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Two problems concerning dynamic flows in
node and arc capacitated networks

E. Ciurea

Abstract

This paper presents two problems concerning dynamic flow in
node and arc capacitated networks: (1) maximal dynamic flow;
(2) feasible dynamic flows.

1 Maximal dynamic flows in arc capacitated
networks

Let G = (N, A) be a connected digraph with N = {s,...,z,...,s'},
|IN| = n the node set and A = {(z,y)/z,y € N},|A| = m < n(n—1)
the arc set. Let N be the natural number set and P{0,1,...,p} the set
of periods. Let us state the time function A : A — N and the capacity
function ¢ : A x P — N, where h(z,y), represents the arc transit
time and c¢(z,y;t) the arc capacity at time ¢ for (z,y) € A,t € P.
Let us designate by s the sourse and by s’ the sink of the network
G = (N,A,h,c).

The maximal dynamic flows problem for p time periods may be
formulated as follows. Let us determine the function f: A x P — N,
which should satisfy the following relations:

M=

O flayst) =D fla,ust) = v(p), v =s, (la)

t

Il
o

S flmyst) =) fla,yt) =0, z #£s,; ¢t € P, (1b)
Yy )
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p
SO flayt) = > flayst)) = —v(p), =5, (1c)

t=0 Y
0 < fz,y;t) < cw,y;), (v,y) € At € P, (2)
max v(p), (3)

where t =t — h(y, x).

Ford and Fulkerson [5] have shown that a dynamic flow for p time
periods in the static network G = (N, A, h, ¢) can be represented as a
static flow in the dynamic netwoek G(p) = (N(p), A(p)), where

N(p) ={z(t)/x € N,t € P}
A(p) = {(z(t),y(t")/(z,y) € A;t,t' € Pt' =t 4 h(z,y)}
c(z(t),y(t) = c(x,y;t), (z,y) € A; t,t' € P, t' =t + h(z,y).

In references [2], [3] it is shown that a dynamic flow for p time
periods in the static network G = (N, A, h, ¢) is equivalent with a dy-
namic flow for the same time periods in the static network G'(p) =
(N'(p), A'(p), W', ') and can be represented as a static flow in the dy-
namic network G*(p) = (N*(p), A*(p), h*, c*).

The networks G'(p) and G*(p) may be constructed as follows. Let
d(s, ) be the length of the shortest route from the sorce s to the node x
and d(z, s’ the length of the shortest route from the node x to the sink
s', with respect to h(x,y). Computing d(s,x), d(z,s’) for all z € N is
performed by means of the usual shortest path algorithms and is not
discussed in this paper. Let us consider:

P(z)={t/te P, d(s,x) <t <p—d(z,s)}, * € N,

P(z,y) ={t/t € P, d(s,z) <t <p— (h(z,y) +d(x,5))}, (z,y) € A.

The network G'(p) = (N'(p), A (p), ', ') may be constructed as fol-
lows:
N'(p) = {x/x € N, P(x) # 0},
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A(p) = {(z,y)/(z,y) € A, P(z,y) # 0},

and B/, ¢ are the restrictions to A’(p).
The network G*(p) = (N*(p), A*(p), h*, ¢*) is constructed from the
network G’(p) in the following manner:

N*(p) ={x(t)/x € N'(p),t € P(x)}

A*(p) = {(z(t),y(t")/(x,y) € A'(p);t € P(z,y),t' =t + h(x,y)}
< (x(t),y(t) = clz, y;t), (x,y) € A'(p); t € P(x,y), t' =t+h(z,y).

The network G’(p) is, in general, a partial subnetwork of G and the
network G*(p) is allways a partial subnetwork of G(p).

A dynamic flow problem is said to be stationary if the network pa-
rameters such as capacities, arc traversal times, and so on, are constant
over time (h: A — N, ¢: A — N, and so on).

In the references [3], [5] are presented algorithms for maximum
value dynamic flow problem. In the stationary case it does not require
the construction of time-expanded network G(p) or G*(p) for solving
this problem for any p. Show that maximum value dynamic flow in the
stationary case can be generated from a maximum value and minimum
time static flow F'(p) in network G’(p). The maximum dynamic flow
algorithm dor the stationary case is as follows.

Stage 1 Perform the mazimum value and minimum time static flow
F' in static network G'(p).

Stage 2 Decompose f' into a set of fllow paths wi,...,w), from s to
s' respectively carrying g, ..., gy flow from s to s'.

