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Stability, pseudostability and quasistability

of vector trajectorial lexicographic

optimization problem∗

R. Berdysheva V. Emelichev E. Girlich

Abstract

Lower bounds of stability, pseudostability and quasistability
radii of lexicographic set in vector combinatorial problem on sys-
tems of subsets of finite set with partial criteria of more general
kinds have been found.

Many specialists are engaged in study of stability of discrete op-
timization problems to perturbations of their parameters (see [1-3]).
Need for investigation of stability of optimization problems is connected
with inaccuracy of the input data, inadequacy of mathematical models
to real processes, mistakes of computations and other factors.

The stability of single-criterion trajectorial discrete optimization
problems have been investigated in detail. Many well-known optimiza-
tion problems on graphs, Boolean programming problems, and also
scheduling problems, can be described as the special cases [3-9]. Ana-
lyzing stability of such problems the authors paid the main attention to
the calculation of the stability radius. This notion for a single-criterion
trajectorial problem was introduced by V.K.Leontiev [4].

Necessary and sufficient conditions of three types of stability (in
our terms stability, quasistability and pseudostability) of Pareto set in
vector integer programming problems were obtained in [10-13].

The papers [14-17] is devoted to stability of trajectorial problems
with partial criteria of the three most widespread types: MINSUM,
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MINMAX and MINMIN. Lower bounds of the stability radius of Pareto
set, and formulae in several cases were found. The stability and stabil-
ity radii of efficient (Pareto optimal, Slater optimal and Smale optimal)
trajectories were investigated in [18].

In this paper we consider a vector lexicographic optimization trajec-
torial problem with partial criteria of more general kinds. This criteria
include three criteria named above. Lower bounds of stability, qua-
sistability and pseudostability radii of lexicographic set, and formulae
in several cases, have been found for the case where l∞-norm is defined
in the space of vector criterion parameters. The stability kernel, i.e.
the set of all stable trajectories, has been investigated.

1 Statement of the problem

Let E = {e1, e2, . . . , em},m > 1, be a given set, T ⊆ 2E\{∅} be a
system of nonempty subsets (trajectories) of the set E , |T | > 1.

On the set E, we define a vector weight function

a(e) = (a1(e), a2(e), . . . , an(e)) ∈ Rn, n ≥ 1,

and, on the set T , a vector criterion

f(t) = (f1(t), f2(t), . . . , fn(t)).

The partial criteria of the vector criterion are functions of the following
two kinds:

Σ−MINMAX fi(t) =

= max

{
∑
e∈q

ai(e) : q ⊆ t, |q| = min{|t|, ki}
}
→ minT ,

(1.1)

Σ−MINMIN fi(t) =

= min

{
∑
e∈q

ai(e) : q ⊆ t, |q| = min{|t|, ki}
}
→ minT ,

(1.2)
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where ki, i ∈ Nn = {1, 2, . . . , n}, are given natural numbers such that

1 ≤ ki ≤ p = max{|t| : t ∈ T} ∀i ∈ Nn.

When ki = p, i ∈ Nn, both the criterion (1.1) and the criterion (1.2)
turn into a linear criterion

MINSUM fi(t) =
∑

e∈t

ai(e) → min
T

. (1.3)

When ki = 1, i ∈ Nn, the criterion (1.1) turns into a bottleneck
criterion

MINMAX fi(t) = max{ai(e) : e ∈ t} → min
T

(1.4)

and the criterion (1.2) turns into a criterion

MINMIN fi(t) = min{ai(e) : e ∈ t} → min
T

. (1.5)

Note that the problems with Σ-MINMAX and Σ-MINMIN criteria
are related to needs of optimal distribution [19].

When we say n-criteria trajectorial problem, we mean the problem
of finding the lexicographic set. The lexicographic set is a subset of the
Pareto set and is defined as follows [20-26].

Suppose Sn is the set of all n! permutations of the numbers
1, 2, . . . , n. We say that a trajectory t is a lexicographic optimum if
there exists a permutation s = {s1, s2, . . . , sn} ∈ Sn such that one of
the following conditions holds for any trajectory t′:

1) f(t) = f(t′);

2) ∃k ∈ Nn (fsk
(t) < fsk

(t′))&(∀i ∈ Nk−1 fsi(t) = fsi(t
′)).

