353937.

[134] E. Boian et al. “Digitizarea, recunoasterea si conservarea
patrimoniului cultural-istoric.” In: Akademos 1(32) (2014), pp. 61–68.

Bibliography 167

[135] T. Erjavec. “MULTEXT-East Version 3: Multilingual Morphosyntactic
Specifications, Lexicons and Corpora.”
In: International Conference on Language Resources and Evaluation.
2004.

[136] R. Simionescu. “Hybrid POS Tagger.”
In: International Conference on Language Resources and Evaluation.
2011.

[137] Z. Ziran et al. “Text alignment in early printed books combining
deep learning and dynamic programming.”
In: Pattern Recognition Letters 133 (2020), pp. 109–115.

[138] W. Qin, R. I. Elanwar, and M. Betke.
“LABA: logical layout analysis of book page images in Arabic using
multiple support vector machines.”
In: IEEE 2nd international workshop on Arabic and derived script
analysis and recognition (ASAR). 2018, pp. 35–40.

[139] S. Chadha, S. Mittal, and V. Singhal. “An insight of script text
extraction performance using machine learning techniques.”
In: International Journal of Innovative Technology and Exploring
Engineering (IJITEE) 9 (1 Nov. 2019). issn: 2278-3075.

[140] Michele Alberti et al.
“Open evaluation tool for layout analysis of document images.”
In: 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). Kyoto, Nov. 23, 2017, pp. 43–47.

[141] P. Li, X. Jiang, and H. Shatkay.
“Extracting figures and captions from scientific publications.”
In: Proceedings of the 27th ACM International Conference on
Information and Knowledge Management. 2018.

[142] C. Clausner and A. Antonacopoulos. “Ontology and framework for
semantic labelling of document data and software methods.” In: 13th
IAPR International Workshop on Document Analysis Systems (DAS).
Vienna, 2018, pp. 73–78.

168 Bibliography

[143] L. Ma et al. “Segmentation and recognition for historical Tibetan
document images.” In: IEEE Access 8 (2020), pp. 52641–52651.
url: https://ieeeaccess.ieee.org/ (visited on 10/25/2023).

[144] Noah Siegel et al. “Extracting scientific figures with distantly
supervised neural networks.” In: Proceedings of the 18th ACM/IEEE on
Joint Conference on Digital Libraries. May 2018, pp. 223–232.
doi: 10.1145/3197026.3197040.

[145] H. M. Al-Barhamtoshy and A. S. Alghamdi.
“A comprehensive framework for OCR Web services system for
Arabic calligraphy documents.”
In: International Journal of Engineering and Technology 8.1.11 (2019).
doi: 10.14419/ijet.v8i1.11.28084.

[146] A. Colesnicov et al. “Semi-automated workow for recognition of
printed documents with heterogeneous content.”
In: Computer Science Journal of Moldova 28.3 (2020), pp. 223–240.

[147] A Colesnicov et al.
“On XML Standards to Present Heterogeneous Data and Documents.”
In: Proceedings of Workshop on Intelligent Information Systems
WIIS2021. Chisinau, Republic of Moldova, 2021, pp. 112–117.

[148] Frank D. Julca-Aguilar, Ana L.L.M. Maia, and Nina S.T. Hirata.
“Text/Non-Text Classification of Connected Components in
Document Images.” In: 2017 30th SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI). 2017, pp. 450–455.
doi: 10.1109/SIBGRAPI.2017.66.

[149] Marina Polyakova et al. “Combined method for scanned documents
images segmentation using sequential extraction of regions.”
In: Eastern-European Journal of Enterprise Technologies 5.2 (95) (Sept.
2018), pp. 6–15. issn: 1729-3774.
doi: 10.15587/1729-4061.2018.142735.

[150] Sheikh Faisal Rashid et al. “Table Recognition in Heterogeneous
Documents Using Machine Learning.”
In: 2017 14th IAPR International Conference on Document Analysis

Bibliography 169

and Recognition (ICDAR). IEEE, Nov. 2017, pp. 777–782.
doi: 10.1109/icdar.2017.132.

[151] Joshua Staker et al. “Molecular Structure Extraction From
Documents Using Deep Learning.” In: (Feb. 2018).
doi: 10.48550/ARXIV.1802.04903. arXiv: 1802.04903 [cs.LG].

[152] Chixiang Ma et al. “Robust Table Detection and Structure
Recognition from Heterogeneous Document Images.”
In: Pattern Recognition 133 (Jan. 2022), p. 109006.
doi: 10.1016/j.patcog.2022.109006. eprint: 2203.09056.