Stage 3 Fori = 1,...,k send g, flow units from s to s’ along flow
path w} starting out from s at time periods 0 and repeat it after each
time period as long as there is enough time left in the horizon for the
flow along the path to arrive at the sink.

The flow cunstructed above is referred to as a maximal temporally
repeated flow.
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2 Maximal dynamil flows in node and arc ca-
pacitated networks

In Section 1, we studied the maximal dynamic flow problem with ca-
pacity function ¢ : A x P — N. In the present section we extended
capacity function to k : N x P — N. Our objective is to find a max-
imal dynamic flow for p time periods from the source s to the sink s’
in G subject to both arc and node capacities. The problem may be
formulated as follows. Let us determine the function f: A x P — N,
with should satisfy the (1), (2), (3) and

o f(wyst) <k(wst), o # s, teP (20)
)
> fly,st) <k(s5t), te P (2¢)
Yy

This problem can be converted to the arc capacity case by the

following procedure. Let E}: ( ﬁ , :1, ;{, Z) be the network derived from
G = (N, A, h,c, k) in accordance with the following rules. To each node

x € N there correspond two nodes 1,z EN such that if (z,y) € A,
then (z2,y1) eA In addition, for each z € N, there is an (z1,x2) cA.
The arc time h and the arc capacity ¢ defined on A is given by

h (1727y1) - h(.T y) (1"27y15t) = C(ﬁ,y; t)v (l‘,y) € Avt € P)

%(561,1‘2) =0, ¢ (z1,29;t) = k(z;t), z € N, t € P.

With this representation, it is clear that for any dynamic flow f for p
time periods from s to s’ in G that does not exceed the node capacities,
there corresponds an equivalent dynamic flow f for p time periods from
s1 to 8’2 in G by taking

f (51327111;75) :f(l',y;t), (i[f,y) € Aa te Pa

f ($1a$2;t) :Zf(xayvt)’ 1;#5/7 te Pa

Y

2
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st sast) =S fly,s3t), t € P,
Yy

and vice versa.

It is clear that a dynamic flow for p time periods in the static
network G = (N, A, h,c, k) is equivalent with a dynamic flow for the
same time periods in the static network G'(p) = (N'(p), A’ (p), W', ¢, k)
and can be represented as a static flow in the dynamic network G*(p) =
(N*(p), A*(p), h®, c*, k*). The networks G'(p) = (N'(p), A'(p), W, ¢, k')
and G*(p) = (N*(p), A*(p), h*, c*, k*) may be constructed as G'(p) =
(N'(p), A'(p), 1, ) and G'(p) = (N'(p), A'(p), 1, ) from Section 1
and in addition &’ is the restriction to A'(p), k*(x(t)) = k(x;t), = €
N'(p), t € P(z).

In the present section we consider that node and arc capacities
remains unchanged through time, i.e., the problem is stationary

c(z,y;t) = c(z,y), (x,y) € A, t € P, (4a)

k(xz;t) = k(x), (xr) € N, t € P, (4d)

The arcs in A and the nodes in N are arranged in some order, and
h = (h(l‘,y)), c= (C(l’,y)), f= (f($7y))7 k= (k($)) denote the time,
arc cpacity, flow and node capacity vectors in which these quantities
are ordered in the same order as arcs in A and N.

A maximum dynamic flow for stationary case can be found with
the algorithm presented in Section 1 with the remark that m Stage 1

perform the maximum value and minimum time static flow f in static

network G (p) is performed.

3 Feasible dynamic flows in node and arc ca-
pacitated networks

In Scetion 2, we studied the maximum dynamic flow problem in a node
and arc capacitated networks. In the present section, we extended the
feasibility theorems to node and arc capacitated networks.
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Associate with s, nonnegative real number ¢(t) called the supply of
source s at time ¢t and with s’, nonnegative real number ¢'(¢) called the
demand of sink s’ at time ¢, t € P.

The objective is to determine the existence of a flow in G =
(N, A, h,c, k) so that the demands at the sink can be fulfilled from
the supplies at the source s satisfying the constraints

Yo f(syt) = fly,s:t') <q(t), t € P, (5a)
Y Yy

foy, ny,xt—() r#s,8,teP, (5b)
y

D Fly sty =D f(syt) < (1), te P, (5¢)
) Yy
0 < fz,y;t) < k(z;t), (z,y) € A, t € P, (6a)
Zf$y, <k(x;t), x #£5,teP, (60)
foy, ) < k(z;t), t € P, (6b)

where t =t — h(y, z).

