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Methods of solving of the optimal stabilization

problem for stationary smooth control systems

Part I

G. Kondrat’ev A. Balabanov

Abstract

In this article some ideas of Hamilton mechanics and differen-
tial-algebraic Geometry are used to exact definition of the poten-
tial function (Bellman-Lyapunov function) in the optimal stabi-
lization problem of smooth finite-dimensional systems

1 Statement of the problem

For the smooth finite-dimensional system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm, f(0, 0) = 0 (1.1)

and integral functional

J =
+∞∫

0

ω(x, u)dt, ω(x, u) ≥ 0, ω(0, 0) = 0 (1.2)

it is required to find the function uopt(x), ensuring global stability in
some maximum neighbourhood of the origin of coordinates of the sys-
tem (1.1) and realizing a minimal functional (1.2) along each its tra-
jectory. All functions are assumed as smooth and partial ones, defined
in some maximal in each current context neighbourhood of the origin
of coordinates of appropriate space.

According to the Bellman principle [1,2] the problem (1.1), (1.2) is
reduced to solving of the functional equation
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minu{f i(x, u)Vi + ω(x, u)} = 0 (1.3)

where (f1(x, u), . . . , fn(x, u))T = f(x, u) – right side of the equation
(1.1), Vidxi = dV – differential of the Bellman-Lyapunov function.

The equation (1.3) is equivalent to the system

f i(x, u)Vi + ω(x, u) = 0 (1.4.a)

f i
uj (x, u)Vi + ωuj (x, u) = 0 (1.4.b)

Here and further the following conventions are applied: a partial
derivative of the value A with respect to x is designated by an ap-
propriate subscript Ax; summation is produced on a repeating index
located at different levels of the multiindex value; a function is called
as of fixed sign in some vicinity of zero if it is equal to zero in the origin
of coordinates and saving the sign in an open dense set of the vicinity
(if the function is equal to zero only in zero, it. For nondegeneracy of
the Bellman-Lyapunov function V (x) it is sufficient nondegeneracy of
ω(x, u)|u=0 .

In favorable case by exception of variables uj , j = 1, . . . , m, the
system (1.4) is reduced to the Hamilton-Jacoby equation

ϕ(xi, Vj) = 0 (1.5)

The problem (1.1), (1.2) and the equations (1.3)-(1.5) were studied
from different points of view by different authors [3-11]. Along with
theoretical proof of the method, research of optimal control existence
conditions, definition of adequate space, in which the solution always
exists [3,9,10], methods of solving of the particular problems originat-
ing in mechanics, biology, industry etc. [4,12], and also classes of the
problems for systems of the defined sort [5,6,13,14] were developing.

By first completely investigated type of systems (1.1), (1.2), accept-
ing exact solution, was linearly-square systems

f i(x, u) = Ai
jx

j + Bi
ku

k,
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ω(x, u) = Ciky
iyk = Dijx

ixj + Eikx
iuk + Fklu

kul,

where (y1, . . . , yn+m) = (x1, . . . , xn, u1, . . . , um),
et matrixes (Cij)i,j=1,...,n+m, (Dij)i,j=1,...,n, (Fkl)k,l=1,...,m – are positive
definite.

For linearly-square systems the Bellman-Lyapunov function, satis-
fying (1.5), is quadratic, positive definite function, which second partial
derivatives can be found by solving of an algebraic system of the second
order equations (Riccaty system).

ϕxixk(0, 0)+ϕxiVl
(0, 0)Vlk +ϕVlxk(0, 0)Vli +ϕVjVl

(0, 0)VlkVji = 0 (1.6)

The system (1.6) has two real solutions – required positive- definite
matrix (Vij) and negative definite matrix (Ṽij). uopt(x) is a linear
function on Lagrangian manifold of the function V (x) .

Therefore, linearly-square problem (1.1), (1.2) completely is solv-
able. The following steps in construction of a general theory of systems
(1.1), (1.2) and appropriate equations (1.3)-(1.5), increasing polyno-
mial dimensionality of functions f and ω and introduction of the
special kind of nonlinearities reflected in [4,6,13,14,15,16], represent a
stage of accumulation and transition to the following logical step – the-
ory of analytical and smooth systems (1.1), (1.2) [11,12,14,17, 18,19].

However, main methods of synthesis of an optimal feed-back for
nonlinear systems until now remain: a method of substitution of the
source system by linearly-square approximation in a neighbourhood of
singular point [6,7, 15,16,20,21], method of splitting of a neighbourhood
of the origin of coordinates of the state space on rather small blocks
with consequent pasting together of found on them with the Bellman
principle of an optimality, uopti, i ∈ I, in the uniform synthesis method
of an optimal feed-back of a specific structure uopt(x, α), α – optimized
parameters [14,20,21]. The work [19], in which the optimum control
is restored on n to optimal control in the sense of a specially given
criterion is selected from the class of stabilizing actions is interesting.

