Sensitivity analysis of efficient solution in vector MINMAX boolean programming problem *

Vladimir A. Emelichev, Vitaly N. Krichko, Yury V. Nikulin

Abstract

We consider a multiple criterion Boolean programming problem with MINMAX partial criteria. The extreme level of independent perturbations of partial criteria parameters such that efficient (Pareto optimal) solution preserves optimality was obtained.

MSC: 90C29, 90C31 Key words and phrases: vector MINMAX Boolean programming problem, efficient solution, stability radius.

Let $C=\left(c_{i j}\right) \in \mathbf{R}^{n \times m}, n, m \in \mathbf{N}, m \geq 2, C_{i}=\left(c_{i 1}, c_{i 2}, \ldots, c_{i m}\right)$, $\mathbf{E}^{m}=\{0,1\}^{m}, T$ be the non-empty subset of the permutations set S_{m} which is defined on the set $N_{m}=\{1,2, \ldots, m\}$. On the set of non-zero solutions (i.e. Boolean non-zero vectors) $X \subseteq \mathbf{E}^{m},|X|>1$, we define the vector criterion

$$
f(x, C)=\left(f_{1}\left(x, C_{1}\right), f_{2}\left(x, C_{2}\right), \ldots, f_{n}\left(x, C_{n}\right)\right) \longrightarrow \min _{x \in X} .
$$

The components (partial criteria) are functions

$$
f_{i}\left(x, C_{i}\right)=\max _{t \in T} \sum_{j \in N(x)} c_{i t(j)}, i \in N_{n},
$$

where

$$
t=\left[\begin{array}{cccc}
1 & 2 & \ldots & m \\
t(1) & t(2) & \ldots & t(m)
\end{array}\right], N(x)=\left\{j \in N_{m}: x_{j}=1\right\} .
$$

"This work was partially supported by State program of Fundamental Investigations of Republic of Belarus "Mathematical structure" (grant 913/28).

Suppose $C_{i}[t]=\left(c_{i t(1)}, c_{i t(2)}, \ldots, c_{i t(m)}\right)$. Then we can rewrite partial criteria in the following form

$$
f_{i}\left(x, C_{i}\right)=\max _{t \in T} C_{i}[t] x, \quad i \in N_{n}
$$

where

$$
x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{T}
$$

The problem of finding the set of efficient solutions (the Pareto set)

$$
P^{n}(C)=\{x \in X \quad \pi(x, C)=\emptyset\}
$$

we call a vector minimax Boolean programming problem and write $Z^{n}(C)$, where

$$
\begin{gathered}
\pi(x, C)=\left\{x^{\prime} \in X: q\left(x, x^{\prime}, C\right) \geq 0_{(n)}, q\left(x, x^{\prime}, C\right) \neq 0_{(n)}\right\} \\
q\left(x, x^{\prime}, C\right)=\left(q_{1}\left(x, x^{\prime}, C_{1}\right), q_{2}\left(x, x^{\prime}, C_{2}\right), \ldots, q_{n}\left(x, x^{\prime}, C_{n}\right)\right) \\
q_{i}\left(x, x^{\prime}, C_{i}\right)=f_{i}\left(x, C_{i}\right)-f_{i}\left(x^{\prime}, C_{i}\right), i \in N_{n}, 0_{(n)}=(0,0, \ldots, 0) \in \mathbf{R}^{n}
\end{gathered}
$$

