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The problem of the synthesis of a transport

network with

a single source and the algorithm for its solution

D.Lozovanu J.Solomon

Abstract

The problem of the synthesis of a transport network with a
single source is under consideration and the combinatorial algo-
rithm for its solution is proposed.

1 Introduction

The problem of the synthesis of a transport network with a single
source, where cost functions of flows along the network edges are con-
cave functions is considered in the paper presented. This problem is
a generalization of the problems of optimal forest finding in oriented
graphs with weight [1]-[3], and has a direct application in research and
solving problems of the allocation of points of production and trans-
portation planning in transport networks [4]. For this problem, solving
a combinatorial algorithm based on the analysis of optimal flows in the
transport network with a single source and a generation of admissible
trees with a given source which corresponds to admissible flows in the
network is proposed.

2 Problem formulation

Let us consider a transport network with a single source and with the
cost functions of flows along edges, which is defined in the following
way:
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An oriented graph G = (V, E) with a set of vertices V, |V | = n
and with a set of edges E, |E| = m is given. The graph G has such a
property that for each vertex, v ∈ V \ {v0} at least one oriented path
exists P (v0, v) from the source v0 ∈ V toward the vertex v ∈ V . For
the set of vertices V \ {v0} a non-negative function p : V \ {v0} → R
is defined; in other words, with every vertex v ∈ V \ {v0} a non-
negative number p(v) is associated, which can be interpreted as the
corresponding number of consumptions for one consumer allocated in
the vertex v ∈ V \ {v0}. The source v0 ∈ V is associated with the
number

q(v0) =
∑

v∈V \{v0}
p(v)

which is interpreted as the whole number of production that is neces-
sary for consumers v ∈ V \ {v0} and must be transported from v0 to
consumers along edges of the oriented graph G.

It is also supposed that every edge e = (u, v) ∈ E is associated
with a function Ψe(x(e)) which numerically expresses transportation
expenses for the amount of production x(e) along the edge e ∈ E.

So, a transport network is defined with the help of the oriented
graph G = (V, E) and characteristic values p(v), q(v0), Ψe(x(e)), e ∈ E.

Remember that a function x : E → R is called a flow in the trans-
port network G with a single source and with cost functions Ψe(x(e))
if:

{ ∑
e∈O+(v) x(e)−∑

e∈O−(v) x(e) =

{
p(v), v ∈ V \ {v0}
−q(v0), v = v0

x(e) ≥ 0, ∀e ∈ E

(1)

where O+(v) is the set of edges e ∈ E which have extremes in the
vertex v; O−(v) is the set of all edges e ∈ E which have origins in the
vertex v ∈ V .

A problem of the synthesis of a transport network G with a single
source is formulated in the following way: it is necessary to find the
flow x∗ : E → R for which the functional value

F (x) =
∑

e∈E

Ψe(x(e)) (2)
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reaches its minimum;
In other words, the flow x∗ for which holds:

F (x∗) = min
x

∑

e∈E

Ψe(x(e))

3 The main results

Let x : E → R be any flow. It is known [1],[2] that if the graph G
has a property that for every v ∈ V , an oriented path P (v0, v) from v0

toward v exists, then a given transport network has a flow; in the other
words, a solution to the system (1) exists. Label by Gx = (V, Ex) a
subgraph of the graph G, which is generated from the set of all edges
e ∈ E for which x(e) > 0.

Theorem 1 If the functions Ψe(x(e)) are concave and non-decreasing,
then for the problem of the synthesis of a transport network with a single
source such a solution x∗ = (x∗(e1), x∗(e2), ..., x∗(em)) exists, for which
the corresponding graph Gx∗ = (V, E∗) has a structure of a tree with a
source v0.

Proof: First, we will prove that the subgraph Gx∗ = (V, E∗) does
not contain oriented cycles. Indeed, if we suppose that G∗

x contains
oriented cycles, then we can reduce for some value the flow along edges
of this cycle and as a result, we take a flow with the functional value
(2) not bigger than the functional value for the initial flow.