If k = 1, then the last equalities are absent (No = ∅).
Thus s orders the partial criteria by an impotence such that every

previous criterion is more significant than all the consequent ones.
We say that the set of all lexicographic optimal trajectories defined

by all n! permutations is the lexicographic set and write Ln. The n-
criteria trajectorial problem is denoted by Zn.
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The vector weight function a(e) can be represented as the ma-
trix A = {aij}n×m, where aij = ai(ej). Let I1 and I2 be the sets
of those numbers from Nn, which number the criteria (1.1) and (1.2)
respectively (I1

⋃
I2 = Nn). If the numbers k1, k2, . . . , kn and the sets

E, T, I1 , I2 are fixed, then the individual n-criteria trajectorial lexico-
graphic optimization problem is uniquely determined by the matrix A.
Therefore we denote it by Zn(A). Ln(A) denotes the lexicographic set,
f(t, A) denotes the vector criterion f(t) and fi(t, A) denotes its partial
criteria fi(t).

It is evident that the lexicographic optimization problem turns into
the problem of finding the optimal set when n = 1. Its stability radius
has been investigated by Leontev V. K. and Gordeev E. N. in the case
of linear and bottleneck criteria (see [4-7]).

As usually, we will perturbate the matrix A ∈ Rnm by adding to A
matrices from the set

<(ε) = {B ∈ Rnm : ‖B‖ < ε},
where ε > 0, ‖.‖ is the norm l∞ (Chebyshev norm) in Rnm, i.e.

‖B‖ = max{|bij | : (i, j) ∈ Nn ×Nm}, B = {bij}n×m.

Let A,B ∈ Rnm. If we add a matrix B to the matrix A of the
problem Zn(A) we get a perturbed problem Zn(A + B). Here the
matrix B is called perturbing.

As in [15,16], we say that the problem Zn(A) is

• stable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) = Ln(A + B);

• pseudostable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) ⊇ Ln(A + B);

• quasistable if

∃ ε > 0 ∀B ∈ <(ε) Ln(A) ⊆ Ln(A + B).
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It is evident that the properties of pseudostability and quasistability
of the discrete problem Zn(A) are equivalent to the properties of upper
and lower semicontinuity by Hauzdorf of the optimal mapping Ln :
Rnm → 2T in a point A ∈ Rnm respectively (see [1,2,27-30]).

Let Isum, Imax and Imin be the set of those numbers from Nn that
number the partial criterion (1.3), (1.4) and (1.5) of the vector criterion
f(t) respectively.

2 Pseudostability

We say that the value

ρn
1 (A) =

{
supΩ1(A) if Ω1(A) 6= ∅,
0 if Ω1(A) = ∅,

where Ω1(A) = {ε > 0 : Ln(A) ⊇ Ln(A + B) ∀B ∈ <(ε)}, is the
pseudostability radius of the problem Zn(A), n ≥ 1.

Thus the pseudostability radius of the problem Zn(A) is defined as
the limit of perturbations for elements of matrix A that do not cause
appearance of new lexicographic optimal trajectories.

Obviously, if T = Ln(A), then the pseudostability radius ρn
1 (A) is

equal to infinity. The problem Zn(A) is called nontrivial if L̄n(A) =
T\Ln(A) 6= ∅.

The next two properties follow directly from the definition of the
pseudostability radius.

Property 2.1. Let ϕ > 0. If

L̄n(A) ⊆ L̄n(A + B) ∀B ∈ <(ϕ),

then ρn
1 (A) ≥ ϕ.

Property 2.2. Let the problem Zn(A) be nontrivial, ϕ ≥ 0. If, for
any number ε > ϕ, there exist a perturbing matrix B ∈ <(ε) and
a trajectory t ∈ L̄n(A) such that

t ∈ L̄n(A + B),
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then ρn
1 (A) ≤ ϕ.

Let us introduce the following notation for any two different tra-
jectories t, t′:

τi(t, t′, A) = fi(t, A)− fi(t′, A);

∆i(t, t′) =




|t|+ |t′| − 2|t ⋂

t′| if i ∈ Isum,

min{|t|, ki}+ min{|t′|, ki} if i 6∈ Isum.

It is obvious that the inequality ∆i(t, t′) > 0 holds for any index
i ∈ Nn and any trajectories t 6= t′.