By analogy with $[1-4]$, where the stability radius of efficient solution in different optimization problems was studied, the number

$$
\rho^{n}\left(x^{0}, C\right)=\left\{\begin{array}{cl}
\sup \Omega & \text { if } \Omega \neq \emptyset \\
0 & \text { otherwise }
\end{array}\right.
$$

is called the stability radius of the efficient solution $x^{0} \in P^{n}(C)$. Here

$$
\begin{gathered}
\Omega=\left\{\varepsilon>0: \forall C^{\prime} \in \Re(\varepsilon)\left(x^{0} \in P^{n}\left(C+C^{\prime}\right)\right\}\right. \\
\Re(\varepsilon)=\left\{C^{\prime} \in \mathbf{R}^{n \times m}:\left\|C^{\prime}\right\|_{\infty}<\varepsilon\right\} \\
\left\|C^{\prime}\right\|_{\infty}=\max \left\{\left|c_{i j}^{\prime}\right|:(i, j) \in N_{n} \times N_{m}\right\}, C^{\prime}=\left(c_{i j}^{\prime}\right) \in \mathbf{R}^{n \times m}
\end{gathered}
$$

We consider $\rho^{n}\left(x^{0}, C\right)=\infty$ if for any matrix $C^{\prime} \in \mathbf{R}^{n \times m}$

$$
x^{\prime} \in P^{n}\left(C+C^{\prime}\right)
$$

For any $x^{0} \neq x$ and any permutation $t \in T$ we introduce the following notifications:

$$
\begin{gathered}
T\left(x^{0}, x\right)=\left\{t \in T: \forall t^{\prime} \in T\left(N\left(x^{0}, t\right) \neq N\left(x, t^{\prime}\right)\right)\right\} \\
N(x, t)=\left\{t(j): j \in N_{m} \& x_{j}=1\right\} \\
\bar{T}\left(x^{0}, x\right)=T \backslash T\left(x^{0}, x\right)
\end{gathered}
$$

Lemma 1 Assume that $x^{0} \neq x, x^{0}, x \in X t^{0} \in \bar{T}\left(x^{0}, x\right)$. Then

$$
C_{i}\left[t^{0}\right] x^{0} \leq f_{i}\left(x, C_{i}\right)
$$

for any index $i \in N_{n}$ and matrix $C \in \mathbf{R}^{n \times m}$.
Proof. Let $t^{0} \in \bar{T}\left(x^{0}, x\right)$. Then there exists $t^{\prime} \in T$ such that $N\left(x^{0}, t^{0}\right)=N\left(x, t^{\prime}\right)$. So for any $i \in N_{n}$ we have

$$
C_{i}\left[t^{0}\right] x^{0}=C_{i}\left[t^{\prime}\right] x \leq \max _{t \in T} C_{i}[t] x=f_{i}\left(x, C_{i}\right) .
$$

Lemma 1 is proved.
The efficient solution x^{0} is called trivial if the set $T\left(x^{0}, x\right)$ is empty for any $x \in X \backslash\left\{x^{0}\right\}$ and non-trivial otherwise.

Theorem 1 The stability radius $\rho^{n}\left(x^{0}, C\right)$ of any trivial solution x^{0} of the problem $Z^{n}(C)$ is infinite.

Proof. Let $x^{0} \in P^{n}(C)$. Since x trivial, the equality $T=\bar{T}\left(x^{0}, x\right)$ is true for any $x \in X \backslash\left\{x^{0}\right\}$. By lemma 1 , the inequality

$$
\left(C+C^{\prime}\right)_{i}\left[t^{0}\right] x^{0} \leq f_{i}\left(x, C_{i}+C_{i}^{\prime}\right)
$$

holds for any $x \in X \backslash\left\{x^{0}\right\}, t^{0} \in T, i \in N_{n}, C^{\prime} \in \mathbf{R}^{n \times m}$. Hence

$$
q\left(x^{0}, x, C+C^{\prime}\right) \leq 0_{(n)}
$$

So the solution $x^{0} \in P^{n}(C)$ preserves the efficiency for any independent perturbations of matrix C. Thus $\rho^{n}\left(x^{o}, C\right)=\infty$. Theorem 1 is proved.

