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The Multiobjective Bottleneck Transportation

Problem

Alexandra Tkachenko Artiom Alhazov

Abstract

In this paper we give the solution methods for a multicriterial
transportation problem of a nonlinear type. We would like to
note that the problems of this type do not have any classical
solution algorithms.

The article consists of two parts dealing with 2 and 3 objec-
tives respectively, one being non-linear of “bottleneck” type, and
the rest being linear ones. Definitions of efficient and extreme
efficient solutions are introduced and a separate solution algo-
rithms for these models are described. The correctness theorems
for the algorithms are proved. Examples solved by the computer
programs implementing the algorithms are included.

Key words: efficient solution, efficient plan, “bottleneck”
transportation problem, extreme efficient solution, the bottleneck
model.

1 Bicriteria Problem

In this part we are solving 2-objective bottleneck model. A formal
definition of the problem is made. A solution algorithm of a bicriteria
transport nonlinear problem is proposed. First, a possible solution is
found and optimized by time. Then, the time is sequentially traded
for the cost, thus obtaining the set of all efficient solutions. A theorem
is proved stating the correctness of the algorithm finding the set of
efficient solutions. An example with the results of a computer program
for this new and very efficient algorithm is included.
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1.1 Defining the Problem

We consider both the time and the cost objectives. The problem is
defined by supplies a, demands b, the costs c and the times t. The
solution consists of efficient (optimal by Pareto) transportation plans x.
a = a(m), b = b(n), c = c(m,n), t = t(m, n). The problem is to find
x = x(m,n) so that:

xij ≥ 0 ∀i = 1,m ∀j = 1, n (1)
n∑

j=1
xij = ai ∀i = 1,m (2)

m∑
i=1

xij = bj ∀j = 1, n (3)

C(x) =
m∑

i=1

n∑
j=1

cijxij → min (4)

T (x) = max
(i,j)

{tij : xij > 0} → min (5)

Def 1 x that satisfies 1,2,3 is called a plan.

Let x1, x2 be plans.

Def 2 It is said that x1 dominates x2 (not. x1 ¹ x2), if C(x1) ≤ C(x2)
and T (x1) ≤ T (x2)

Def 3 It is said that x1 is better than x2 (not. x1 ≺ x2), if x1 ¹ x2

and not(x2 ¹ x1)

Def 4 It is said that x1 is equivalent to x2 (not. x1 ∼ x2), if x1 ¹ x2

and x2 ¹ x1

Def 5 A plan x0 is called efficient, if no better plan exists.

The answer to the BTP is a set of efficient plans. To simplify the
problem, we shall limit ourselves to finding one efficient plan among all
the equivalent ones.
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A plan exists if and only if

m∑

i=1

ai =
n∑

j=1

bj (6)

Otherwise an extra row or column is added.

Def 6 A BTP is called regular, if its solution does not have any de-
generate transportation plans.

Remark 1 If no such proper subsets I ⊂ {1..m} and J ⊂ {1..n} exist,
that ∑

i∈I

ai =
∑

j∈J

bj , (7)

then the BTP is regular.

In case of a regular BTP, any basic plan will only have non-zero com-
ponents.

1.2 General Algorithm of Regular BTP Solution

1. Find any plan (for example with the fastest element method)

2. Optimize the plan by time (for example with the time-potentials
method)

3. Optimize the plan by cost (applying the modified cost-potentials
method) Among all possible transitions we select the one so that:

(a) ∆ij > 0 (so that the cost is decreased)

(b) Choosing minimal tij

(c) Choosing maximal ∆ij of those satisfying 3a and 3b.

Theorem 1 A plan x in phase 3 of the solution is efficient if and only
if no such transition exists that ∆ij > 0 and tij ≤ T (x).

Proof: By definition, x is efficient if no better plan x1 exists, i.e.
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1. C(x) = min{C(x1) : x1 - possible,T (x1) ≥ T (x)}
2. T (x) = min{T (x1) : x1 - possible,C(x1) ≥ C(x)}.