Surprisingly, that the theory of optimum control, evolved from an
analytical mechanics, does not use at all methods of the last and also of
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differential geometry, traditionally connected to analytical mechanics.
The given article to some degree completes it.

In section 2 the classical methods of Hamilton mechanics and pos-
sibility of calculation of coefficients of Taylor series of the Bellman-
Lyapunov function in a neighbourhood of the singular point are con-
sidered, the way of construction of a evolutionary equation which al-
lows to reduce algebraic solution of the Hamilton-Jacoby equation in
holonomic one is given.

In section 3 some tools of differential-algebraic geometry are ap-
plied: the class of systems with invariant foliation of the Bellman-
Lyapunov function, accepting exact solution of the problem of the
optimal stabilization is described; the differential in variants of the
Bellman-Lyapunov function of linearly-square problem are calculated;
the definition of the nondegenerate potential function as equidistant
function of Euclidean space is given; the way of obtaining of differ-
ential invariants with the help of suitable isomorphism of differential
algebra is considered; the algebraic structure of the first integrals and
separatrices of the Hamilton system is analyzed, because of that the
way of calculation of the Lagrangian manifold of the potential function
is formulated.

In section 4 the symmetries in the the optimal stabilization problem
are considered.

In section 5 the heuristic algorithm of synthesis of suboptimal con-
trol of a given structure is offered and some additional facts able to be
useful in synthesis problem are considered.

The obtained results represent a basis of the invariant theory of
smooth optimal control systems.

2 Methods of mechanics and analysis

It is supposed that matrix (f i
ukulVi +ωukul)|0∈T ∗Rn×Rm , where T ∗Rn

– phase space, is nondegenerate, that is in some neighbourhood of
the origin of coordinates T ∗Rn there is uniquely defined function
uopt = uopt(xi, Vj) , satisfying (1.4.b) at which substitution in (1.4.a)
the Hamilton-Jacoby equation (1.5) is obtained. In this case prob-
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lem of the optimal stabilization is reduced to search of the equation
+ : Vi = Vi(x), i = 1, . . . , n, of the Bellman-Lyapunov function V (x).
For the system (1.1), (1.2), accepting in the origin of coordinates non-
degenerate linearly-square approximating (system of expression of the
functional is square positive definite form), Lagrangian manifold L rep-
resents the separatrix of steady points of the Hamilton system

{
ẋi = ϕVi(x

k, Vl)
V̇i = −ϕxi(xk, Vl)

(2.1)

The system (2.1) has also separatrix L− of unstable points, being
Lagrangian manifold of accompanying solution (1.5) negative definite
function Ṽ .

2.1 Solving of Cauchy problem for the Hamilton system

It is known [32,33,34], that association of trajectories of the Hamilton
system (2.1), passing through (n−1)-dimensional Lagrangian manifold
Ln−1

0 ⊂ ϕ−1(0) transversally to trajectories of the Hamilton system, is
the n-dimensional Lagrangian manifold Ln ⊂ ϕ−1(0). Unfortunately
we can not directly take advantage of this fact for construction of the
separatrix of steady points L+ according to condition that only one
point (0, 0) ∈ L+ is known. Nevertheless we can use the following
procedure:

– to calculate (linear) Lagrangian manifold L+:

Vi = αijx
j , αij ∈ R, of linear approximation in the origin of

coordinates of the system (2.1) (αij is a solution of the Riccaty
system (1.6));

– to count evolution of initial (n−1)-dimensional Lagrangian man-
ifold Ln−1

0 = {(xi, Vj) ∈ T ∗Rn | Vi = αijx
j , (x1)2 + . . .+(xn)2 =

ε, ε > 0 is small real number} along Hamilton vector field (2.1)
in the opposite direction.

The approximate local parametric representation of the manifold L+

for the analytical Hamilton system (2.1) is
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xi(τ, c2, . . . , cn) = (exp(τIdϕ)xi)
∣∣∣∣
xi=xi(c2,...,cn)

= ((1 +
τ

1!
(Idϕ)+

+
τ2

2!
(Idϕ)2 + . . .)xi)

∣∣∣∣
xi=xi(c2,...,cn)

;

Vj(τ, c2, . . . , cn) = (exp(τIdϕ)Vj)
∣∣∣∣
Vj=Vj(c2,...,cn)

= ((1 +
τ

1!
(Idϕ)+

+
τ2

2!
(Idϕ)2 + . . .)Vj)

∣∣∣∣
Vj=Vj(c2,...,cn)

;

where Idϕ ≡ ϕVi
∂

∂xi − ϕxj
∂

∂Vj
– Hamilton vector field;





x1(c2, . . . , cn) = −2
√

ε
(1+(c2)2+...+(cn)2)

+
√

ε

x2(c2, . . . , cn) = −2
√

εc2
(1+(c2)2+...+(cn)2)

. . . . . . . . . . . . . . .

xn = (c2, . . . , cn) = −2
√

εcn

(1+(c2)2+...+(cn)2)

– rational parameterization of the sphere Sn−1
ε ((x1)2+. . .+(xn)2 = ε )

with the remote point (
√

ε, 0, . . . , 0);

Vi(c2, . . . , cn) = αijx
j(c2, . . . , cn); τ, c2, . . . , cn ∈ R;

for each analytical function F (xi, Vj) the series (exp(τIdϕ)F (xi, Vj))
converges in some neighbourhood of the point τ = 0.