By definition, put

$$
X\left(x^{0}\right)=\left\{x \in X \backslash\left\{x^{0}\right\}: T\left(x^{0}, x\right) \neq \emptyset\right\} .
$$

Lemma 2 Let x^{0} be non-trivial efficient solution of the problem $Z^{n}(C), \varphi>0$. Suppose for any matrix $C^{\prime} \in \Re(\varphi)$ and $x \in X\left(x^{0}\right)$ there exists an index $i \in N_{n}$ such that

$$
q_{i}\left(x, x^{0}, C_{i}+C_{i}^{\prime}\right)>0 .
$$

Then

$$
x^{0} \in P^{n}\left(C+C^{\prime}\right)
$$

for any matrix $C^{\prime} \in \Re(\varphi)$.

Proof. Let $x \notin X\left(x^{0}\right)$. Then for any $t \in T$ there exists $t^{\prime} \in T$ such that $N\left(x^{0}, t\right)=N\left(x, t^{\prime}\right)$. Hence we have for any index $i \in N_{n}$ and any matrix $C^{\prime} \in \Re(\varphi)$

$$
\begin{aligned}
& q_{i}\left(x, x^{0}, C_{i}+C_{i}^{\prime}\right)=\max _{t \in T}\left(C_{i}+C_{i}^{\prime}\right)[t] x-\max _{t \in T}\left(C_{i}+C_{i}^{\prime}\right)[t] x^{0}= \\
& =\max _{t \in T}\left(C_{i}+C_{i}^{\prime}\right)[t] x-\left(C_{i}+C_{i}^{\prime}\right)\left[t^{*}\right] x^{0} \geq\left(C_{i}+C_{i}^{\prime}\right)\left[t^{\prime}\right] x-\left(C_{i}+C_{i}^{\prime}\right)\left[t^{*}\right] x^{0}=0 .
\end{aligned}
$$

It means that

$$
x^{0} \in P^{n}\left(C+C^{\prime}\right)
$$

for any matrix $C^{\prime} \in \Re(\varphi)$. Lemma 2 is proved.
For any non-trivial solution x^{0} put

$$
\varphi^{n}\left(x^{0}, C\right)=\min _{x \in X\left(x^{0}\right)} \max _{i \in N_{n}} \min _{t} \max ^{0} \in T\left(x^{0}, x\right), \frac{C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}}{\sigma\left(x^{0}, t^{0}, x, t\right)},
$$

where

$$
\sigma\left(x^{0}, t^{0}, x, t\right)=\left|\left(N\left(x^{0}, t^{0}\right) \cup N(x, t)\right) \backslash\left(N\left(x^{0}, t^{0}\right) \cap N(x, t)\right)\right| .
$$

The following statements are true

$$
\begin{gather*}
t^{0} \in \bar{T}\left(x, x^{0}\right) \Longrightarrow \forall t \in T\left(\sigma\left(x^{0}, t^{0}, x, t\right)=0\right) \tag{1}\\
C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}+\left\|C_{i}\right\|_{\infty} \sigma\left(x^{0}, t^{0}, x, t\right) \geq 0, i \in N_{n} \tag{2}
\end{gather*}
$$

It is easy to see that $0 \leq \varphi^{n}\left(x^{0}, C\right)<\infty$.
Theorem 2 The stability radius $\rho^{n}\left(x^{0}, C\right)$ of any non-trivial efficient solution x^{0} of the problem $Z^{n}(C)$ is expressed by the formula

$$
\rho^{n}\left(x^{0}, C\right)=\varphi^{n}\left(x^{0}, C\right) .
$$

Proof. First let us prove that $\rho^{n}\left(x^{0}, C\right) \geq \varphi:=\varphi^{n}\left(x^{0}, C\right)$. For $\varphi=0$, it is nothing to prove. Let $\varphi>0$. Then for any $x \in X\left(x^{0}\right)$ there exists an index $i \in N_{n}$ such that

$$
\min _{t^{0} \in T\left(x^{0}, x\right)} \max _{t \in T} \frac{C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}}{\sigma\left(x^{0}, t^{0}, x, t\right)} \geq \varphi .
$$

