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Sensitivity analysis of efficient solution in

vector MINMAX boolean programming problem∗
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Abstract

We consider a multiple criterion Boolean programming prob-

lem with MINMAX partial criteria. The extreme level of inde-

pendent perturbations of partial criteria parameters such that

efficient (Pareto optimal) solution preserves optimality was ob-

tained.
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Let C = (cij) ∈ Rn×m, n,m ∈ N, m ≥ 2, Ci =

(ci1, ci2, ..., cim), Em = {0, 1}m, T be the non-empty subset of the

permutations set Sm which is defined on the set Nm = {1, 2, ..., m}.
On the set of non-zero solutions (i.e. Boolean non-zero vectors)

X ⊆ Em, |X| > 1, we define the vector criterion

f(x,C) = (f1(x,C1), f2(x,C2), ..., fn(x,Cn)) −→ min
x∈X

.
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The components (partial criteria) are functions

fi(x,Ci) = max
t∈T

∑

j∈N(x)

cit(j), i ∈ Nn,

where

t =




1 2 ... m

t(1) t(2) ... t(m)


 , N(x) = {j ∈ Nm : xj = 1}.

Suppose Ci[t] = (cit(1), cit(2), ..., cit(m)). Then we can rewrite

partial criteria in the following form

fi(x,Ci) = max
t∈T

Ci[t]x, i ∈ Nn,

where

x = (x1, x2, ..., xm)T .

The problem of finding the set of efficient solutions (the Pareto

set)

P n(C) = {x ∈ X π(x,C) = ∅}

we call a vector minimax Boolean programming problem and write

Zn(C), where

π(x,C) = {x′ ∈ X : q(x, x′, C) ≥ 0(n), q(x, x′, C) 6= 0(n)}.

q(x, x′, C) = (q1(x, x′, C1), q2(x, x′, C2), ... , qn(x, x′, Cn)),

qi(x, x′, Ci) = fi(x,Ci)−fi(x
′, Ci), i ∈ Nn, 0(n) = (0, 0, ..., 0) ∈ Rn.

321



V.A. Emelichev, V.N. Krichko, Yu.V. Nikulin

By analogy with [1 – 4], where the stability radius of efficient

solution in different optimization problems was studied, the num-

ber

ρn(x0, C) =

{
sup Ω, if Ω 6= ∅,

0, otherwise

is called the stability radius of the efficient solution x0 ∈ P n(C).

Here

Ω = {ε > 0 : ∀C ′ ∈ <(ε) (x0 ∈ P n(C + C ′)},

<(ε) = {C ′ ∈ Rn×m : ‖ C ′ ‖∞< ε},

‖ C ′ ‖∞= max{|c′ij| : (i, j) ∈ Nn ×Nm}, C ′ = (c′ij) ∈ Rn×m.

We consider ρn(x0, C) = ∞ if for any matrix C ′ ∈ Rn×m

x′ ∈ P n(C + C ′).

For any x0 6= x and any permutation t ∈ T we introduce the

following notifications:

T (x0, x) = {t ∈ T : ∀t′ ∈ T (N(x0, t) 6= N(x, t′))},

N(x, t) = {t(j) : j ∈ Nm & xj = 1},

T̄ (x0, x) = T\T (x0, x).

Lemma 1 Assume that x0 6= x, x0, x ∈ X t0 ∈ T̄ (x0, x). Then

Ci[t
0]x0 ≤ fi(x,Ci)

for any index i ∈ Nn and matrix C ∈ Rn×m.
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Proof. Let t0 ∈ T̄ (x0, x). Then there exists t′ ∈ T such that

N(x0, t0) = N(x, t′). So for any i ∈ Nn we have

Ci[t
0]x0 = Ci[t

′]x ≤ max
t∈T

Ci[t]x = fi(x,Ci).

Lemma 1 is proved.