After phase 2, the fastest plan x0 is obtained. The cheapest of all
fastest plans is the first efficient plan; it is obtained after zero or more
transitions with ∆ij > 0 and tij ≤ T (x0). Starting here, condition 2 is
verified. Let us verify that condition 1 holds for an arbitrary plan x by
considering the following linear programming problem:

yij ≥ 0 ∀i = 1, m ∀j = 1, n (8)
m∑

j=1
yij = ai ∀i = 1,m (9)

n∑
i=1

yij = bj ∀j = 1, n (10)

C(y) =
m∑

i=1

n∑
j=1

cijyij → min (11)

tij ≥ T (x) ⇒ yij = 0 ∀i = 1,m ∀j = 1, n (12)

It is obvious that y=x satisfies 8,9,10,12. y=x is a locally optimal
solution since no transitions x → y exist so that C(y) < C(x). It
suffices to notice the set of possible solutions is convex to state that y
is a globally optimal solution, i.e. condition 1 holds.
End of proof.

1.3 Irregular BTP

Solving an irregular BTP with the method described above we actually
use a slightly different time criterion

T1(x) = max
(i,j)

{tij : xij − basic} → min (13)

instead of
T (x) = max

(i,j)
{tij : xij > 0} → min (14)

It can happen that T1(x) > T (x) in case xij = 0 for a basic component
(i,j), which is a point of maximum time.

Two approaches are listed below:
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1. Enlarging the class of BTP where T1 = T .

2. Reducing irregular BTP to a few regular BTPs.

We now proceed to approach 2.
Suppose there exist such subsets I1 ⊂ {1..m} and J1 ⊂ {1..n}, that

∑

i∈I1

ai =
∑

j∈J1

bj (15)

We define I2 and J2 to be complementary to I1 and J1:
I2 = {1..m}\I1, J2 = {1..n}\J1. Two choices are possible:

1. xij > 0, the regular method can be applied, giving a set X of
solutions.

2. xij = 0, deleting (i,j) from the basis-tree G({1..m}, {1..n}) de-
composes it into two trees: G1(I1, J1) and G2(I2, J2).

Both problems are solved separately, yielding sets X1 and X2 of
efficient solutions. (Notice that these sub-problems can also be irreg-
ular.) The pairs of efficient solutions x1 and x2 are combined into x′

with C(x′) = C(x1) + C(x2), T (x′) = max(T (x1) + T (x2)). Thus a
set X ′ is obtained. Finally, the incomparable plans are selected from
X ∪ X ′ by excluding plans that are worse than others, giving the set
Xe, which is indeed the set of efficient solutions.

1.4 Enlarging the Class of Regular BTPs

Suppose there exist such subsets I ⊂ {1..m} and J ⊂ {1..n}, that
∑

i∈I1

ai =
∑

j∈J1

bj (16)

A decomposition is possible by a basic zero at (p, q) ∈ I1×J2∪ I2×J1.
Decomposition apriori does not have to be considered if T1 does not
change when we exclude tpq:

T1(x) = max
(i,j)

{tij : xij − basic} − > min (17)

T2(x) = max
(i,j)

{tij : xij − basic, (i, j) 6= (p, q)} − > min (18)
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T1 = T2 if tpq ≤ max(T (I1, J1), T (I2, J2)).
However, T (I1, J1) ≤ max{max

i∈I1
(min
j∈J1

tij);max
j∈J1

(min
i∈I1

tij)},
and T (I2, J2) ≤ max{max

i∈I2
(min
j∈J2

tij);max
j∈J2

(min
i∈I2

tij)}.
Conclusion: if tpq ≤ max{max

i∈I1
(min
j∈J1

tij);max
j∈J1

(min
i∈I1

tij);

max
i∈I2

(min
j∈J2

tij);max
j∈J2

(min
i∈I2

tij)}, then the regular method can be applied.

1.5 Example

Consider the following cost-time problem: Dimensions=6,7.