2.2 Method of the first integrals

In a neighbourhood of a nonspecial point the vector field (2.1) has
(2n−1) functionally independent first integrals, commuting concerning
a Poisson bracket with the Hamiltonian

(ϕ,ψ) = 0 (2.2.a)

185



G.Kondrat’ev, A.Balabanov

that is satisfying to the linear homogeneous partial equation of the first
order

ϕViψxi − ϕxjψVj = 0 (2.2.b)

In a neighbourhood of the singular point of the system (2.1) exists
no more than n functionally independent integrals (though in addition
L+ ⋃

L− the number of functionally independent integrals can be more
than n ). In any case, if {Ia}, a ∈ A, is some set of integrals of the
system (2.1), at an approaching choice of constants ca, a ∈ A, func-
tions (Ia− ca) belong to an (reduced) ideal of the manifold L+ ⋃

L−.
Actually, for the definition of Lagrangian manifold it is enough to have
n functionally independent integrals, pairwise commuting concerning
Poisson bracket.

By common algebraic solution (above a ring C∞(T ∗Rn) of smooth
functions) of equation

ϕViai − ϕxjbj = 0 (2.2.c)

associated with the equation (2.2.c), is

ai = AijϕVj −Bk
i ϕxk

bj = Cj
kϕVk

−Djlϕxl (2.3)

where Aij , Djl ∈ C∞(T ∗Rn) are skew-symmetric matrixes, Bk
i ∈

C∞(T ∗Rn) – any matrix, Cj
k = −Bk

j .
The solutions of the equation (2.2.b) will be the closed 1-forms

α = aidxi + bjdVj = (AijϕVj −Bk
i ϕxk)dxi + (Cj

kϕVk
−Djlϕxl)dVj ,

dα = 0 (2.4)

that is elements of matrixes A, B, C, D should satisfy following
partial equations of the first order

AijxtϕVj + AijϕVjxt −Bk
ixtϕxk −Bk

i ϕxkxt =

AtjxiϕVj + AtjϕVjxi −Bk
txiϕxk −Bk

t ϕxkxi
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AijVsϕVj + AijϕVjVs −Bk
iVs

ϕxk −Bk
i ϕxkVs

=

Cs
kxiϕVk

+ Cs
kϕVkxi −Dsl

xiϕxl −Dslϕxlxi

Cj
kVi

ϕVk
+ Cj

kϕVkVi −Djl
Vi

ϕxl −DjlϕxlVi
=

Ci
kVj

ϕVk
+ Ci

kϕVkVj −Dil
Vj

ϕxl −DilϕxlVj
(2.5)

The effective solving of the last system without any additional sup-
positions is undefined. Such suppositions can be some functional or
differential dependences between elements of matrices A, B, C, D.
For linear equation (2.1) it is natural to look for integrals of movement
as having quadratic form. In this case Aij , Bk

i , Cj
k, Djl are constants

and the solving of the equations (2.5) does not cause difficulties (they
are reduced to the system of linear homogeneous algebraic equations).

Example 1.




ẋ1 = x1 − x2

ẋ2 = x3

ẋ3 = u
J =

∞∫

0

((x1)2 + u2)dt

uopt = −1
2V3 – optimum control on the Lagrangian surface L+ ;

ϕ = (x1)2 + x1V1 − x2V1 + x3V2 − 1
4(V3)2 – Hamiltonian;

Idϕ = (x1− x2) ∂
∂x1 + x3 ∂

∂x2 − 1
2V3

∂
∂x3 − (2x1 + V1) ∂

∂V1
+ V1

∂
∂V2

− V2
∂

∂V3

is Hamilton vector field .