[153] Weihong Lin et al.
“TSRFormer: Table Structure Recognition with Transformers.”
In: (Aug. 2022). doi: 10.48550/ARXIV.2208.04921.
arXiv: 2208.04921 [cs.CV].

[154] CIB OCR. url: https://doxiview.com/doxiview-home/ (visited on
10/28/2023).

[155] OCRSpace. Free OCR API and Online OCR.
url: https://ocr.space/ (visited on 10/28/2023).

[156] InftyReader 3.1. Performs OCR scanning of scientific documents.
url: https://inftyreader.software.informer.com/ (visited on
12/07/2023).

[157] Readiris. Readiris 17, the advanced OCR solution for Windows and Mac.
url: https://iriscorporate.com/softwares/readiris-17/
(visited on 10/28/2023).

[158] TopOCR. url: https://www.topocr.com/ (visited on 10/28/2023).

[159] Nebo. Where ideas take shape.
url: https://www.nebo.app/ (visited on 10/28/2023).

[160] S. Cojocaru et al. “Digitization Technology of Old Romanian
Documents Printed in the Cyrillic Script.” In:
Horizons in Computer Science Research. Ed. by Thomas S. Clary.
Vol. 21. Nova Science Publishers, Inc., 2021. Chap. 6, pp. 185–217.
isbn: 978-1-68507-677-1.

170 Bibliography

[161] S. Cojocaru et al. “Instrumentar Multimedia pentru Facilitarea
Promovării Arte Muzicale.” Romanian. In: Studia Universitatis. Științe
exacte și economice 3(13) (2008), pp. 82–85.

[162] Gioachino Rossini. William Tell Overture. Arranged by Franz Liszt.
For solo piano. 2018.
url: https://musescore.com/vader915/scores/5203413 (visited
on 12/20/2023).

[163] Marcelle Duchesne-Guillemin. A Hurrian musical score from Ugarit.
The discovery of Mesopotamian music. Undena Publications, 1984.
32 pp.
url: http://urkesh.org/attach/duchesne-guillermin%201984%
20the%20%20discovery%20of%20mesopotamian%20music.pdf

(visited on 11/04/2023).

[164] MIDI Association. 2023.
url: https://www.midi.org/ (visited on 11/04/2023).

[165] musicXML.
The standard open format for exchanging digital sheet music.
MakeMusic, Inc. 2023.
url: https://www.musicxml.com/ (visited on 11/04/2023).

[166] Musescore. Notate your music. MuseScore Ltd. 2023.
url: https://musescore.com/ (visited on 11/04/2023).

[167] Gerd Castan. music-notation.info. Optical Music Recognition (OMR).
2019.
url: http://www.music-notation.info/en/compmus/omr.html
(visited on 12/19/2023).

[168] A. Colesnicov et al.
“On digitization of documents with script presentable content.”
In: Proceedings of the 5th Conference on Mathematical Society of the
Rep. Moldova IMCS-55. Sept. 2019, pp. 321–324.
isbn: 978-9975-68-378-4.

[169] Visiv SharpEye Music Scanning. Neuratron Ltd. 2018.
url: http://www.visiv.co.uk/ (visited on 11/04/2023).

Bibliography 171

[170] Mozart. Convert sheet music to a machine-readable version. 2022.
url: https://github.com/aashrafh/Mozart (visited on 12/19/2023).

[171] Orchestra. 2021. url: https://github.com/AdelRizq/Orchestra
(visited on 12/19/2023).

[172] Audiveris. Audiveris - Open-source Optical Music Recognition. 2023.
url: https://github.com/Audiveris/audiveris (visited on
12/19/2023).

[173] Sibelius. Empowering creative composers. Avid Technology, Inc. 2023.
url: https://www.avid.com/sibelius/ (visited on 11/04/2023).

[174] Musipedia. The Open Music Encyclopedia. 2023.
url: https://www.musipedia.org/ (visited on 11/04/2023).

[175] AnthemScore. Music AI for your PC. Lunaverus. 2023.
url: https://www.lunaverus.com/ (visited on 11/04/2023).

[176] CTAN. Comprehensive TEX Archive Network.
url: https://ctan.org/ (visited on 11/03/2023).

[177] Leslie Lamport. LATEX: A Document Preparation System. 2nd ed.
Addison-Wesley, 1994. 272 pp. isbn: 978-0201529838.

[178] MathML. W3C Math Home.
url: https://www.w3.org/Math/ (visited on 11/03/2023).

[179] TikZ.net. Graphics with TikZ in LATEX.
url: https://tikz.net/ (visited on 11/03/2023).

[180] Stefan Kottwitz. LATEX Graphics with TikZ. A practitioner’s guide to
drawing 2D and 3D images, diagrams, charts, and plots.
Packt Publishing, 2023. isbn: 978-1804618233.