Supply,
Demand,
Cost=

9 10 20 2 6 4 3 15
8 8 15 2 8 2 6 7
4 5 4 9 7 6 2 45

12 15 6 3 10 7 2 30
3 6 10 4 11 8 4 12
7 9 7 5 8 2 5 16

20 13 11 27 9 5 40 bj\ai

Time=

12 13 34 7 8 29 19
7 18 36 40 38 6 10

11 20 30 21 21 29 31
17 12 39 31 5 36 12
17 17 32 36 22 16 14
15 38 16 33 23 30 29

Let us research the regularity question.
There are 35 ways to split the problem into just 2 sub-problems, i.e.
there exists 70 subsets I1 ⊂ {1..m} and J1 ⊂ {1..n} so that

∑

i∈I1

ai =
∑

j∈J1

bj (19)

However, for every such splitting, ∃(p, q) ∈ I1 × J2 ∪ I2 × J1 :
tpq ≤ max{max

i∈I1
(min
j∈J1

tij);max
j∈J1

(min
i∈I1

tij); max
i∈I2

(min
j∈J2

tij);max
j∈J2

(min
i∈I2

tij)}, so

the regular method suffices.
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Solving the problem with the regular method we obtain 8 efficient so-
lutions.

1. T = 21;C = 548

0 0 0 15 0 0 0
0 0 0 0 0 5 2

11 13 0 12 9 0 0
0 0 0 0 0 0 30
4 0 0 0 0 0 8
5 0 11 0 0 0 0

2. T = 23;C = 538

0 0 0 15 0 0 0
0 0 0 0 0 5 2

16 13 0 12 4 0 0
0 0 0 0 0 0 30
4 0 0 0 0 0 8
0 0 11 0 5 0 0

3. T = 29;C = 533

0 0 0 15 0 0 0
0 0 0 0 0 5 2

11 13 0 12 9 0 0
0 0 0 0 0 0 30
9 0 0 0 0 0 3
0 0 11 0 0 0 5

4. T = 30;C = 508

0 0 0 15 0 0 0
0 0 0 0 0 5 2
8 13 11 12 1 0 0
0 0 0 0 0 0 30

12 0 0 0 0 0 0
0 0 0 0 8 0 8
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5. T = 31;C = 432

0 0 0 15 0 0 0
0 2 0 0 0 5 0
8 11 11 0 0 0 15
0 0 0 12 0 0 18

12 0 0 0 0 0 0
0 0 0 0 9 0 7

6. T = 33;C = 425

0 0 0 15 0 0 0
0 2 0 0 0 5 0
8 11 11 0 0 0 15
0 0 0 5 0 0 25

12 0 0 0 0 0 0
0 0 0 7 9 0 0

7. T = 38;C = 423

0 0 0 15 0 0 0
0 0 0 0 2 5 0
8 13 11 0 0 0 13
0 0 0 3 0 0 27

12 0 0 0 0 0 0
0 0 0 9 7 0 0

8. T = 40;C = 402

0 0 0 15 0 0 0
0 0 0 7 0 0 0
8 13 11 0 0 0 13
0 0 0 3 0 0 27

12 0 0 0 0 0 0
0 0 0 2 9 5 0

2 Tricriteria Problem

This part is dedicated to the transportation model with three objec-
tives, a non-linear one of “bottleneck” type and two linear criteria. The
algorithm consists of reducing the main problem to a problem with one
bottleneck objective and a sequence of problems with 2 linear criteria.
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Finally, we join their results to construct the set of extreme efficient so-
lutions. A theorem proving the validity of this algorithm finding the set
of extreme efficient solutions is stated and proved. An example solved
by the computer program implementing the algorithm is included.