ψx1

ψx2

ψx3

ψV1

ψV2

ψV3




=




0 a2 a3 b1 b2 b3

−a2 0 a4 b4 b5 b6

−a3 −a4 0 b7 b8 b9

−b1 −b4 −b7 0 c2 c3

−b2 −b5 −b8 −c2 0 c4

−b3 −b6 −b9 −c3 −c4 0







x1 − x2

x3

−1
2V3

−(2x1 + V1)
V1

−V2



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where ψ – required first integral; a, b, c with indexes are constants.
Taking into account relations of equality of the second mixed deriva-

tive from ψ , we shall obtain the intermediate system of the linear al-
gebraic equations concerning a, b, c, which solution is the 3-parametric
family of matrices of coefficients of the noted above system:




0 −2b7 0 (−b7 + b9) 0 2c3

2b7 0 −4c3 b7 b9 0
0 4c3 0 b7 0 b9

(b7 − b9) −b7 −b7 0 −c3 c3

0 −b9 c3 0 (c3 − 1
2b7)

−2c3 0 −b9 −c3 (1
2b7 − c3) 0




where b7, b9, c3 – independent parameters.
Integrating the form

dψ = ψx1dx1 + ψx2dx2 + ψx3dx3 + ψV1dV1 + ψV2dV2 + ψV3dV3 ,

we obtain a 3-parametric family of the first integrals:

ψ = b7((x1)2− (x2)2 +
1
4
(V2)2−2x1x3 +x1V1−x2V1−x3V1 +

1
2
V1V3)+

+b9(−(x1)2 +
1
4
(V3)2 − x1V1 + x2V1 − x3V2)+

+c3(2(x3)2 − 1
2
(V1)2 − 1

2
(V2)2 − 2x1V2 + 2x2V3 − V1V2) ≡

≡ b7ψ1 + b9ψ2 + c3ψ3,

where ψ1, ψ2 ≡ −ϕ, ψ3 – independent integrals of the Hamilton vector
field Idϕ , defined on all, T ∗R3 .

Equations ψ1 = 0, ψ2 = 0, ψ3 = 0 determine L+ ⋃
L− .

The methods of integrals searching of the system (2.1) represent the
classical problem of analytical mechanics. From traditional methods it
is possible to mark the full integral method [35,36], from modern –
method L-A-pare and method of orbits of a co-adjoint representation
of group [37,38,39].
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2.3 Decomposition of the Bellman-Lyapunov function in
Taylor series in a neighbourhood of the origin of co-
ordinates

From consideration of differential continuations structure of the Hamil-
ton-Jacoby equation (1.5)

Dxi(ϕ) = ϕxi + VijϕVj = 0 (2.6.a)

Dxk ◦Dxi(ϕ) = ϕxixk + VijkϕVj + VijϕVjxk + VklϕVlxi+

+VklVijϕVjVl
= 0 (2.6.b)

Dxs ◦Dxk ◦Dxi(ϕ) = Dxs(ϕxixk)+ViksjϕVj +VikjDxs(ϕVj )+VisjϕVjxk+

+VijDxs(ϕVjxk)+VkslϕVlxi+VklDxs(ϕVlxi)+VkslVijϕVjVl
+VklVisjϕVjVl

+

+VklVijDxs(ϕVjVl
) = 0 etc. (2.6.c)

where Dxi = ∂
∂xi + Vij

∂
∂Vj

, we can see that in the case of existing of
the Bellman-Lyapunov function the coefficients of it decomposition in
Taylor series in the origin of coordinates are determined by the sys-
tem (2.6) uniquely. For each subsystem (2.6), defining a p-jet, jp

0(V ) ,
the number of equations coincides with the number of unknown vari-
ables (derivatives ϕxi , ϕVj by condition are equal 0). Flexons Vij are
calculated from the quadratic Riccati system (2.6.b) and condition of
positive determinancy of the matrix (Vij) , derivatives of the function
V , beginning with third order, are defined from the system of the lin-
ear inhomogeneous equations. If the function V is analitical it can be
represented by Taylor decomposition

V =
∞∑

i1,...,in=0

1
i1! . . . in!

V(i1,...,in)(0)(x1)i1 . . . (xn)in (2.7)

where

V(i1,...,in)(0) =
∂(i1+...+in)V

∂(x1)i1 . . . ∂(xn)in

∣∣∣∣
x=0

In spite of the fact that the jet j∞0 (V ) is given by the system (2.6)
in implicit kind, the solution of any finite subsystem (2.6) by use of
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computer algebra does not represent difficulties (there is an effective
algorithm of solving of such system).

Example 2 (Duffing equation, rigid spring).

{
ẋ1 = x2

ẋ2 = −x1 − 2(x1)3 + u
J =

∞∫

0

((x1)2 + (x2)2 + u2)dt

uopt = −1
2V2 – optimal control on L+ ;

ϕ = (x1)2 +(x2)2− 1
4(V2)2−(2(x1)3 +x1)V2 +x2V1 = 0 – Hamilton-

Jacoby equation.
Let’s write initial defining equations to calculate derivatives of the

Bellman-Lyapunov function in the origin of coordinates up to 4 or-
der (indexes at ϕ mean the full derivatives in respect to appropriate
variables):





ϕ11|0 = 2− 1
2(V12)2 − 2V12 = 0

ϕ12|0 = −1
2V22V12 − V22 + V11 = 0

ϕ22|0 = 2− 1
2(V22)2 + 2V12 = 0

Positive definite solution of the given system is the matrix with
elements:

V11 = 2
√

4
√

2− 2, V12 = 2
√

2− 2, V22 = 2
√

2
√

2− 1.