In order to find a lower bound of the pseudostability radius, we
will formulate some evident properties and prove an auxiliary
lemma.

Property 2.3. The trajectory t is a lexicographic optimum of the
problem Zn(A) if there exists an index i ∈ Nn such that

τi(t, t′, A) < 0 ∀t′ ∈ T, t′ 6= t.

Property 2.4. The trajectory t is not a lexicographic optimum of the
problem Zn(A) if for any index i ∈ Nn there exists a trajectory
t′ 6= t such that τi(t, t′, A) > 0.

Further, for any subset t ⊆ E, let N(t) be the set of indexes j ∈ Nm

such that ej ∈ t :
N(t) = {j ∈ Nm : ej(t)}.

Lemma 2.1. Let t, t′ ∈ T, t 6= t′, i ∈ Nn, ε > 0. If

τi(t, t′, A) ≥ ε∆i(t, t′), (2.1)

then
τi(t, t′, A + B) > 0 ∀B ∈ <(ε).

Proof. Let us consider three cases.
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Case 1. ki = p. Then the function fi(t, A) is linear. Hence, using
inequalities ‖B‖ < ε and (2.1), we get

τi(t, t′, A + B) = fi(t, A + B)− fi(t′, A + B) >

> fi(t, A)− ε|t\t′| − (fi(t′, A) + ε|t′\t|) =

= τi(t, t′, A)− ε∆i(t, t′) ≥ 0

∀B ∈ <(ε).

Case 2. ki < p, i ∈ I1. Then we have

τi(t, t′, A + B) = fi(t, A + B)− fi(t′, A + B) =

= max

{
∑

j∈N(q)
(aij + bij) : q ⊆ t, |q| = min{|t|, ki}

}

−max

{
∑

j∈N(q)
(aij + bij) : q ⊆ t′, |q| = min{|t′|, ki}

}
>

> fi(t, A)− ε min{|t|, ki} − (fi(t′, A) + ε min{|t′|, ki}) =

= τi(t, t′, A)− ε∆i(t, t′) ≥ 0 ∀B ∈ <(ε).

Case 3. In the third case where ki < p, i ∈ I2 the proof is carried
out by analogy.

This completes the proof of lemma 2.1.
By definition, put

ϕn(A) = min
t∈L̄n(A)

min
i∈Nn

max
t′∈T\{t}

τi(t, t′, A)
∆i(t, t′)

.

It is obvious that ϕn(A) ≥ 0.
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Theorem 2.1. Let A ∈ Rnm. For any combination of partial crite-
ria (1.1) and (1.2) of the nontrivial trajectorial problem Zn(A), n ≥ 1,
we have

ρn
1 (A) ≥ ϕn(A), (2.2)

moreover
ρn
1 (A) = ϕn(A) (2.3)

if Isum = Nn.
Proof. Inequality (2.2) is evident if ϕn(A) = 0.
Let ϕ = ϕn(A) > 0. Then <(ϕ) 6= ∅ and, by definition of the

number ϕ, for any trajectory t ∈ L̄n(A) and any index i ∈ Nn, there
exists a trajectory t′ 6= t such that

τi(t, t′, A) ≥ ϕ∆i(t, t′).

Therefore, by lemma 2.1, we obtain

τi(t, t′, A + B) > 0 ∀B ∈ <(ϕ).

Hence, using property 2.4, we get

t ∈ L̄n(A + B) ∀B ∈ <(ϕ).

Consequently, we obtain

L̄n(A) ⊆ L̄n(A + B) ∀B ∈ <(ϕ).

Thus, taking into account property 2.1, we have (2.2).
In order to prove equality (2.3) we will show that ρn

1 (A) ≤ ϕ if
Isum = Nn.

Then by definition of the number ϕ there exist a trajectory t ∈
L̄n(A) and an index k ∈ Nn such that

γ = max
{

τk(t, t′, A)
∆k(t, t′)

: t′ ∈ T, t′ 6= t

}
≤ ϕ. (2.4)

Let ε > ϕ. Hence taking the perturbing matrix B ∈ <(ε) with the
elements

bij =




−b if i = k, j ∈ N(t),
b if i = k, j 6∈ N(t),
0 if i 6= k, j ∈ Nm,
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where γ < b < ε, and using (2.4), we have

τk(t, t′, A + B) = τk(t, t′, A)− b∆i(t, t′) < τk(t, t′, A)− γ∆i(t, t′) ≤ 0

∀t′ ∈ T, t′ 6= t.