[181] Maplesoft. The Essential Tool for Mathematics.
url: https://www.maplesoft.com/products/Maple/ (visited on
11/03/2023).

[182] Wolfram Mathematica.
The world’s definitive system for modern technical computing. url:
https://www.wolfram.com/mathematica/ (visited on 11/03/2023).

172 Bibliography

[183] Maxima. A Computer Algebra System. Apr. 15, 2022.
url: http://maxima.sourceforge.io/ (visited on 11/03/2023).

[184] Maxima Online.
Web interface is dated back to 2012, contains dead links. 2012.
url: http://maxima.cesga.es/ (visited on 11/07/2023).

[185] Mathpix. AI-powered document automation.
url: https://mathpix.com/ (visited on 11/03/2023).

[186] L Burtseva et al. “Heterogeneous document processing: Case study
of mathematical texts.” In: Abstracts of International Conference
Mathematics and It: Research and Education (MITRE-2021) dedicated
to the 75th anniversary of Moldova State University. 2021, pp. 96–97.

[187] IUPAC. International Union of Pure and Applied Chemistry.
url: https://iupac.org/ (visited on 11/03/2023).

[188] InChI Trust.
InChI: open-source chemical structure representation algorithm.
url: https://www.inchi-trust.org/ (visited on 11/03/2023).

[189] RInChI. The RInChI project.
url: https://www-rinchi.ch.cam.ac.uk/ (visited on 11/03/2023).

[190] CTAN. Chemistry.
url: https://ctan.org/topic/chemistry (visited on 11/03/2023).

[191] SMILES. A Simplified Chemical Language. url: http:
//www.daylight.com/dayhtml/doc/theory/theory.smiles.html

(visited on 11/03/2023).

[192] MDL MOL files. Chemistry.
url: https://docs.chemaxon.com/display/docs/MDL+MOLfiles%
2C+RGfiles%2C%20+SDfiles%2C+Rxnfiles%2C+RDfiles+formats

(visited on 11/03/2023).

[193] OSRA Wiki. 2023.
url: https://sourceforge.net/p/osra/wiki/Home/ (visited on
12/20/2023).

Bibliography 173

[194] Imago OCR. EPAM Systems. 2023. url:
https://lifescience.opensource.epam.com/imago/index.html

(visited on 12/20/2023).

[195] MolVec. Chemical OCR engine.
url: https://github.com/ncats/molvec (visited on 05/16/2023).

[196] Kohulan. DECIMER Image Transformer: Deep Learning for Chemical
Image Recognition using Efficient-Net V2 + Transformer. 2023.
url: https://github.com/Kohulan/DECIMER-Image_Transformer
(visited on 12/20/2023).

[197] V.K. Ahluwalia. Stereochemistry of Organic Compounds.
Ane Books Pvt. Limited, 2020. isbn: 9789388264532.

[198] Ketcher. Open-source web-based chemical structure editor.
EPAM Systems. 2023. url:
https://lifescience.opensource.epam.com/ketcher/index.html

(visited on 11/16/2023).

[199] M.P. Gallaher et al. Cost Analysis of Inadequate Interoperability in the
U.S. Capital Facilities Industry. Tech. rep. Aug. 2004.
doi: 10.6028/NIST.GCR.04-867.

[200] Digitization and verification of 2D engineering drawings.
L&T Technology Services Limited. 2023.
url: https://www.ltts.com/whitepaper/digitize-verify-2D-
engineering-drawings (visited on 12/19/2023).

[201] Vectra2D. Built for Engineers and Designers.
Prolincur Technologies LLP. 2022.
url: https://www.prolincur.com/products/vectra2d/ (visited on
12/20/2023).

[202] Scan2CAD. Convert your files for CAD & CNC. Avia Systems. 2023.
url: https://www.scan2cad.com/ (visited on 12/20/2023).

[203] DataSeer. Where AI and Industrial Diagrams Meet. DataSeer. 2023.
url: https://dataseer.digital/ (visited on 12/20/2023).

174 Bibliography

[204] Recognition of handwritten flowcharts with CNNs. 2023. url:
https://github.com/dbetm/handwritten-flowchart-with-cnn

(visited on 12/20/2023).

[205] Aditya Intwala. Image2CAD. 2021.
url: https://github.com/adityaintwala/Image2CAD (visited on
12/20/2023).

[206] ChartReader. 2021. url: https://github.com/Cvrane/ChartReader
(visited on 12/20/2023).

[207] Chart Image Classification Using Inception Model. 2018. url:
https://github.com/arpitjainds/Chart-Image-Classification

(visited on 12/20/2023).