If such solution exists, we say that the condtraints (5), (6) are
feasible. Otherwise, they are infeasible.

If X*(p) is a subset of N*(p) and write X = N*(p) — X*(p), then
a path from a node in X*(p) to a node in X (p) is called a path from
X*(p) to X (p). A generalized static disconnecting set from X*(p) to
X"(p) in dynamic network G*(p) = (N*(p), A*(p),c*, k*) is a collec-
tion od nodes and arcs of G*(p) such that every path from X*(p) to
X"(p) has at least a node or an arc belonging to the collection. De-
note by D* (X *(p), X (p)) a generalized static disconnecting set from
X*(p) to X (p) in G*(p) = (N*(p), A*(p),c*, k*). Then the capacity
*(D*(X*(p), X (p))) is defined to be the sum of the capacities of its
constituient elements:
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*

c*(D*(X*(p), X (p)))
=Y (c*(x(t), y(t) « (z(t),y(¢)) € D*(X*(p), X (p))+  (7)
+ (K (2(t)) : 2(t) € D*(X*(p), X (p))

Let us consider:
S*(p) = {s(t), te P(s)}, 5 (p)={s(t), t € P(s)},
T*(p) = {tls(t) € S*(p) N X (p)}, T (p) = {ts" € S"(p) N X (p)}

The following result can be found in [1].
Theorem 1 The constraints (5), (6) are feasible if and only if
S - Y o) <mine (DHX Q). X @) (®)

T" (p) T*(p)
holds gor every subset X*(p) C N*(p), where D (X*(p), X (p)) is the i-

th generalized static disconnecting set from X*(p) to X (p) in G*(p) =
(N*(p), A*(p), C*, k7).

Let the network G'(p) = (N'(p), A’ (p),d k') and Q(z) C P(z),
Q(xr) = P(z) — Q(x), « € N'(p). We define X'(p) = {z(t)|x €
N'(p), t € Q( )}, X'(p) = {x(t)|z € N'(p), t € Q(z)} and denote by
D’ (X (p), X (p)) a generalized dynamic disconnecting set from X'(p)
to X'(p) in G'(p) = (N'(p), A'(p), ¢, ).

We have the following theorem

Theorem 2 The constrains (5), (6) are feasible if and only if
> d( Z ¢(t) < mind'( (Di(X'(p), X (p))) (9)
' (p) ()

holds for every subset Q(x) C P(x), v € N'(p) where Di(X'(p),
is the i-th generalized dynamic disconnecting set from X'(p) to

in G'(p) = (N'(p), A'(p), ', K').

/

X (Ip))

X' (p)
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Proof. The result folows directly from Theorem 1 and the fact
that a dynamic flow for p time periods in the static network G’'(p) =
(N'(p), A'(p), ¢, k') can be represented as a static flow in the dynamic
network G*(p) = (N*(p), A*(p), c*, k*).

We illustrate the above results by the following example.

4 Example

Consider the network G = (N, A, h,c, k) of Fig. la) where node s is
the source, s’ is the sink and z,y are the intermediate nodes.

N

aj »yi~_as ~
S S~ P A
Cale @ @ |0 @
@ as | |as r
a;\l‘i ///a6 a2 ;t( : )// a6
a) b)

Fig.1

We have A = (aj,a2,a3,a4,a5,a6), h = (3,1,1,1,1,3), ¢ =
(3,2,1,2,2,3), N = (s,x,y,5"), k = (5,3,1,4). For p =5 the network
G'(5) = (N'(5),A'(5),h',c,K') is shown in fig.1b) with N'(5) = N,
A'(5) = (ay,a9,as,a4,as,a6), b = (3,1,1,1,3), ¢ = (3,2,2,2,3),

kK =(5,3,1,4). .
—— ()
W S
e VAN “
aé “““““““““ S N j’aG
()——(2)
Fig.2

The network G’(5) can be converted into an equivalent arc capacity
network
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~ o~

G' (5) = (N’ (5),A" (5),1, ) with N (5) = (s1, 82,21, T2, Y1, Y2, S}, S5),

~/
A’ (5) = (e1,a1, a2, €2, €3, a4, a5, ag, 1), h = (0,3,1,0,0,1,1,3,0), ¢ =
(5,3,2,3,1,2,2,3,4) and is shown in Fig.2.
(N*(5), A*(5),c*, k*) is shown in Fig.3 with