Thus by property 2.3 t is a lexicographic optimal trajectory of the
perturbed problem Zn(A+B). Consequently, taking into account prop-
erty 2.2, we obtain

ρn
1 (A) ≤ ϕ.

Combining this with (2.2), we see that theorem 2.1 is true.

Remark 2.1. If n = 1, then formula (2.3) turns into the well-
known formula for the pseudostability radius of the single-criterion lin-
ear trajectorial problem [7].

Since the problem Zn(A) is pseudostable only when ρn
1 (A) > 0, the

next corollary follows from theorem 2.1.

Corollary 2.1. In order for the nontrivial trajectorial problem
Zn(A), n ≥ 1, to be pseudostable it is sufficient, and also necessary in
the case Isum = Nn , to have

∀t ∈ L̄n(A) ∀i ∈ Nn ∃t′ ∈ T\{t} (τi(t, t′, A + B) > 0). (2.5)

It follows from this corollary that any single-criterion linear problem
Z1(A) is pseudostable (see [5]).

The next example shows that condition (2.5) is not necessary in
general when Isum 6= Nn.

Example 2.1. Suppose n = 2; m = 3; A =

(
0 1 0
0 0 1

)
;

T = {t1, t2}; t1 = {e1, e2}; t2 = {e2, e3};
f1(t, A) = max{a1j : j ∈ N(t)} → min

T
;

f2(t, A) =
∑

j∈N(t)

a2j → min
T

.
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Then t2 ∈ L̄2(A).
As for any matrix B ∈ <(1/2) the expressions

τ1(t1, t2, A + B) = 0, τ2(t1, t2, A + B) < 0

are true, t2 is not a lexicographic optimum of a perturbed problem
Z2(A + B) ∀B ∈ <(1/2). Consequently, the problem Z2(A) is pseu-
dostable.

On the other hand we have τ1(t1, t2, A) = 0. Hence formula (2.5)
is not true.

3 Quasistability

We say that the value

ρn
2 (A) =

{
supΩ2(A) if Ω2(A) 6= ∅,
0 if Ω2(A) = ∅,

where Ω2(A) = {ε > 0 : Ln(A) ⊆ Ln(A + B) ∀B ∈ <(ε)}, is the
quasistability radius of the problem Zn(A), n ≥ 1.

Thus the quasistability radius of the problem Zn(A) defines the
limit of perturbations for elements of matrix A such that the initial
lexicographic optimums are saved and the new ones may appear.

The next properties follow directly from the definition of the qua-
sistability radius.

Property 3.1. Let ϕ > 0. If

Ln(A) ⊆ Ln(A + B) ∀B ∈ <(ϕ),

then ρn
2 (A) ≥ ϕ.

Property 3.2. Let ϕ ≥ 0. If for any number ε > ϕ there exist a
trajectory t ∈ Ln(A) and a perturbing matrix B ∈ <(ε) such
that

t ∈ L̄n(A + B),

then ρn
2 (A) ≤ ϕ.
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By definition, put

ψn(A) = min
t∈Ln(A)

max
i∈Nn

min
t′∈T\{t}

γi(t, t′, A),

where

γi(t, t′, A) = −τi(t, t′, A)
∆i(t, t′)

. (3.1)

It is obvious that ψn(A) ≥ 0.

Theorem 3.1. Let A ∈ Rnm. For any combination of partial
criteria (1.1) and (1.2) of the trajectorial problem Zn(A), n ≥ 1, we
have

ρn
2 ≥ ψn(A), (3.2)

moreover
ρn
2 = ψn(A)

if Isum = Nn.
Proof. First we prove inequality (3.2). If ψn(A) = 0, then (3.2) is

evident. Let ψ = ψn(A) > 0. Then <(ψ) 6= ∅ and by definition of the
number ψ for any trajectory t ∈ Ln(A) there exist an index k ∈ Nn

such that for any trajectory t′ 6= t we have

0 < ψ ≤ γk(t, t′, A),

i.e.
τk(t′, t, A) ≥ ψ∆k(t, t′).

