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Algorithms for generalized fractional
programming

D.Solomon V.Pluta

1 Problem formulation

One of the well-known optimization problems is the problem of discrete
Min-Max which counsists of minimization of a finite number of func-
tions. Consider real-valued functions ¢;(z),i € I, I = {1,2,...,m}.
Then discrete Min-Max problem consists of minimization of the func-
tion fo(xz) = max;cs i(z) where x € R" or x € S, S being a compact
set from R". But fo(z) may be defined by maximizing the ratio of two
classes of functions {¢;(z)},7 € I and {¢;(z)},7 € I. Then we shall get
a fractional problem of discrete Min-Max

I:cneig{f(x) - ng%}

The mentioned problem is also encountered in multicriterial pro-
gramming, where several ratios are to be optimized simultaneously and
the overall objective is to minimize the largest of this ratios. Let de-
termine the Pareto optimal point * € S in terms of mn given fractional
criteria as

() = vi(r) min
filz) i) - '

Thus we get the fractional problem of discrete Min-Max

min max f;(z) = min max tp,(:z:)
z€S el zeS el P;(x)
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2 The fractional convex problem of discrete
Min-Max

Consider the following fractional convex problem of discrete Min-Max

flz)= max ZZ:EQ — min (1)

where the functions {y;(z),7 € I}, {¢i(z),7i € I} and hi(z), k= 1,p
are continuous, convex and differentiable on E™.

The minimization problem of fy(z) defined by taking maximum
of a finite number of functions is called the problem of discrete Min-
Max and has been investigated quite actively [1-7]. Among various
algorithm modifications of mathematical and convex programming to
deal with it must be mentioned the method of quick descent [3], the
method of consecutive approximation [7], ¢ quasigradient methods [5],
the method of dual directions and Cebyshev norms [4]. Especially the
linearization algorithm of Pshenichny has to be noted, at each step of
which several auxiliary problems of linear or square programming are
to be solved [6].

Problem (1)-(2) is related to a generalized fractional programming
[10-13] for solving of which the nonlinear parametric method of partial
linearization is applied, the necessary and sufficient conditions of op-
timum are known, as well as its dual problem and Lagrange function
are examined.

3 Optimum conditions

Denote S = {z : hg(z) < 0,k = 1,p} and assume that ¢;(z) > 0 and
pi(x) >0 for any i € I and x € S.

Lemma 1 If ¢;(x) > 0 and ¢;i(z) > 0 for any x € S, and ¢;(z) is
convex and 1p;(x) is concave on S, then the function

() = @i(x)
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s quasiconvez on S.

Lemma 2 If functions fi(z),i € I are quasiconver on S, then the
function

f(x) = max f;(z)

i€l
s quasiconvez on S.

Consider the generalized fractional program

(P) v* = f(a*) = minges maxies 242

In [12] is offered an algorithm of nonlinear parametric programming
which solves the next problem instead of (P):

(Py) F(v) = minges max;er{p;(z) — vp;i(x)}.

To determine the necessary and sufficient optimum conditions for
(P) the problem (P,) is used. For this purpose consider the following
problem equivalent to (P,):

(EP,) t— min

hk($) < Ouk = ]-7p

3

The following statements show the relationship between the prob-
lems (P), (P,) and (EP,).

Lemma 3 If problem (P) has an optimal solution x* and v* is an
optimal value then F(v*) = 0, and conversely, if F(v*) = 0 then the
solution =* of (P,) is also the optimal solution of the problem (P).

Lemma 4 If (z,v,t) is a feasible solution of (EP,), then x is a feasible
solution of (Py). If x is a feasible solution of (P) then there exist a
scalars v and t such that (x,v,t) is a feasible solution of (EP,).