We have the following statements for any $C^{\prime} \in \Re(\varphi)$

$$
\begin{gathered}
q_{i}\left(x, x^{0}, C_{i}+C_{i}^{\prime}\right)=\max _{t^{0} \in T}\left(C_{i}+C_{i}^{\prime}\right)[t] x-\max _{t^{0} \in T}\left(C_{i}+C_{i}^{\prime}\right)\left[t^{0}\right] x^{0}= \\
\quad=\min _{t^{0} \in T} \max _{t \in T}\left(C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}+C_{i}^{\prime}[t] x-C_{i}^{\prime}\left[t^{0}\right] x^{0}\right) \geq \\
\quad \geq \min _{t^{0} \in T} \max _{t \in T}\left(C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}-\left\|C_{i}^{\prime}\right\| \sigma\left(x^{0}, t^{0}, x, t\right)\right) .
\end{gathered}
$$

Using (1) we continue

$$
=\min _{t^{0} \in T\left(x^{0}, x\right)} \max _{t \in T}\left(C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}-\left\|C_{i}^{\prime}\right\| \sigma\left(x^{0}, t^{0}, x, t\right)\right)
$$

Applying (2) we finally conclude

$$
>\min _{t^{0} \in T\left(x^{0}, x\right)} \max _{t \in T}\left(C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}-\varphi \sigma\left(x^{0}, t^{0}, x, t\right)\right) \geq 0
$$

Thus, by lemma 2, we obtain that non-trivial solution x^{0} preserves efficiency for any perturbing matrix $C^{\prime} \in \Re(\varphi)$, i.e. $\rho^{n}\left(x^{0}, C\right) \geq \varphi$.

It remains to check that $\rho^{n}\left(x^{0}, C\right) \leq \varphi$. According to the definition of φ, there exists $x \in X\left(x^{0}\right)$ such that for any $i \in N_{n}$

$$
\begin{equation*}
\varphi \geq \min _{t^{0} \in T\left(x^{7}, x\right)} \max _{t \in T} \frac{C_{i}[t] x-C_{i}\left[t^{0}\right] x^{0}}{\sigma\left(x^{0}, t^{0}, x, t\right)}=\max _{t \in T} \frac{C_{i}[t] x-C_{i}[\tilde{t}] x^{0}}{\sigma\left(x^{0}, \tilde{t}, x, t\right)} \tag{3}
\end{equation*}
$$

$\operatorname{Lev} \varepsilon>0$. Consider the following perturbing matrix $C^{*} \in \mathbf{R}^{n \times m}$. Every string $C_{i}^{*}, i \in N_{n}$ of this matrix consists of the elements

$$
c_{i j}^{*}=\left\{\begin{array}{cl}
\alpha & \text { if } j \in N\left(x^{0}, \tilde{t}\right), \\
-\alpha & \text { otherwise },
\end{array}\right.
$$

where $\varphi<\alpha<\varepsilon$. Using (3) we get the following expressions:

$$
\begin{gathered}
q_{i}\left(x, x^{0}, C_{i}+C_{i}^{*}\right)=\max _{t \in T}\left(C_{i}+C_{i}^{*}\right)[t] x-\max _{t \in T}\left(C_{i}+C_{i}^{*}\right)[t] x^{0} \leq \\
\max _{t \in T}\left(C_{i}+C_{i}^{*}\right)[t] x-\left(C_{i}+C_{i}^{*}\right)[\tilde{t}] x^{0}=\left(C_{i}+C_{i}^{*}\right)[\tilde{t}] x-\left(C_{i}+C_{i}^{*}\right)[\tilde{t}] x^{0}= \\
=C_{i}[\hat{t}] x-C_{i}[\tilde{t}] x^{0}-\alpha \sigma\left(x^{0}, \tilde{t}, x, \hat{t}\right)<C_{i}[\tilde{t}] x-C_{i}[\tilde{t}] x^{6}-\varphi \sigma\left(x^{0}, \tilde{t}, x, \hat{t}\right) \leq
\end{gathered}
$$

