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The numerical identification of the mechanical
systems with respect to natural frequences

C. Popa A. Sharaniuk

1 Introduction

The problems of adeguate mechanical models construction and para-
metrical identification of these models have a great significance for
structure design. The ignorance of geometrical and physical charac-
teristics of designed structures explains discrepancy between the the-
oretical solutions obtained on the basis of mathematical models and
experimental data. Therefore it is interesting to elaborate some meth-
ods which would take into consideration experimental data of a real
structure behavior for its mathematical model construction. A possible
modality to tackle counsists in determining and specifying geometrical
and mechanical characteristics of the model on the basis of minimizing
discrepancy between the state functions and functionals which charac-
terize the structure dynamic coresponding to some data obtained by
experimental way. Details of these numerical methods for linear sys-
tems are given in [2,4]. In this work some parametrical identification
problems for structure in function of natural frequencies values of its
free oscillations will be examined.
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2 Identification of the mechanical systems with
respect to natural frequences. The problem
formulation

To apply the finite element method, the mathematical model for free
oscillations of certain structure can be writted in the form:
2
MccllTl; +Ku=0, (1)
where M is a square matrix of order N which characterizes iner-
tial qualities of the structure (mass matrix), K is a square matrix of
the same order which describes rigidity qualities (stiffnes matrix) and
u(t) = [ug(t),...,un(t)]T is the vector of nodal deplacements [1,6].
Mechanical systems for which matrixes M and K are symmetrical and
pozitively definited will be examined. Counsidering the structure oscil-
lations to be harmonious, we will represent the deplacements vector in
the form:
u(t) = Uelt, (2)

where w is the free oscillations frequency, U is the amplitude deplace-
ments vector, t is the time and i is the imaginary unit. Substituting (2)
into the movement equation (1) we arrive at the generalized problem
of eigenvalues and eigenvectors:

KU = w’MU. (3)

The matrixes K and M depend on the geometrical characteristics of
structure (cross sections, geometrical configuration) and on the me-
chanical characteristics of the material (modulus of elastisity). Includ-
ing this set of parameters in the vector h = [hy, ..., hne]T and consid-
ering K = K(h),M = M(h), we will rewrite the eigenvalues problem
(3) in the form:

K(h)U = w*M(h)U. (3a)
To any vector h there are corresponding natural frequences spectrum
w - ,wlz\I and the respective mode shapes. We will formulate the
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structure parametrical identification problem in the following way: to
determine the design vector h for which the natural frequences of free
oscillations w?, - - -, w? (L < N, N— number of degrees of freedom) have
the following values @2, ---, &2 (the case of the simple eigenvalues is
studied). With a view to mathematical formulation of the identification
problem, we will introduce the functional

I) = Yo (wf — 5P @

which will be minimized by rational choosing of the vector h. The
component parts of the vector h satisfy the inequality restrictions

0<h™® <h; <h™*  i=12...,Ne, (5)

(consequence of some structure limitation) and, in addition, the integral
restriction:

Ne
> hjf;=m, (6)
j=1

where the constant m is the mass of structure and the constants g3; car-
acterize the fixed dimensions of the structure elements. Therefore the
mathematical formulation of the identification problem is the following:

h*:J(h) — m}in, (7

where functional J(h) is defined by the relation (4), the restriction on
the design variables are given by (5) and (6) and the squares of fre-
quencies w?, - - -, w¥ are found by solving the eigenvalues problem (3a).
An ample study of this kind of optimal design problems of structures
is given in [2,3].
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3 Analysis of free oscilations’ frequencies sen-
sibility for the mechanical system. Func-
tional’s gradient

In this paragraph we will deduce the free oscillations frequencies sen-
sibility formula of a mechanical system to the design parameters hy
changement and on this basis we will construct the numerical calculus
algorithm in order to minimize the functional J(h) (4). With this pur-
pose we will formulate the free oscillations problem of some structure
in variational terms:

(Ui, K(h)U;) .
w?(h) = mlnm, i=1,2,...,N, (8)
where
(U;, M(h)Uyg) = 0, k=1,2,...,i—1. (8a)

The variational formulation of this problem and its description in the
form of the eigenvalues generalized problem (3a) are equivalent, i.e. the
squares of natural frequencies and theirs corresponding mode shapes
U1,Us,...,Un obtained by achievement of both methods coincide
[3]. But in order to obtain the sensibility relation, the utilization of
representation (8) is more convenient. The restriction (5) on design
variables h; may be exluded by use of Valentin’s substitution for the
parameters j :

hmax hmin hmax _ hmin
1 _2'_ L+ 2 L sin ;. (5a)

h; =

The variation of natural frequencies squares w , determined by the
variation of the design vector h, in view of representatlon (8) for wl ,
can be written in the form:

2
"1 = 0, MU;) MU Z{

h) Uj) — wi(U;, OM(h)

b o, U)lohs).