ϕ111|0 = 3
2(2− 2

√
2)V112 − 3V112 = 0

ϕ112|0 = −2
√

2V122 −
√

2
√

2− 1V112 + V111 = 0

ϕ122|0 = −
√

2
√

2− 1V122 −
√

2V222 = 0

ϕ222|0 = −3
√

2
√

2− 1V222 + 3V122 = 0

This linear system has a unique trivial solution:

V111 = V112 = V122 = V222 = 0.
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



ϕ1111|0 = −4
√

2V1112 + (96− 96
√

2) = 0

ϕ1112|0 = V1111 − 3
√

2V1122 + (36
√

2− 48)− 24
√

2
√

2− 1 = 0

ϕ1122|0 = −2
√

2V1222 − 2
√

2
√

2− 1V1122 + 24
√

2− 48 = 0

ϕ1222|0 = 3V1122 − 3
√

2
√

2− 1V1222 −
√

2V2222 = 0
ϕ2222|0 = −4

√
2V1112 − 48(2

√
2− 2) = 0

Solution of the last system is:

V1111 =
1

573
((636− 573

√
2)

√
2
√

2− 1 + 1312− 44
√

2),

V1112 = 12
√

2− 24,

V1122 =
1

191
(137− 3

√
2),

V1222 =
1

191
((−30

√
2− 9)

√
2
√

2− 1 + 20 + 3
√

2),

V2222 =
1

191
(30
√

2 + 9).

We obtain an initial segment of Taylor series of the Bellman-
Lyapunov function:

V =
1
2
V11(x1)2+V12x

1x2+
1
2
V22(x2)2+

1
24

V1111(x1)4+
1
6
V1112(x1)3x2+

+
1
4
V1122(x1)2(x2)2 +

1
6
V1222x

1(x2)3 +
1
24

V2222(x2)4 + . . .

2.4 Evolutionary equation

There is a possibility to deformate smoothly any smooth cut

S0 : Rn → T ∗Rn
⋂

ϕ−1(0) : (xi) 7→ (xi, Sj
0(x

k))

with positive main minors of the Jacoby matrix (Sj
0xk), passing

through, 0 ∈ T ∗Rn , of stratification T ∗Rn ⋂
ϕ−1(0) → Rn on a semi-

infinite segment [0,∞], remaining in the class of cuts of an indicated
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stratification, in holonomic (representing in this case Lag ) along an
approaching evolutionary vector field

∂

∂τ
Vi = Φi(xj , Vlxk , Vmxsxt)

.. : Vi(x, τ)
∣∣∣∣
τ=0

= Si
0(x) (2.8)

where
n∑

i=0

Φi
∂

∂Vi
– projection on tangent stratification

T (T ∗Rn
⋂

ϕ−1(0)) of evolutionary vector field

Q =
n∑

k=1

∑

i<j

Vlxk(Vixj − Vjxi)(Vixjxk − Vjxixk)
∂

∂Vl

appropriate to minus - gradient, (−gradπ) of function

π =
1
2

∑

i<j

(Vixj − Vjxi)2, that is

n∑

i=1

Φi
∂

∂Vi
=

n∑

i,j=1

βijϕVj

∂

∂Vi
, βij = −βji ∈ C∞(T ∗Rn),

βij – any solution of the inequality (scalar product is more than zero)

n∑

i,j,k=1

∑

s<t

βijϕVjVixk(Vsxt − Vtxs)(Vsxtxk − Vtxsxk) > 0, if (xi, Vj) 6= 0.

Lagrange manifold of a nondegenerate Bellman-Lyapunov function
is limiting solution at τ →∞ equations (2.8). The more skillful meth-
ods of deformation of algebraic solutions of the differential equations
in holonomic can be found in fundamental work[40].
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3 Geometrical methods

In the given section the greater attention is given to invariant descrip-
tion of the potential function and its Lagrange manifold.

3.1 Class of system with invariant foliation of Bellman-
Lyapunov function

System (1.1), (1.2) has invariant foliation of the Bellman-Lyapunov
function, if the optimal stream in the state space keeps invariant sur-
faces of a level of the Bellman-Lyapunov function. The class of such
systems is not empty and has good algebraic description. For systems
of this class the following sentence takes place [41].

Subalgebra generated by the Bellman-Lyapunov function in algebra
of smooth functions on Rn is differential concerning an infinitesimal
operator defining optimal stream.