Lemma 5 z* is an optimal solution of (P) and v* is an optimal value

if and only if (z*,v*,t*) is the optimal solution of (EP,) with the op-
timal value t* = 0.
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Theorem 1 (Optimum necessary conditions) Let z* be the optimal
solution of the problem (P) and v be the optimal value. Then there
exist t* € R,u* € R™ z* € RP such that (z*,v*,u*,z*) satisfy the
conditions

m p
V(D i (i) = ogi(a®)) + Y zihi(a*)| = 0;
i=1

k=1

t*€e Ryx* € R",u* € R", 2z € RP,u* > 0,2* > 0.

Theorem 2 (Sufficient conditions) Let (z*,v*,u*, 2*) satisfy condi-
tions (3) and function

A= ;U?(%(w) —v'i(z)) + kzlziéhk(w)

be pseudoconvex for all x which are feasible solutions of (EP,). Then

x* is an optimal solution of (P) with the optimal value v*.

Theorem 3 (Sufficient conditions) Let (z*,v*,u*,2*) satisfy condi-
tions (3) and function

B =Y ui(pi(x) — v"1hi(x))
=1

be pseudoconvez, and C =8 _, zihy(z) be quasiconvex for all z which
are feasible solutions of (EP,). Then z* is an optimal solution of (P)
with the optimal value v*.
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4 Dual problems

In the generalized fractional programming the dual problem comes not
for the initial problem (P), but is designed to match its equivalent
problem (EP,). Then (EP,) has the following dual problem [10,13]:

(DEP,1) o ui(wi(z) — vii(z)) + Zﬁzl zihg(z) — max
v [ wilei(z) — vii(x)) + Xy zuhi(@)] = 0
Yty ui =1
reE R ue R" 2 RP.u>0,2>0

Another formulation of dual problem consists of

(DEP,2) 3% uilpi(z) — vipi(x)) — maz
V[ uiei(z) — vipi(@)) + kg zrhi(@)] =0
Sk zphe(z) <0
S =1

r€ER" ueR"ze RP,u>0,2>0

For the problems (P,) and (DEP,1) or (DEP,2) the theorems of
duality hold. Therefore, instead of (P,) one of the problems (DEP,1)
or (DEP,2) may be solved.

5 Solving algorithms and methods

To apply the nonlinear parametric method [12] rewrite (1)—(2) as fol-

lows:
Z(z,v) = max{yi(z) — vipi(z)} — min (4)
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The next statements hold [12]:

If problem (1)—(2) has an optimal solution z*, then Z(z*,v*) = 0,
where v* = f(z*);

If Z(z*,v*) = 0 then z* is the optimal solution of the problem

(1)-(2).
The nonlinear parametric algorithm counsists of the followings:
Iteration 0. Let 2 € S, v; = f(2°) and r = 1.

The r-th iteration. Let " € S be the solution of problem (4)-(5)
which has been found at the preceding iteration, parameter value
v being fixed.

Then:
STEP 1 . Put v, = f(z"!);

STEP 2 . Determine an optimal solution z” of (4)-(5) with fixed
parameter value v = v,;

STEP 3 . If Z(z",v,) = 0, then 2" is the optimal solution of (1)-(2)
and STOP.

Step 4 . Replace r by 7 + 1 and go to the Step 1.

To determine the first feasible point z° € S it is sufficient to solve the
convex program of minimization of any function ¢;(x) on S.

Note that each iteration of nonlinear parametric method deals with
the problem (4)—(5) which is as difficult as the initial convex program.
As mentioned before, an iterative algorithms are used to solve the prob-
lem (4)—(5), each step of which has to solve some auxiliary optimization
problems.

Consider another algorithm for generalized fractional programming
based on partial linearization method [11]. For this purpose rewrite
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the problem (1)-(2) in its equivalent form

(L) t— min
zes
t > 0.

For any 7 € I let define the i-th restriction in the following form:

Hi(z,t) = pi(z) — ty;(x)

and consider partial linearizations on ¢ for H,;(z,t) in the point
(z7 1)

Hy = Hy(z,t,) + (t — t,) vi Hi(a"™" ).

Then at each step of solving (P) or (L) it is necessary to solve the
following problem

(Ly) t—> min

@i () — tri(z) — t - tppi(2771) < 0,4 =
ze€S,t>0.