The efficient solution x0 is called trivial if the set T (x0, x) is

empty for any x ∈ X\{x0} and non-trivial otherwise.

Theorem 1 The stability radius ρn(x0, C) of any trivial solution

x0 of the problem Zn(C) is infinite.

Proof. Let x0 ∈ P n(C). Since x trivial, the equality T =

T̄ (x0, x) is true for any x ∈ X\{x0}. By lemma 1, the inequality

(C + C ′)i[t
0]x0 ≤ fi(x,Ci + C ′

i)

holds for any x ∈ X\{x0}, t0 ∈ T, i ∈ Nn, C ′ ∈ Rn×m. Hence

q(x0, x, C + C ′) ≤ 0(n).

So the solution x0 ∈ P n(C) preserves the efficiency for any inde-

pendent perturbations of matrix C. Thus ρn(xo, C) = ∞. Theorem

1 is proved.

By definition, put

X(x0) = {x ∈ X\{x0} : T (x0, x) 6= ∅}.
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Lemma 2 Let x0 be non-trivial efficient solution of the problem

Zn(C), ϕ > 0. Suppose for any matrix C ′ ∈ <(ϕ) and x ∈ X(x0)

there exists an index i ∈ Nn such that

qi(x, x0, Ci + C ′
i) > 0.

Then

x0 ∈ P n(C + C ′)

for any matrix C ′ ∈ <(ϕ).

Proof. Let x 6∈ X(x0). Then for any t ∈ T there exists t′ ∈ T

such that N(x0, t) = N(x, t′). Hence we have for any index i ∈ Nn

and any matrix C ′ ∈ <(ϕ)

qi(x, x0, Ci + C ′
i) = max

t∈T
(Ci + C ′

i)[t]x−max
t∈T

(Ci + C ′
i)[t]x

0 =

= max
t∈T

(Ci + C ′
i)[t]x− (Ci + C ′

i)[t
∗]x0 ≥

≥ (Ci + C ′
i)[t

′]x− (Ci + C ′
i)[t

∗]x0 = 0.

It means that

x0 ∈ P n(C + C ′)

for any matrix C ′ ∈ <(ϕ). Lemma 2 is proved.

For any non-trivial solution x0 put

ϕn(x0, C) = min
x∈X(x0)

max
i∈Nn

min
t0∈T (x0,x)

max
t∈T

Ci[t]x− Ci[t
0]x0

σ(x0, t0, x, t)
,
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where

σ(x0, t0, x, t) = |(N(x0, t0) ∪N(x, t))\(N(x0, t0) ∩N(x, t))|.

The following statements are true

t0 ∈ T̄ (x, x0) =⇒ ∀t ∈ T (σ(x0, t0, x, t) = 0). (1)

Ci[t]x− Ci[t
0]x0 + ||Ci||∞σ(x0, t0, x, t) ≥ 0, i ∈ Nn, (2)

It is easy to see that 0 ≤ ϕn(x0, C) < ∞.

Theorem 2 The stability radius ρn(x0, C) of any non-trivial effi-

cient solution x0 of the problem Zn(C) is expressed by the formula

ρn(x0, C) = ϕn(x0, C).

Proof. First let us prove that ρn(x0, C) ≥ ϕ := ϕn(x0, C). For

ϕ = 0, it is nothing to prove. Let ϕ > 0. Then for any x ∈ X(x0)

there exists an index i ∈ Nn such that

min
t0∈T (x0,x)

max
t∈T

Ci[t]x− Ci[t
0]x0

σ(x0, t0, x, t)
≥ ϕ.