Consequently, the optimal flow x∗ in G exists, for which Gx∗ does
not contain oriented cycles. We will prove that in general (non-oriented
cycles) cycles Gx∗ do not exist. Suppose that Gx∗ contains oriented
cycles C with a set of edges EC . We will fix a certain direction of
the motion. Let

→
EC denote a set of all edges of this cycle for which

the direction of the oriented edges coincides with the direction of the
motion along the cycle and let

←
EC denote a set of all edges of this cycle

for which the direction of the edges is oriented to the opposite direction
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of the fixed motions along the cycle.

←
EC= EC\

→
EC

Let us construct the following two flows:

x1(e) =

{ x∗(e), for e ∈ E \ EC

x∗(e)− θ, for e ∈
→
EC

x∗(e) + θ, for e ∈
←
EC .

x2(e) =

{ x∗(e), for e ∈ E \ EC

x∗(e) + θ, for e ∈
→
EC

x∗(e)− θ, for e ∈
←
EC .

where θ = mine∈EC
.

Note, that

F (x1) + F (x2) ≤ 2F (x∗). (3)
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Indeed,

F (x1) + F (x2) =
∑

e∈E Ψe(x1(e)) +
∑

e∈E Ψe(x2(e))

=
∑

e∈E\EC
Ψe(x∗(e)) +

∑
e∈

→
EC

Ψe(x∗(e)− θ)

+
∑

e∈
←
EC

Ψe(x∗(e) + θ) + +
∑

e∈E\EC
Ψe(x∗(e))

+
∑

e∈
→
EC

Ψe(x∗(e) + θ) +
∑

e∈
←
EC

Ψe(x∗(e)− θ)

= 2
∑

e∈E\EC
Ψe(x∗(e)) +

∑
e∈

→
EC

[Ψe(x∗(e)− θ) + Ψe(x∗(e) + θ)]

+
∑

e∈
←
EC

[Ψe(x∗(e) + θ) + Ψe(x∗(e)− θ)]

≤ 2
∑

e∈E\EC
Ψe(x∗(e)) + 2

∑
e∈

→
EC

Ψe(x∗(e))

+2
∑

e∈
←
EC

Ψe(x∗(e)) = 2
∑

e∈E Ψe(x∗(e)) = 2F (x∗)

from that it follows (3).
The flow x∗ is optimal, so F (x∗) ≤ F (x1), F (x∗) ≤ F (x2). From

these relations and from (3) we take F (x∗) = F (x1) = F (x2). It means
that the flows x1 and x2 also are the optimal flows. From the construc-
tions of the flows x1 and x2 we note that the number of non-oriented
elementary cycles is less than the number of non-oriented elementary
cycles in the initial graph Gx∗ at least in one of the corresponding
graphs Gx1 and Gx2 . That flow for which this property takes place we
denote by x∗1. If Gx∗1 does not have cycles, then the theorem is proved.
If Gx∗1 contains non-oriented cycles, then according to x∗1 we make that
construction and as a result, we take the optimal flow x∗2 for which
the corresponding graph Gx∗2 contains less non-oriented elementary cy-
cles than Gx∗1 etc. Continuing this process, we obtain the optimal flow
x∗p for which the corresponding graph Gx∗p does not have non-oriented
cycles. The theorem is proved.

165



D.Lozovanu, J.Solomon

Consequence. If functions Ψe(x(e)),∀e ∈ E are rigorously con-
cave, then each optimal solution x∗ has such a property that the cor-
responding graph Gx∗ = (V, E∗) has a structure of a tree with a source
v∗0.

4 The algorithm of the problem solving

The algorithm of the formulated problem solving is based on Theorem
1. To find the optimal flow, it is enough to generate possible trees in
the transport network and for each tree to calculate the flow along
edges. It is a fact that it is easy enough to determine a flow along
edges by implementing O(n) elementary operations [5]. Knowing the
flow for the edges given, we determine a flow along G and calculate the
functional value (3). Generating all the trees with a source v0 in G, we
calculate all the corresponding values of the functional value (3) and
after this choose that flow for which the functional value is the least.
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