1,m

Thus, the algorithm of partial linearization consists of the following;:

STEP 0. Let z° € S and ¢; = max;cy ilggg Note that t; = inf{¢ :

H;(2°,t) < 0,i = 1,m} and (z,t) is a feasible solution of the
problem (P). Let r = 1.

STEP 1. Determine an optimal solution (z",t.) of (L,).

STEP 2. If t, = ¢/, then z" is the optimal solution of (P) and ¢, is
the optimal value. STOP.
STEP 3. Let

(") . .
t, = max ZZ:EQUT; = inf{t: Hiy(z",t) <0,i =1,m}.

Replace r by 7 + 1 and repeat Step 1.

As mentioned in [12], the partial linearization algorithm is closed
to the parametric method algorithm by its complexity.
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6 The algorithm of generalized gradient

Consider another algorithm of solution (1)—(2) based on Lagrange func-
tion, decomposition scheme on restrictions and subgradient methods
[8,9]. Consider the following problem equivalent to (1)—(2):

t — min 6

7
8
9

wi(z) — ti(z) < 0,1 =1,m;
t > 0.

(6)
(7)
(8)
(9)

The following statements hold:

Theorem 4 If z* is an optimal solution of the problem (1)-(2) then
there exists scalar t* = f(x*) such that (z*,t*) is an optimal solution

of (6)-(9).
Proof. Let z* be an optimal solution of the problem (1)—(2). Then

el i(z) = e Pi(z*)

for any z € S. Simultaneously the following inequalities hold for any
1€ I: (2*) (z*)
PYi\L Pi\L *
B~ I ) f(z")
Then @(z*) — t*;(z*) < 0, ie. (z*,t*) is a feasible solution of the
problem (6)—(9).

Let prove that (z*,t*) is also the optimal solution of the problem
(6)—(9). If not, then there exists scalar ¢ such that ¢* > ¢. Then (z*,1)
is a feasible solution of the problem (6)—(9) and, as it follows from
restrictions (7),

= ¢*

pile”) <t <t"=max wi(z”)

Pi(z*) i€l 1hi(z*)
for any ¢ € I. The last strict inequality contradicts that z* is the opti-
mal solution of the problem (1)—(2). Therefore (z*,t*) is the optimal
solution of the problem (6)-(9). The theorem is proved.
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Theorem 5 If (z*,t*) is an optimal solution of the problem (6)-(9)
then z* is an optimal solution of the problem (1)-(2).

Proof. Let (z*,t*) be an optimal solution of the problem (6)-(9).
Then z* is a feasible solution of the problem (1)-(2). Since ¢* is the
optimal value of the function (6) and z* satisfies the restrictions (7),
then t* < ¢ for any ¢ satisfying the relations (7) for any z € S. Thus
we have got the following inequalities:

@i(z*) _ . ei(z*)
< t*,2 € I and max =t <t
Piz*) ~ el pi(z*)
On the other hand, for all 1 € I and any = € S we have ¢t > M

i ()
and, by the same, t = max;c; izg; for any x € S. Thus, the following
inequalities are valid:

el pi(zt) bet=max Pi(z)

N

for any z € S, i.e.
(* .
max wi(z*) < max vi(r)
i€l Pi(z*) T el ()
Hence, z* is the optimal solution of the problem (1)—(2). The the-
orem is proved.
Note, that optimum criterion for the problem (6)—(9) may be formu-
lated as follows: to determine the variable value z € S which minimizes
the value of t satisfying restrictions (7), i.e., it is necessary to determine

the value z* of x € S for which the value of ¢ obtained by the formula

pi(z”)

t* = max
i€l hi(z*)

will be the smallest.
Let us define Lagrange’s function for the problem (6)—(9) by the
formula

L(z,t,u) =t+ Z wi(pi(x) — thi(x))

el
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where u = {u;,7 € I} are the Lagrange’s factors for the restrictions (7),
u; > 0,7 € I. Then both problem (6)-(9) and (1)-(2) is equivalent to
the finding of the saddle point of Lagrange’s function L£(x,t,u*), i.e. to
the solving of the problem

* g%k k| . .
L(z*, t*,u") = Iggacgnzlglgnelgﬁ(w,t,u). (10)

Furthermore, the problem (10) is equivalent to

rggaiﬁ (u) (11)
where
L (u) = Igglgléglﬁ(a),t,u). (12)

Function £*(u) is defined for any v > 0 and is linear on portions,
concave and undifferentiable. Therefore, for the solution of the problem
(11) a subgradient methods are used, at each step of which the problem
(12) must be solved for fixed values of variables u.