Let’s designate:
ϕ(xi, Vj) – Hamiltonian,
(−ω(xi, Vj)) – Lagrangian (ϕ ≡ ϕViVi + ω),
Idϕ – Hamilton vector field,
L

(k)
Idϕ – k-th Lie derivative along Idϕ (k = 0, 1, 2, . . .),

iIdϕ – substitution operation of Hamilton field into form.
Sequences of the 2-forms

dω ∧ dV, d(LIdϕω) ∧ dV, . . . , d(L(k)
Idϕω) ∧ dV, . . .

and 1-forms

iIdϕ(dω ∧ dV ), iIdϕ(d(LIdϕ) wedgedV ), . . . , iIdϕ(d(L(k)
Idϕω) ∧ dV ), . . .

are contained in a differential ideal of the Lagrangian manifold of the
Bellman-Lyapunov function.

Sequences of the 2-forms and 1-forms from the previous sentence
completely characterize a pair of Lagrange manifolds L+ ⋃

L− in a
phase space, just, separatrix of points that are stable concerning the
origin of coordinates of the Hamilton vector field Idϕ and separatrix
of points that are unstable concerning the origin of coordinates.
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Stated facts can be used for exact calculation of an optimal feed-
back of the optimal stabilization problem for the defined above class of
systems.

Example 3.

{
ẋ1 = x2

ẋ2 = u
J =

∞∫

0

((x1)2 + u2)dt

minu{x2V1 + uV2 + (x1)2 + u2} = 0 – Bellman equation.
uopt = −1

2V2

ϕ = x2V1 − 1
4(V2)2 + (x1)2 – Hamiltonian of system.

ω = ϕ− ϕViVi = (x1)2 + 1
4(V2)2 – minus Lagrangian.

Idϕ = ϕVi
∂

∂xi − ϕxj
∂

∂Vj
= x2 ∂

∂x1 − 1
2V2

∂
∂x2 − 2x1 ∂

∂V1
− V1

∂
∂V2

–
Hamilton vector field.

ω(1) = LIdϕω = 2x1x2 − 1
2V1V2, ω(2) = L

(2)
Idϕω = 2(x2)2 + 1

2(V1)2

– first and second Lie derivatives from ω along Idϕ.

Let’s assume ω(1) = Aω, ω(2) = Bω, ϕ = 0, A,B − const.
Solving the received system of the square equations concerning

V1, V2, we shall obtain
{

V1 = ±2
√

2x1 + 2x2

V2 = 2x1 ± 2
√

2x2

Sign “+” corresponds to the Bellman-Lyapunov function .
We find uopt = −x1 −√2x2.

Example 4 [14, page 47].





ẋ1 = x2

ẋ2 = sinx1 + x3

ẋ3 = u
J =

∞∫

0

((x1+x2+x3)2+(x2+sinx1+x3+u)2)dt

minu{x2V1 + (sinx1 + x3)V2 + uV3 + (x1 + x2 + x3)2+
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(x2 + sinx1 + x3 + u)2} = 0 – the Bellman equation.

uopt = −1
2
V3 − x2 − sinx1 − x3

ϕ = x2V1 + (sinx1 + x3)V2 − (x2 + sinx1 + x3)V3 − 1
4
V 2

3 +

+(x1 + x2 + x3)2 – Hamiltonian.

ω = (x1 + x2 + x3)2 +
1
4
V 2

3 – Lagrangian.

Idϕ = x2 ∂

∂x1
+(sinx1+x3)

∂

∂x2
−(x2+sinx1+x3+

1
2
V3)

∂

∂x3
−(cosx1V2−

−cosx1V3+2x1+2x2+2x3)
∂

∂V1
−(V1−V3+2x1+2x2+2x3)

∂

∂V2
−(V2−V3+

+2x1 + 2x2 + 2x3)
∂

∂V3
– Hamilton vector field.

Let us assume, KV = ω, K − const. If V – polinomial then V
has a kind V = C(x1 + x2 + x3)2, C − const. Let’s substitute V1, V2,
V3 in the equation ϕ = 0 and in result we shall obtain C = ±1 (“+”
corresponds to the Bellman function).

It is possible to check up that functions V1 = V2 = V3 = ±2(x1 +
x2 +x3) satisfy to the equations ω(1) = Aω, ω(2) = Bω, A, B − const,
where

ω(1) = LIdϕ =
1
2
(V3)2 − 1

2
V2V3 − 2V3(x1 + x2 + x3),

ω(2) = L
(2)
Idϕω =

3
2
(V3)2 +

1
2
V1V3−3V3(x1 +x2 +x3)− 3

2
V2V3 +

1
2
(V2)2+

+3V2(x1 + x2 + x3) + 4(x1 + x2 + x3)2

– first and second Lie derivatives ω along Idϕ.
We find uopt = −x1 − 2x2 − 2x3 − sinx1.
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3.2 Systems with Hamiltonian admitting group of sym-
metries along a level surface of the decision of the
Hamilton-Jacoby equation

There are joint differential invariants of Hamiltonian ϕ and function
V (x), being a solution of the equation ϕ = 0. Let’s calculate differential
invariants of the first order by Laptev G.F. method [42,43].