(9)
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The expression in braces represents natural frequencies squares wiz sen-

sibility to the change of parameter h; by dh;. To solve the problem of
functional (4) minimizing, we apply the gradient method, and, in order
to take into consideration the equality restriction (6), we introduce the
Lagrange’s functional

Ne
Jp =JI(h) + u(>_ Bhy — m), (10)
j=1

where p is the Lagrange multiplier. Equalizing the primary variation
of the Lagrange’s functional with zero, we will obtain the necessary
condition of the optimum existence

6Jy =0, (11)
where
Ne
§Ju =03 +p > _ Bidh, (11a)
i=1

and 0J is the functional variation (4) in the vector h direction:
L
63 =2 (wf —af)owi. (12)
i=1

The variation dw? in (12) is given by the relation (9), which is true
only in case of simple eigenvalues [4]. By virtue of differenciability by
Frechet, we will represent the variation éJg, in the form:

§J1, = (A(h, U), 6h), (13)
where A(h,U) is the gradient of the Lagrange’s functional (10). In

concordance with introduced notations, the necessary condition of op-
timum existence can be written in the form:

A(h,U) =0, (14)
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where, taking into consideration (9) and (10), the component Aj is
written in the followng manner:

- wPad) o 9K(h)
A.i(th) - _ZEU;I"MUi)[(Uia 8hj

U;)—

OM(h)

2
—w(u.,
wi (Us, Oh;

1

Uil + nb- (15)

For the convenience of subsequent exposition, we will represent the
gradient in the form:

A(h,U) = Ag(h,U) + up, (16)

where the vector 8T = [B1, B2, ..., BNe]. The numerical solution is done
by appling the gradient method, in which at the iteration k the calculus
proceeding is represented in the following manner:

h*t! = h* — o[A(h, U) + x5 4], (17)

where the multiplier Lagrange ;%1 is obtained from the condition that
the vector hX*! verifies the restriction (6) and has the form:

k k

4 The numerical solution of the identification
problem in case of girder-console

In concordance with the numerical algorithm shown above, the iden-

tification problem of some girder-console consisted of one-dimensional
bar elements and represented in fig. 3.1, was solved.
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Fig. 1. Girder-console

The nodes A and B are fixed but the others are free. Bars with
numbers 1,2,3,4,5,6 have the length 1 and bars with numbers 7,8,9,10
have the length 1v/2. The values of natural frequencies obtained after
the numerical solution of the eigenvalues problem (3a) for the girder
represented in fig. 3.1 have been taken in function of experimental
values of natural frequencies squares w?. In the course of stiffness and
mass matrix formation for the bar element, the element deformation is
described by the linear function

X

() = wg(1 — >

x
) + uj Ta

where (uj,uj) are element’s deplacements of nodes i and j and
0 <x <1 The numerical calculus was realised with the following
nondimensional values of the mechanical characteristics E = 1,h; = 2,
i=1,2,...,Ne, 1=1, p=1. In case of other values of the mechan-
ical characteristics E,1 and p, the squares of natural frequencies are
obtained by to the following rule:

The eigenvalues problem (3a) was numericaly solved by iterations in
subspace method [1], and, in consequence, the following values for the
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squares of natural frequencies were obtained.
©? = 3.05541x1072; @2 =1.35194; &
©2 = 2.50090x10 1; @2 =1.42123; &
©2 = 3.60189x10~1; &2 = 1.88496.

2 =2.10478;
2 = 3.09643,;

These values were taken as experimental data and further the identifi-
cation problem (7) was studied. The identification problem was numer-
ically solved applying the gradient method described in the previous
paragraph. The following vector

h®=[1,1.,1,1.,1,1.,3.06,3.06,3.06,3.06],

which verifies condition (6) was taken as initial distribution of cross
sections. The order numbers of the vector h components corespond
to the numbers of elements girder-console representeted in fig. 3.1.
For the selected distribution h® the functional values (4) was equal to
J(h®) = 7.419499x10 ! and maximum values of the component part
in the absolute value of the gradient (15) was achieved for the element
with number i =1

max |A;(h®, U)| = A1(h° U) = 2.61143x1072.
J

The value of the parameter a of movement in the gradient direction
was calculated from the formula:
h?

=01—3 1
¢ =1%o Uy (19)

where

A;j(h°,U) = max |A;(h, U)].
1

After each 100 iteration this values a was calculated again, where in
(19) h190 was taken instead of h®. The iterative process (17) continues
till the functional values reaches the given precision EPS = 10712,
The functional value at the iteration 413 for the given precision is
J(h*!3) = 1.53779x10~ !4 and the distribution of cross sections is:

h*'3 = [2.000,1.999, 2.000, 2.000, 2.000, 2.000, 2.000,
2.000, 2.000, 2.000].
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