Let for solution (11) any subgradient method be used. Then at the
r-th iteration it is necessary:

1. To solve (12) with fixed values v = «"~! and to determine an
optimal solution (z*(u"~!),#* (u"~!)).

2. To determine the values of generalized gradient of function £*(u)
in the point u = u"~! by the formula

gi(uj ™) = @il (W) =t (u" i (a* (")) i € I
3. To calculate new values u” by the formula
ul = max{0,u} '+ ygi(ul D}ieT
where +, is the step value.

Theorem 6 Let u* be the optimal solution of (11) and (z*,t*) be the
optimal solution of the problem (12) when u = u* are fized. Then
(z*,t*) is the optimal solution of the problem (6)-(9) and x* is the
optimal solution of the problem (1)-(2).
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Proof. Since for v = u* the point (z*,¢*) is an optimal solution of
the problem (12), then we have:

1. z* € S and, therefore, 2* satisfies the restrictions (8) and (2);

2. 1" 4 D ieq ui (pila™) = t"i(27)) S+ 25, uilpi(x) — t4hi(z)) for
any £ € S;

3. wi(z*) — t* i (x*)) < 0, ie. (z*,t*) is a feasible solution of the
problem (6)-(9);

4. uf(pi(z*) —t*i(z*)) = 0,47 € I.

Then from 3) and 4) we obtain

-t <Y ul(pile) - thi(2)).

el

Since u; > 0 for any ¢« € I, then for any = and ¢ which satisfy
restrictions (7) and (8) we have t* < ¢, ie., (z*,¢*) is the optimal
solution of the problem (6)—(9) and consequently (1)-(2). The theorem
is proved.

Cousider the problem (12), i.e., for fixed values of dual variables
u = 1 it is necessary to solve the following problem

t+ Zﬂz(goz(a:) — t);(z)) — min (13)
i€l

he(z) <0,k =1p (14)

> 0. (15)

For fixed values of t > 0 (13)—(15) is a convex program. Therefore,
solving (14)—(15) is equivalent to the finding of a such solution z* € S
which together with the value t* > 0 gives us the minimal value of
the function (13). To solve out the problem (13)-(15) an approximate
algorithm can be used which obtain the optimal solution of (13)-(15)
by having the optimal solutions u = u* of the problem (11). Such
an algorithm can be drawn up, if at the next solution process of the
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problem (13)—(15) the value of parameter ¢ will be fixed by the following
formula

(* UT—l
t=f(a"(w 1)) = max %

where z*(u"~!) € S is the solution of the problem (12) found out at
the preceding iteration of the subgradient method.

Let have the values of variables © = u" and the previous solu-
tion (z*(u""1),t*(u"!)) of the problem (13)-(15). Then to solve the
problem (13)-(15) at the next iteration of the subgradient method the
following algorithm will be used:

1. Fix values of variable ¢ by the formula
(W'~ = fz"(u"71))
2. Determine the optimal value z*(u"~!) of the convex program

> ui Hpi(z) — 7 (" )ghi(2)) — min (16)

el

3. Determine new parameter ¢ value by the formula

) — e £ ()

iel pi(z*(ur))’

Let u* be the optimal solution of the problem (11). Then find z*
which is the optimal solution of the problem (16)—(17) with fixed value
t = f(z"(u")) and put t* = f(z*).

The offered algorithm was used to solve problems of generalized
fractional-linear programming [14] and was tested on the transport
problems.
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