We have the following statements for any C ′ ∈ <(ϕ)

qi(x, x0, Ci + C ′
i) = max

t0∈T
(Ci + C ′

i)[t]x−max
t0∈T

(Ci + C ′
i)[t

0]x0 =

= min
t0∈T

max
t∈T

(Ci[t]x− Ci[t
0]x0 + C ′

i[t]x− C ′
i[t

0]x0) ≥

≥ min
t0∈T

max
t∈T

(Ci[t]x− Ci[t
0]x0 − ||C ′

i||σ(x0, t0, x, t)).
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Using (1) we continue

= min
t0∈T (x0,x)

max
t∈T

(Ci[t]x− Ci[t
0]x0 − ||C ′

i||σ(x0, t0, x, t))

Applying (2) we finally conclude

> min
t0∈T (x0,x)

max
t∈T

(Ci[t]x− Ci[t
0]x0 − ϕσ(x0, t0, x, t)) ≥ 0.

Thus, by lemma 2, we obtain that non-trivial solution x0 preserves

efficiency for any perturbing matrix C ′ ∈ <(ϕ), i.e. ρn(x0, C) ≥ ϕ.

It remains to check that ρn(x0, C) ≤ ϕ. According to the defi-

nition of ϕ, there exists x ∈ X(x0) such that for any i ∈ Nn

ϕ ≥ min
t0∈T (x0,x)

max
t∈T

Ci[t]x− Ci[t
0]x0

σ(x0, t0, x, t)
= max

t∈T

Ci[t]x− Ci[t̃]x
0

σ(x0, t̃, x, t)
. (3)

Let ε > 0. Consider the following perturbing matrix C∗ ∈ Rn×m.

Every string C∗
i , i ∈ Nn of this matrix consists of the elements

c∗ij =





α, if j ∈ N(x0, t̃),

− α, otherwise,

where ϕ < α < ε. Using (3) we get the following expressions:

qi(x, x0, Ci + C∗
i ) = max

t∈T
(Ci + C∗

i )[t]x−max
t∈T

(Ci + C∗
i )[t]x0 ≤

max
t∈T

(Ci+C∗
i )[t]x−(Ci+C∗

i )[t̃]x0 = (Ci+C∗
i )[t̂]x−(Ci+C∗

i )[t̃]x0 =

= Ci[t̂]x−Ci[t̃]x
0−ασ(x0, t̃, x, t̂) < Ci[t̂]x−Ci[t̃]x

0−ϕσ(x0, t̃, x, t̂) ≤

≤ Ci[t̂]x− Ci[t̃]x
0 − σ(x0, t̃, x, t̂) max

t∈T

Ci[t]x− Ci[t̃]x
0

σ(x0, t̃, x, t)
≤
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≤ Ci[t̂]x− Ci[t̃]x
0 − σ(x0, t̃, x, t̂)

Ci[t̂]x− Ci[t̃]x
0

σ(x0, t̃, x, t̂)
= 0.

Hence x0 is not efficient solution of the problem Zn(C + C∗),

where C∗ ∈ <(ϕ). It means that ρn(x0, C) ≤ ϕ. This completes

the proof of Theorem 2.

Assume that T = {t0}. t0 =




1 2 ... m

1 2 ... m


 . Then our

problem transforms into vector linear Boolean programming prob-

lem

fi(x,Ci) = Cix −→ min
x∈X

, i ∈ Nn,

where X ⊆ Em.

In this case one can see that any efficient solution is non-trivial.

The next corollary follows from theorem 2.

Corollary 1 [1] The stability radius of any efficient solution x0

of vector linear Boolean programming problem Zn(C), n ≥ 1,

equals to

min
x∈X\{x0}

max
i∈Nn

Ci(x− x0)

||x− x0||∗ ,

where ||z||∗ =
∑

j∈Nn

|zj|, z = (z1, z2, ..., zm) ∈ Rm.

Any efficient solution x0 of the problem Zn(C) is called stable

if ρn(x0, C) > 0, and strongly efficient if there does not exist x ∈
X\{x0} such that Cix

0 ≥ Cix. From corollary 2 we have

Corollary 2 [1] Any efficient solution of vector linear Boolean

programming problem is stable iff it is strongly efficient.
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