On space of coframe stratification H∞(Rn) over Rn there is a
sequence of the 1-forms invariant concerning smooth automorphisms
H∞(Rn) → H∞(Rn) :

ωi = xi
jdxj ,

ωi
j = dx̃k

j x
i
k − xi

jkω
k,

ωi
jk = dxi

jk − xi
jlω

l
k − xi

lkω
l
j + xl

jkω
i
l + xm

jkx
i
mlω

l − xi
jklω

l, etc. (3.1)

where
x̃i

jx
j
k = δi

k.

Let’s make decomposition dV and dϕ along the invariant forms
(3.1):

dV = Vidxi = Vix̃
i
jω

j ; Ij ≡ Vix̃
i
j ;

dVl = dIjx
j
l + Ijdxj

l = dIjx
j
l − Ijx

k
l ω

j
k − Ijx

t
lx

j
tkω

k;

dϕ = (ϕxi x̃i
k − ϕVl

Ijx
t
lx

j
tk)ω

k + ϕVl
xj

l dIj − ϕVl
Ijx

k
l ω

j
k;

Jk
j ≡ ϕVl

Ijx
k
l ; J j ≡ ϕVl

xj
l ; Jk ≡ ϕxi x̃i

k − ϕVl
Ijx

t
lx

j
tk;

Ij ; Jk
j ; J j ; Jk – differential invariants of the first order with

additional foliation parameters. These invariants are dependent
among themselves and therefore at their evaluation in initial algebra
C∞(T ∗Rn) there will be nontrivial base invariants. Actually, there is
one independent nontrivial joint differential invariant of functions ϕ
and V , obtained by convolution Jk

j on the upper and lower indexes
with regard of values Ij .

J ≡ J j
j = ϕVl

Ijx
j
l = ϕVl

Vl
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If the Hamiltonian ϕ admits group of symmetries with orbits on Rn

V = const, then J = ϕVl
Vl = F (V ) – smooth function from V .

From here immediately follows, that the class of systems with invari-
ant foliation of the Bellman-Lyapunov function is contained in a class
of systems with Hamiltonian admitting group of symmetries along a
level surface of a solution of the Hamilton-Jacoby equation.

4 Differential invariants of a quadratic Bell-
man-Lyapunov function

Let’s calculate differential invariants of smooth function relatively to
the standard operation of full linear group GL(n,R) on Rn

GL(n,R)×Rn → Rn : (A, x) 7→ Ax.

Let’s raise function V (x) with the help of canonical envelopment
x = Ax0, x0 = const 6= 0 on group space GL(n,R) and decom-
pose it differential, and also all coeffuicients, obtained at each stage
of expansion, according to the left-invariant forms of group GL(n,R)
ω = A−1dA, or ωi

j = ãi
kdak

j , where ãi
ka

k
j = δi

j .

dV = Vidxi = Vix
j
0a

i
kω

k
j ; J j

k ≡ Vix
j
0a

i
k;

dJ j
k = (Vila

l
ta

i
kx

s
0x

j
0 + Via

i
tx

j
0δ

s
k)ω

t
s; Jsj

tk ≡ Vila
l
ta

i
kx

s
0x

j
0;

dJsj
tk = (Vilαaα

σal
ta

i
kx

β
0xs

0x
j
0 + Vila

l
σai

kx
s
0x

j
0δ

β
t + Vila

l
ta

i
σxs

0x
j
0δ

β
k )ωσ

β ;

Jβsj
σtk ≡ Vilαaα

σal
ta

i
kx

β
0xs

0x
j
0; etc.

J j
k , Jsj

tk , Jβsj
σtk etc. – differential invariants of first, second, third

and etc. orders of function V (x) continued on group space. The
indicated magnitudes are dependent among themselves, that is there
are independent nontrivial base invariants of function V (x), obtained
with the help of convolution on appropriate to the upper and lower
indexes of found invariants.
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I1 ≡ J j
j = Vix

i, I2 ≡ Jsj
sj = Vilx

lxi, I3 ≡ Jβsj
βsj = Vilαxαxlxi, . . . –

base invariants of first, second, third and etc. orders of smooth func-
tion V (x), among which there is only one (differentially) independent
invariant I1 .

For homogeneous square function V I1 = Vix
i = 2V (known the

Euler relation). Unfortunately, Ij , j = 1, 2, . . . will not form the full
system of invariants, nevertheless they can be useful. By share solution
of the Hamilton-Jacoby equation (1.5) linearly – square systems and
equations 2V = Vix

i is the pair square positive definite and negative
definite functions. From the structure of the relation 2V = Vix

i in
common case it is possible to make a conclusion about presence of the
smooth in a neighbourhood of zero vector field ξi ∂

∂xi , similar to the
field of radial stretch xi ∂

∂xi , enveloping the vector field on R1 2V ∂
∂V

with the help of potential function V = V (x).