2.1 Defining the Problem

We shall now consider two linear (cost-type) objectives and one bottle-
neck objective. The problem is defined by supplies a, demands b, the
costs c and d and the times t. The solution consists of efficient (optimal
by Pareto) transportation plans x. Since the set of solutions usually
has a power of continuum, we shall only list the extreme efficient solu-
tions. All the efficient solutions are among the linear combinations of
extreme efficient ones.

a = a(m), b = b(n), c = c(m,n), d = d(m,n), t = t(m,n). The
problem is to find x = x(m,n) so that:

xij ≥ 0 ∀i = 1,m ∀j = 1, n (20)
n∑

j=1
xij = ai ∀i = 1,m (21)

m∑
i=1

xij = bj ∀j = 1, n (22)

C(x) =
m∑

i=1

n∑
j=1

cijxij → min − cost1 criterion (23)

D(x) =
m∑

i=1

n∑
j=1

dijxij → min − cost2 criterion (24)

T (x) = max
(i,j)

{tij : xij > 0} → min − time criterion (25)

2.2 Solving the 2-Linear-Criteria Problem

In this paragraph we shall consider the problem defined by 21-25 . A
solution of a two criteria problem is a set of extreme efficient solutions.
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Finding the first and last extreme efficient plans: Construct
any plan and optimize it by C-potentials method. Optimize it fur-
ther by modified D-potentials method, considering only cells (i, j) with
∆ij = 0.

A plan xc will be constructed in that way. Then,

1. C0 := C(xc) = min C(x)

2. D1 := D(xc) = min{D(x′) : C(x′) = min C(x)}.
Similarly, find the last extreme efficient plan xd that satisfies

1. D0 := D(xd) = min D(x)

2. C1 := C(xc) = min{C(x′) : D(x′) = min D(x)}.
If C(xc) = C(xd) and D(xc) = D(xd), then xc and xd are equivalent (or
the same) and E = {xc} is the answer. Otherwise continue. The set E
of the found extreme efficient plans now contains {xc, xd}. The set L of
the untried segments in the C ×D space is currently {(pc, pd)} where
pc = (C0, D1), pd = (C1, D0). The set F of the optimized segments is
currently empty.

Finding intermediate extreme efficient plans: Pick (p1, p2) ∈
L, p1 = (c1, d1), p2 = (c2, d2), exclude it from L. Solve a transport
problem with a single criterion:

C ′(x) = |d1 − d2|C(x) + |c1 − c2|D(x) or (26)

C ′(x) =
m∑

i=1

n∑

j=1

(|d1 − d2|cij + |c1 − c2|dij)xij → min (27)

A solution y will be obtained. p3 = (C(y), D(y)). If p3 = p1 or
p3 = p2, then the new plan is equivalent to another one already found,
include (p1, p2) in F . Otherwise include (p1, p3) and (p3, p2) in L and
include y in E. Repeat the procedure for the next element in L until
L is empty. The set E will consist of all extreme efficient plans (up to
equivalence).
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2.3 Validity and Finiteness

Theorem 2 A point z ∈ E ⇔ z is an extreme efficient point.

Sufficiency The algorithm may terminate either upon establishing
the equivalence of xc and xd, or upon exhaustion of the set L. In the
former case, the only point recorded is obviously an extreme efficient
point. In the latter case, xc and xd both are clearly extreme efficient
points. Therefore, the element {xc, xd} of L at the first iteration de-
notes two extreme efficient points. Suppose at current iteration each
element (r, s) ∈ L corresponds to extreme efficient points r and s.
Therefore a1 = |d(r) − d(s)| ≥ 0 and a2 = |c(r) − c(s)| ≥ 0 and hence
if the new point is found not equivalent to r or s, then it is a result
of minimizing a positively weighted average of the objective functions.
So, the new point recorded is an extreme efficient point. Thus at each
iteration each element corresponds to two extreme efficient points, en-
suring that all points included in E, are extreme efficient.