$$
\begin{aligned}
\leq & C_{i}[\hat{t}] x-C_{i}[\tilde{t}] x^{0}-\sigma\left(x^{0}, \tilde{t}, x, \hat{t}\right) \max _{t \in T} \frac{C_{i}[t] x-C_{i}[\tilde{t}] x^{0}}{\sigma\left(x^{0}, \tilde{t}, x, t\right)} \leq \\
& \leq C_{i}[\hat{t}] x-C_{i}[\tilde{t}] x^{0}-\sigma\left(x^{0}, \tilde{t}, x, \hat{t}\right) \frac{C_{i}[\hat{t}] x-C_{i}[\tilde{t}] x^{0}}{\sigma\left(x^{0}, \tilde{t}, x, \hat{t}\right)}=0
\end{aligned}
$$

Hence x^{0} is not efficient solution of the problem $Z^{n}\left(C+C^{*}\right)$, where $C^{*} \in \Re(\varphi)$. It means that $\rho^{n}\left(x^{0}, C\right) \leq \varphi$. This completes the proof of Theorem 2.

Assume that $T=\left\{t^{5}\right\} . t^{0}=\left[\begin{array}{llll}1 & 2 & \ldots & \mathrm{~m} \\ 1 & 2 & \ldots & \mathrm{~m}\end{array}\right]$. Then our problem transforms into vector linear Boolean programming problem

$$
f_{i}\left(x, C_{i}\right)=C_{i} x \longrightarrow \min _{x \in X}, i \in N_{n},
$$

where $X \subseteq \mathbf{E}^{m}$.
In this case one can see that any efficient solution is non-trivial. The next corollary follows from theorem 2.

Corollary 1 [1] The stability radius of any efficient solution x^{0} of vector linear Boolean programming problem $Z^{n}(C), n \geq 1$, equals to

$$
\min _{x \in X \backslash\left\{x^{0}\right\}} \max _{i \in N_{n}} \frac{C_{i}\left(x-x^{0}\right)}{\left\|x-x^{0}\right\|^{*}},
$$

where $\|z\|^{*}=\sum_{j \in N_{n}}\left|z_{j}\right|, z=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \in \mathbf{R}^{m}$.

Any efficient solution x^{0} of the problem $Z^{n}(C)$ is called stable if $\rho^{n}\left(x^{0}, C\right)>0$, and strongly efficient if there does not exist $x \in X \backslash\left\{x^{0}\right\}$ such that $C_{i} x^{0} \geq C_{i} x$. From corollary 2 we have

Corollary 2 [1] Any efficient solution of vector linear Boolean programming problem is stable iff it is strongly efficient.

References

1] Emelichev V.A., Girlich E., Podkopaev D.P. On stability of efficient solution in a vector trajectorial problem of discrete optimization, I,II, Izv. Akad. Nauk Resp. Moldova. Matem., 1996, No. 3, pp. $5-16 ; 1997$, No. 2, pp. $9-25$. (Russian)
[2] Emelichev V.A., Krichko V.N. On stability of Smale optimal, Pareto optimal and Slater optimal solution in vector trajectorial optimization problems, Izv. Akad. Nauk Resp. Moldova. Matem., 1998, No. 3, pp. $81-86$.
[3] Emelichev V.A., Stepanishina Yu. V. Stability of majority efficient solution of a vector linear trajectorial problem, Computer Science Journal of Moldova, 1999, vol. 7, No. 3, pp. 291 - 306.
[4] Emelichev V.A., Nikulin Yu.V. On the stability of efficient solution in a vector quadratic Boolean programming problem, Izv. Akad. Nauk Resp. Moldova. Matem., 2000, No. 1, pp. 33 - 40.