Therefore, by lemma 2.1, we obtain

τk(t, t′, A) > 0 ∀B ∈ <(ψ) ∀t′ ∈ T\{t}.

Hence, using property 2.3, we get

t ∈ Ln(A + B) ∀B ∈ <(ψ),

i.e.
Ln(A) ⊆ Ln(A + B) ∀B ∈ <(ψ).
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Consequently, taking into account property 3.1, we have (3.2).
Now we prove that ρn

2 (A) ≤ ψ if Isum = Nn. Suppose 0 ≤ ψ < ε.
Then by definition of the number ψ there exists a trajectory t ∈ Ln(A)
such that for any index i ∈ Nn there is a trajectory t′ 6= t, for which

γi(t, t′, A) ≤ ψ ∀i ∈ Nn.

Hence taking the perturbing matrix B ∈ <(ε) with elements

bij =
{

α, where i ∈ Nn, j ∈ N(t),
−α, where i ∈ Nn, j 6∈ N(t),

and ψ < α < ε, by virtue of linearity of τi(t, t′, A) we have

τi(t, t′, A + B) = τi(t, t′, A) + α∆i(t, t′) >

> τi(t, t′, A) + γi(t, t′, A)∆i(t, t′) = 0

∀i ∈ Nn.

Thus by property 2.4 t isn’t a lexicographic optimum of the per-
turbed problem Zn(A+B). Consequently, taking into account property
3.2, we obtain

ρn
2 (A) ≤ ψ.

Combining this with (3.2) we get theorem 3.1.
Since the problem Zn(A) is quasistable only when ρn

2 (A) > 0, then
the next corollary follows from theorem 3.1.

Corollary 3.1. In order for the trajectorial problem Zn(A), n ≥ 1,
to be quasistable it is sufficient, and also necessary in the case Isum =
Nn, to have

∀t ∈ Ln(A) ∃i ∈ Nn ∀t′ ∈ T\{t} (τi(t, t′, A + B) < 0). (3.3)

By the above we get the next corollary.
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Corollary 3.2. If Isum = Nn , then the inequality |Ln(A)| ≤ n is
a necessary condition for the problem Zn(A) to be quasistable.

The next example shows that condition (3.3) is not necessary in
general when Isum 6= Nn.

Example 3.1. Suppose n = 2;m = 4;A =

(
0 1 0 2
0 0 2 0

)
;

T = {t1, t2, t3}; t1 = {e1, e2}; t2 = {e2, e3}; t3 = {e2, e4};
f1(t, A) = max{a1j : j ∈ N(t)} → min

T
;

f2(t, A) =
∑

j∈N(t)

a2j → min
T

.

Then L2(A) = {t1}.
As for any matrix B ∈ <(1/2) the expressions

τ1(t1, t2, A + B) = 0, τ2(t1, t2, A + B) < 0, τ1(t1, t3, A + B) < 0

are true, t1 ∈ L2(A + B) ∀B ∈ <(1/2). Consequently, the problem
Z2(A) is quasistable.

On the other hand we have τ1(t1, t2, A) = 0 and τ2(t1, t2, A) = 0.
Hence formula (3.3) is not true.

Remark 3.1. By corollary 3.1, it follows that if an optimal trajec-
tory is unique, then the problem Z1(A) is quasistable. The converse is
true under assumption that the criterion is linear.

Remark 3.2. It is not difficult to give examples of matrices
A1, A2, A3 (n ≥ 1) such that

ρn
1 (A) < ρn

2 (A); ρn
1 (A) > ρn

2 (A); ρn
1 (A) = ρn

2 (A).

4 Stability

It is obvious that the problem Zn(A) is stable if it is pseudostable and
quasistable simultaneously. Therefore the next theorem follows from
corollary 2.1 and 3.1.
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Theorem 4.1. In order for the nontrivial problem Zn(A), n ≥ 1,
to be stable it is sufficient, and also necessary in the case Isum = Nn,
to satisfy formulae (2.5) and (3.3) simultaneously.

The value

ρn
3 (A) =

{
supΩ3(A) if Ω3(A) 6= ∅,
0 if Ω3(A) = ∅,

where Ω3(A) = {ε > 0 : Ln(A) = Ln(A + B) ∀B ∈ <(ε)}, is called the
stability radius of the problem Zn(A). The next formula is obvious.