Necessity In case xc ∼ xd there is no other extreme efficient point.
We now proceed to the other case. Let r and s be corresponding to
(r, s) ∈ L ∪ F . Define the sets

A(r, s) = {z : z ≥ λr + (1− λ)r , λ ∈ R1} (28)
B(r, s) = {z : z ≤ λr + (1− λ)r , 0 ≤ λ ≤ 1} (29)

It will be now proved by induction that if k is an extreme efficient
point, then at each iteration,

k ∈ ∪(r,s)∈L∪F B(r, s) (30)

It is clearly true at iteration 1 when L ∪ F = {xc, xd}. Suppose at
some iteration m, (r, s) ∈ L is chosen. Then the algorithm either find a
new extreme efficient point or moves (r, s) from L to F . In the former
case L ∪ F is changed because of the deletion of (r, s) from L and
inclusion of (r, k) and (k, s) in the set L. Since the feasible set in the
objective space is convex, there is no efficient point in the interior of the
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convex hull generated by r,k and s. Thus if k ∈ B(r, s), then indeed,
k ∈ B(r, k) ∪B(k, s). Hence at iteration m + 1 also

k ∈ ∪(r,s)∈L∪F B(r, s) (31)

The algorithm enters (r, s) in the set F only if the minimization process,
where the linear function to be minimized has the same slope as that
of the line passing through r and s, gives the minimum to be r and
s. Therefore, the entire set E ⊂ A(r, s) for each (r, s) ∈ F Thus
if k is an extreme efficient point k ∈ ∩(r,s)∈L∪F A(r, s) and also k ∈
∪(r,s)∈L∪F b(r, s). Since L∪F = F at the termination of the algorithm,
∃(r, s) ∈ F : k ∈ A(r, s)∩B(r, s). In other words for some λk(0 ≤ λk ≤
1), k ∈ λkr + (1 − λk)s and since k is an extreme point k = r or s.
Hence k is indeed found by the algorithm.

End of proof. The finiteness of the algorithm results from the finite-
ness of the extreme points.

2.4 Solving the Tricriteria Problem

Solve the 2-linear-criteria problem. Each plan in E is evaluated by 3
criteria: C, D and T . If E is empty, stop. (It does not happen at the
first time) Determine T∗ = max{T (x) : x ∈ E}. Redefine cij = inf and
dij = inf for each cell with tij ≥ T∗. Repeat the procedure until E
is empty. The set of non-dominated points among all the plans found
forms the solution of the problem.

2.5 Practical Modification

Instead of dealing with infinite costs, it is useful to initially calculate
the best time, and start solving each 2-linear-criteria problem from the
best-time solution, simply blocking the cells with tij ≥ T∗.

2.6 Example

Consider the following 3-criteria problem: Dimensions= 3, 4.
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Time, Supply, Demand=
10 95 73 52 8
68 66 30 21 19
37 63 19 23 17
11 3 14 16 bj\ai

Cost1, 2=
1 2 7 7

4 4 3 4
1 9 3 4

5 8 9 10
8 9 4 6

6 2 5 1

Regularity question: the problem can be split in
I1 = {1, 3}; J1 = {1, 3}; I2 = {2}; J2 = {2, 4} or
I1 = {1, 2}; J1 = {1, 4}; I2 = {3}; J2 = {2, 3}.
In case 1 apriori T (X2) ≥ 66 ≥ 23 = t34

In case 2 apriori T (X2) ≥ 63 ≥ 23 = t34.
We then proceed with the regular method.

The problem solution gives 9 extreme efficient points listed below.
Iteration1: solutions 1,2,3,4,6; Iteration2: solutions 7,8,9,5,6; Itera-
tion3: solutions 7,8,9.

Transportation plans and corresponding criteria=
1. (143,265,95) 2. (156,200,95) 3. (176,175,95)
5 3 0 0 5 3 0 0 0 3 5 0
6 0 0 13 6 0 13 0 11 0 8 0
0 0 14 3 0 0 1 16 0 0 1 16

4. (186,171,95) 5. (202,173,73) 6. (208,167,73)
0 2 6 0 0 0 6 2 0 0 8 0

11 0 8 0 11 0 8 0 11 2 6 0
0 1 0 16 0 3 0 14 0 1 0 16

7. (158,283,68) 8. (172,213,68) 9. (178,203,68)
8 0 0 0 8 0 0 0 6 0 0 2
3 0 0 16 3 0 14 2 5 0 14 0
0 3 14 0 0 3 0 14 0 3 0 14
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