The network G*(5) =
(a1(0),a1(1), a2(0), az(1), a2(2), as(1), as(2),

A*(5) =
a'4(3)7 a'5(2)7 a5(3)’ a5(4)’ aﬁ(l)’ aﬁ(z))7
¢t = (3335272727232727272323373)7
N*(B) = (8(0),8(1),8(2),1'(2),.%'( ),l‘(4),
y(1),9(2),y(3),5'(3),5'(4),5'(5)),
k* = (5,5,5,3,3,3,1,1,1,4,4,4).
i) G0 w2
]
— [ — / ,/’
-~ / /
(), () T (B) [
A R A NP M jas)
/ / [™a / AN /
/,/’ ......... / / ’/,r/ 4 . /’y/ as (2) ’,/’ 9\4 (3) ’/'
/ y ,/’ \"\‘_ r/’ ,/'/ h r'/
AT BT
,/’/’ ,r”/ . ’ﬁL g —v
/”/ 0 / 'l"l'l"’ / / ”"'I"l'
[0 4 T )

Fig.3

The temporally repeated flow in network G*(5) generated from the

maximum value and minimum time static flow f= (3,2,1,2,1,0,2,1, 3)

~/
from G (5) which is equivalent with the maximum value and minimum
=(2,2,1,1,0,0,0,0,

time static flow F’ = (2,1,0,2,1) from G'(5) is f*
0,2,2,1,1). It is interesting to observe that without nodal capacity con-

~sk
straints, the maximum static flow f = (2,2,2,2,0,0,0,0,0,2,2,2,2)
has the value 7* = 8, whereas with nodal capacity the maximum static
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flow value is reduced to v* = 6.

The suppllies and demands are given by ¢(0) = 3, ¢(1) = 3,
q2) = 1, ¢/3) =1, ¢d(4) = 2, ¢(5) = 3. In this case the
problem is feasible with flow f* = (2,2,1,1,0,1,0,0,1,2,2,0,1). If
¢'(3) = 2 then the problem is infeasible. To verify that condi-
tion (8) is indeed violated for some X*(5) C N*(5), let X*(5) =
{5(0), 5(1), 5(2), 2(3), 2(4), y(1), y(2)} and

Di(X*(5), X (5)) = {( (3),5'(4)), (2(4), 5'(5), (y(1),y(2))}-

We have T%(5) = 0, T"(5) I {3,4,5} and ¢'(3) +d'(4) + d'(5) =
24243 = 7> *(D(X7(5), X (5))) = ¢"(x(3),5'(4)) +c"(2(4), 5'(5))+
E*(y(1)) + k*(y(2)) = 2+2+ +1=6. For Q(s) ={0,1,2}, Q(z) =
{3,4}, Q(y) = {1, 2}, Q s') = () we obtain the same generalized discon-
necting set D}(X'(5), X (5)) = {(x(3), 5'(40), (z(4), #(5)), (y(1), y(2))}
and the condition (9) is indeed violated for some Q(z) C P(x), = €
N'(5).

References

[1] Chen W.K. Theory of Nets: Flows in Networks, John Wiley and
Sons, New York, 1990.

[2] Ciurea A.E. Deux remarques sur le flot dynamique maximal de cout
minimal, R.A.I.LR.O, Vert 3, Paris, 1979, pp.303-306.

[3] Ciurea A.E. Les problemes des flot dynamiques, Cahiers du CERO,
vol.26, No.1-2, Bruxelles, 1984, pp.3-9.

[4] Ciurea A.E., Radescu N. Les problemes des flotts dynamiques max-
imaux, Analele Univ. Craiova, seria M-F-C, vol.XI, 1983, pp.47-51.

[5] Ford L.R., Fulkerson D.R. Flow in Networks, Princeton University
Press, Y., Princeton, 1962.

[6] Minieka E. Maximal, lexicographic and dynamic network flows,
Opns. Res., Atlanta, vol.21, No.7, 1973, pp.517-527.

307



E.Ciurea

[7] Murty K.G. Network Programming, Prentice Hall, Englewood
Cliffs, N.Y., 1992.

[8] Wilkinson W.C. An algorithm for universal maximal dynamic flows
in a network, Opns. Res., vol.19, No.7, Atlanta, 1971, pp.1602-1618.

Eleonor Ciurea, Received October 15, 1997
Department of Informatics,

The “Transilvania” University,

50, str. Tuliu Maniu, Brashov,

2200, Romania

308