ρn
3 (A) = min{ρn

1 (A), ρn
2 (A)}.

Hence, taking into account theorems 2.1 and 3.1, we have

ρn
3 (A) ≥ min{ϕn(A), ψn(A)},

moreover
ρn
3 (A) = min{ϕn(A), ψn(A)},

if Isum = Nn.
Now let us introduce other lower estimates of the stability radius.
By definition, put

k0
i = min{ki, min{|t| : t ∈ T}},
Qi = {q ⊂ E : k0

i ≤ |q| ≤ ki}
for any index i ∈ Nn. Since the set E is finite the sets Qi, i ∈ Nn, are
finite too. Let qi

1, q
i
2, . . . , q

i
pi

where pi = |Qi|, are the elements of the
set Qi, i ∈ Nn, V i = (vi

1, v
i
2, . . . , v

i
pi

) be the vector such that

vi
s =

∑

j∈N(qi
s)

aij ∀s ∈ Npi ,

where aij are the elements of the matrix A.

Theorem 4.2. If all the components of every vector V i, i ∈ Nn,
are different in pairs, then the following lower bound for stability radius
of the nontrivial trajectorial problem Zn(A) holds:

ρn
3 (A) ≥ 1

2
min
i∈Nn

min
1≤j<s≤pi

|vi
j − vi

s|
ki

. (4.1)
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Proof. By virtue of the structure of vectors Vi, i ∈ Nn, the follow-
ing inclusions are obvious

{fi(t, A) : t ∈ T} ⊆ {vi
j : j ∈ Npi} ∀i ∈ Nn.

Hence, since all the components of every vector Vi, i ∈ Nn, are
different in pairs, the next equivalencies are true for any index i ∈ Nn

and any trajectories t 6= t′:

fi(t, A) = fi(t′, A) ⇐⇒ fi(t, A + B) = fi(t′, A + B) ∀B ∈ <(ε),

fi(t, A) < fi(t′, A) ⇐⇒ fi(t, A + B) < fi(t′, A + B) ∀B ∈ <(ε),

if

0 < ε ≤ 1
2

min
i∈Nn

min
1≤j<s≤pi

|vi
j − vi

s|
ki

.

Therefore the equality Ln(A) = Ln(A+B) ∀B ∈ <(ε) holds for the
number ε defined above. Consequently, the bound (4.1) is true.

Theorem 4.2. has been proved.
The next proposition follows directly from theorem 4.2.

Corollary 4.1. Let Imax
⋃

Imin = Nn. If the elements of every row
of the matrix A are different in pairs, then the following lower estimate
for stability radius of the nontrivial trajectorial problem Zn(A) holds

ρn
3 (A) ≥ 1

2
min
i∈Nn

min
1≤j<s≤pi

|aij − ais|.

5 Stability kernel

A trajectory t ∈ Ln(A) is called stable if there exists a number ε > 0
such that

t ∈ Ln(A + B) ∀B ∈ <(ε).

We say that the set of all stable trajectories of the trajectorial
problem Zn(A) is a stability kernel and write Kn(A).

49



R.Berdysheva, V.Emelichev, E.Girlich

Let us introduce the set of all strict lexicographic optimal trajecto-
ries of the trajectorial problem Zn(A). By definition, put

Sn(A) = {t ∈ Ln(A) : ∃i = i(t) ∈ Nn ∀t′ ∈ T, t′ 6= t (τi(t, t′, A) < 0)}.

Theorem 5.1. For any combination of partial criteria (1.1) and
(1.2) of the trajectorial problem Zn(A), n ≥ 1, we have

Sn(A) ⊆ Kn(A), ∀A ∈ Rnm,

moreover
Sn(A) = Kn(A)

if Isum = Nn.
Proof. Let t ∈ Sn(A). Then there exists an index i ∈ Nn such

that
τi(t, t′, A) < 0 ∀t′ ∈ T, t 6= t.

Hence by virtue of continuity of any function fi(t, A) on the set
Rnm, we can find a number ε > 0 such that

τi(t, t′, A + B) < 0 ∀B ∈ <(ε).

Therefore from property 2.3 the trajectory t is a lexicographic op-
timum of a perturbed problem Zn(A+B) and, consequently, is stable.
Thus, the inclusion Sn(A) ⊆ Kn(A) holds.