[208] PlotDigitizer. 2023.
url: https://github.com/dilawar/PlotDigitizer (visited on
12/20/2023).

[209] Engauge Digitizer. 2022.
url: https://github.com/markummitchell/engauge-digitizer
(visited on 12/20/2023).

[210] Ankit Rohatgi. WebPlotDigitizer. Extract data from XY charts, Bar
graphs, Polar diagrams and much more! 2023. url:
https://automeris.io/WebPlotDigitizer/ (visited on 12/20/2023).

[211] PGN-Spec. Standard: Portable Game Notation Specification and
Implementation Guide. Coordinator: Steven J. Edwards.
Internet Chess Club. Mar. 12, 1994.
url: https://www.chessclub.com/help/PGN-spec (visited on
11/04/2023).

[212] CTAN. Search chess. url: https://ctan.org/search?phrase=chess.

[213] Gerhard Roth. ChessOcr. OCR Chess Diagrams. Android version.
Sept. 15, 2015.
url: https://chessocr.en.aptoide.com/ (visited on 11/04/2023).

[214] ChessAI Buddy. Chessify, Inc. 2023.
url: https://chessify.me/ (visited on 11/04/2023).

Bibliography 175

[215] VRML. Virtual Reality Modeling Language. 1995.
url: https://www.w3.org/MarkUp/VRML/ (visited on 11/03/2023).

[216] Web 3D Consortium.
Open Standards for Real-Time 3D Communication.
ISO/IEC 19775/19776/19777.
url: http://www.web3d.org/x3d/what-x3d/ (visited on 11/03/2023).

[217] HeDy. Platforma de Digitizare. 2023.
url: https://github.com/bumbutudor/PlatformaDigitizare
(visited on 11/17/2023).

[218] Stepper. MUI Core. Material UI. Version 15.5.0. 2023.
url: https://mui.com/material-ui/react-stepper/ (visited on
12/17/2023).

[219] Nick Babich. Wizard Design Pattern. Apr. 7, 2017. url:
https://uxplanet.org/wizard-design-pattern-8c86e14f2a38/

(visited on 12/17/2023).

[220] A->A Conv. 2019.
url: https://translitera.cc/ (visited on 12/17/2023).

[221] Markus Diem et al.
“cBAD: ICDAR2017 Competition on Baseline Detection.”
In: 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2017, pp. 1355–1360.
isbn: 978-1-5386-3586-5. doi: 10.1109/ICDAR.2017.222.

[222] Welcome to the OpenAI developer platform. 2023. url:
https://platform.openai.com/overview (visited on 12/18/2023).

[223] Models. Overview. 2023.
url: https://platform.openai.com/docs/models/overview
(visited on 12/18/2023).

[224] Amazon S3.
Object storage built to retrieve any amount of data from anywhere.
Amazon Web Services, Inc. 2023.
url: https://aws.amazon.com/s3/ (visited on 12/18/2023).

176 Bibliography

[225] Amazon CloudFront.
Securely deliver content with low latency and high transfer speeds.
Amazon Web Services, Inc. 2023.
url: https://aws.amazon.com/cloudfront/ (visited on 12/18/2023).

[226] Moldova Digitală. Poarta către tezaurul național. 2023.
url: https://emoldova.org/ (visited on 12/18/2023).

[227] T. Bumbu et al. “Discover the Moldovan Cultural Heritage through
e-Moldova Portal by Using Crowdsourcing Concept.” In: Proceedings
of the Workshop on Intelligent Information Systems WIIS2021.
Chișinău, 2021, pp. 65–75.

[228] Tezaurul Național Digital. 2023.
url: https://digi.emoldova.org/ (visited on 12/18/2023).

[229] Folclor din părțile Codrilor. 1973.
url: https://digi.emoldova.org/d/17-folclor-din-partile-
codrilor (visited on 12/18/2023).

[230] V. A. Andrunachievici and I. D. Chitoroagă.
Numere și ideale. Romanian. Reprinted in the Latin script in 2017.
Chișinău: “Lumina”, 1979. 224 pp.

[231] Im2Latex.
Deep CNN Encoder + LSTM Decoder with Attention for Image to Latex.
url: https://github.com/luopeixiang/im2latex (visited on
12/07/2023).

[232] image2latex. url: https://github.com/yixuanzhou/image2latex
(visited on 12/07/2023).

[233] LaTeX-OCR. url: https://github.com/lukas-blecher/LaTeX-OCR
(visited on 12/07/2023).

[234] SESHAT: Handwritten math expression parser. 2016.
url: https://github.com/falvaro/seshat (visited on 12/07/2023).