5 Bellman-Lyapunov function as equidistant
function of Euclidean space

In canonical case the nondegenerate potential function has the kind
V (x) = (x1)2 + . . . + (xn)2 .

Therefore for the standard Euclidean metric ρ2 = gijdxi ⊗ dxj ,
where gij = δij , and appropriate, (∇(ρ2) = 0) connectedness ∇ :∧1

C∞(Rn) →
∧1

C∞(Rn)⊗
∧1

C∞(Rn) : dxi 7→ dxj ⊗ ω̃i
j ,

where ω̃i
j = 0,

∧1
C∞(Rn) – module of 1-forms on Rn,

∇(dV ) = 2ρ2 (3.2)

Function V satisfying (3.2) is called equidistant[44].
The equation (3.2) has an invariant character (function V by

internally is joined to Riemannian space with the metric ρ2 ). By
virtue of said, nondegenerate potential function V (x) is uniquely
determined as equidistant function of some plane Riemannian space.

From the equation (3.2) follows

dVj = −ω̃i
jVi + 2gjidxi (3.3)
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where

ω̃i
j = −Γi

jkdxk, Γi
jk =

1
2
git(gtjxk + gtkxj − gkjxt), Γi

jk = Γi
kj ,

dω̃i
k + ω̃j

k ∧ ω̃i
j = 0 .

Let’s substitute (3.3) in the differential of the equation (2.4.a) taken
in regard (2.4.b); we shall obtain

(f i
xk + Γi

jkf
j)Vi + 2f jgjk + ωxk = 0 (3.4)

Let us assume, that the matrix f i
xk is not degenerate (in some neigh-

bourhood of the origin of coordinates Rn × Rm ); the condition of
nondegeneracy of a vector field is invariant concerning replacement of
coordinates; therefore in the canonical system of coordinates {x̃i}
(where Γ̃i

jk = 0) f̃ i
x̃k – nonsingular matrix. Coefficients at Vi in

the equation (3.4) represent the covariant derivative f i
,k of vector

field f i ∂
∂xi ; in canonical coordinates the following equality takes place

f̃ i
,k = f̃ i

x̃k . Therefore matrix of coefficients f i
,k = f i

xk + Γi
jkf

j in the
equation (3.4) nonsingular (under condition of nonsingularity f i

xk ).

Let f
k
l – inverse matrix for f i

,k (f i
,kf

k
l = δi

l). Then

Vl = −2gjkf
jf

k
l − ωxkf

k
l (3.4.a)

Let’s substitute (3.4.a) in uopt = uopt(Vi, x
j) , we shall obtain

ũopt = ũopt(gij , Γi
jk, x

l) (it is supposed, that equations (2.4.b)
are locally solvable concerning u in vicinity of origin of
coordinates ( matrix (f i

ukulVi +ωukul)|0∈T ∗Rn×Rm is nondegenerate)).
Let’s substitute in the differential of the equation (3.4) dVi from

(3.3) and obtained from (2.4.b) duj = −Bjk(f i
ukxlVi + ωukxl)dxl −

Bjkf i
ukdVi , where Bjk – matrix is inverse for Bkr ≡ f i

ukurVi +ωukur

(BjkBkr = δj
r), we shall obtain the equations

[((f i
xkxs + Γi

jkxsf j + Γi
jkf

j
xs)(−2gj1k1f

j1f
k1

i − ωxk1f
k1

i ) + 2f j
xsgjk+
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+2f jgjkxs + ωxkxs)−Blk1((f i
xkul + Γi

jkf
j
ul)(−2gj1k2f

j1f
k2

i − ωxk1f
k2

i )+

+2f j
ulgjk + ωxkul)× (f i1

uk1xs(−2gBCfBf
C
i1 − ωxCf

C
i1) + ωuk1xs+

+f i2
uk1

(ΓA
i2s(−2gBCfBf

C
A − ωxCf

C
A) + 2gi2s)+

+(f i
xk + Γi

jkf
j)(ΓA

is(−2gBCfBf
C
A − ωxCf

C
A)+

+2gis)]
∣∣∣∣
u=ũopt(gij ,Γk

ls
,xr)

= 0 (3.5)

The equations (3.5) together with following

−Γi
ksxt + Γj

ktΓ
i
js + Γi

ktxs − Γj
ksΓ

i
jt = 0 (zero curvature) (3.6)

determine (ambiguously) plane Riemannian metric associated with the
problem of the optimum stabilization. We can get rid of the equations
(3.6) by taking gij = δklh

k
xih

l
xj , where hk(x) – apropriate functions of

a transformation of coordinates, but the equations (3.5) look too vast
even at a possibility of their unique solution with additional defining
conditions on the metric.

To synthesis of quasioptimal control can be useful the metric gij =
1
2Vij (in an exactness appropriate for the linearly-quadratic problem).

to be continued . . .
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