Now we turn to proof of equality Sn(A) = Kn(A) in the case where
Isum = Nn.It is sufficient to show that any trajectory t such that

t ∈ Ln(A)\Sn(A)

is not stable. Since t is not strict lexicographic optimal, for any index
i ∈ Nn, there exists a trajectory t′ 6= t such that

τi(t, t′, A) ≥ 0.

Therefore for any number ε > 0 and the perturbing matrix B ∈
<(ε) with the elements

bij =
{

ε\2 if i ∈ Nn, j ∈ N(t),
−ε\2 if i ∈ Nn, j 6∈ N(t),
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we have

τi(t, t′, A + B) = τi(t, t′, A) +
ε

2
∆i(t, t′) > 0 ∀i ∈ Nn.

Hence by property 2.4 the trajectory t is not a lexicographic opti-
mum of the perturbed problem Zn(A+B), i.e. it is not stable. Theorem
5.1 has been proved.

The next corollary follows from theorem 5.1.

Corollary 5.1. If Isum = Nn, then |Kn(A)| ≤ n ∀A ∈ Rnm.

Remark 5.1. By virtue of equivalence of all the norms in a finite-
dimentsional space (see [31]) corollaries 2.1, 3.1, 3.2, 5.1 and theorems
4.1, 5.1 are valid for any norm in the space Rnm of perturbing matrices.

Suppose ε > 0. Then the ε-stability kernel of the problem Zn(A)
is the set

Kn
ε (A) = {t ∈ Ln(A) : t ∈ Ln(A + B) ∀B ∈ <(ε)}.

Theorem 5.2. In order for lexicographic optimal trajectory t to
belong to the ε-stability kernel Kn

ε (A) it is sufficient, and also necessary
in the case Isum = Nn, to satisfy the following inequality

max
i∈Nn

min
t′∈T\{t}

γi(t, t′, A) ≥ ε, (5.1)

where the value γi(t, t′, A) is calculated by formula (3.2).
Proof. Sufficiency. Let t ∈ Ln(A). Then by virtue (5.1) there

exists an index k ∈ Nn such that

τk(t′, t, A) ≥ ε∆k(t, t′) ∀t′ ∈ T\{t}.
Therefore, by lemma 2.1, we have

τk(t′, t, A + B) > 0 ∀B ∈ <(ε) ∀t′ ∈ T\{t}.
Hence, using property 2.3, we get

t ∈ Ln(A + B) ∀B ∈ <(ε).
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Consequently, the trajectory t belongs to Kn
ε (A).

Necessity. Let Isum = Nn, ε > 0, t ∈ Kn
ε (A). Suppose that (5.1)

doesn’t hold. Then for any index i ∈ Nn there exists a trajectory t′ 6= t
such that

γi(t, t′, A) < α,

where
ε > α > max

i∈Nn

min
t′∈T\{t}

γi(t, t′, A)

.
Therefore for the matrix B ∈ <(ε) with elements

bij =
{

α where i ∈ Nn, j ∈ N(t),
−α where i ∈ Nn, j 6∈ N(t),

we have

τi(t, t′, A + B) = τi(t, t′, A) + α∆i(t, t′) >

> τi(t, t′, A) + γi(t, t′, A)∆i(t, t′) = 0

∀i ∈ Nn.

Hence by property 2.4 the trajectory t is not lexicographic optimum
of the problem Zn(A + B), i.e. t 6∈ Kn

ε (A).
The contradiction proves theorem 5.2.
The value

ρn(A) = sup{ε > 0 : Kn
ε (A) 6= ∅}

is called the radius of the stability kernel of the problem Zn(A). If
Kn

ε (A) = ∅ ∀ε > 0, then put ρn(A) = 0.
By definition, put

ξn(A) = max
t∈Ln(A)

max
i∈Nn

min
t′∈T\{t}

γi(t, t′, A).

The next theorem follows from theorem 5.2.
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Theorem 5.3. Let A ∈ Rnm. For the radius of the stability kernel
of the problem Zn(A), n ≥ 1, with any combination of partial criteria
(1.1) and (1.2), the next estimate holds

ρn(A) ≥ ξn(A),

moreover
ρn(A) = ξn(A)

if Isum = Nn.
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