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Nine Universal Circular Post Machines ∗

Artiom Alhazov Manfred Kudlek Yurii Rogozhin

Abstract

We consider a new kind of computational device like Turing
machine, so-called circular Post machines with a circular tape and
moving in one direction only, introduced recently by the second
and the third authors. Using 2-tag systems we construct new
nine small universal machines of this kind.

1 Introduction

We consider (deterministic) Circular Post machines (CPM) introduced
recently by the second and the third authors of the paper [4, 5]. These
are similar to those presented in [1], with the difference that the head
can move only in one direction on the circular tape. It is also possible
to erase a cell or to insert a new one. We introduce 5 variants of such
machines, distinguished by the way a new cell is inserted. In [4, 5]
it has been shown that all variants are equivalent to each other, and
also to Turing machines, and that for all variants there exist equivalent
Circular Post machines with 2 symbols, as well as with 2 states.

In 1956 Shannon [18] introduced the problem of constructing very
small universal (deterministic) Turing machines. The underlying model
of Turing machines is defined by instructions in form of quintuples
(p, x, y, m,q) with the meaning that the machine is in state p, reads
symbol x ∈ Σ, overwrites it by y, moves by m ∈ {−1, 0, 1}, and goes
into state q.

Let UTM(m,n) be a class of universal Turing machine with m
states and n symbols. It was known that there exist universal Turing
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machines in the following classes: UTM(19,2), UTM(10,3), UTM(7,4),
UTM(5,5), UTM(4,6), UTM(3,9), UTM(2,18) [16, 17, 2, 6], and the
classes UTM(2,2) [3], UTM(2,3), and UTM(3,2) [11] are empty. So
there are 45 classes UTM(m,n) with an unsettled emptiness problem,
i.e if UTM(m,n) is empty (for closely related problems see [7]).

To construct small universal Circular Post machines we use a
method first presented in [9] (see also [15, 16]). This method uses tag
systems [8] which are special cases of monogenic Post Normal systems
[14], namely of the form sivu → uαi with v ∈ Σk−1 and k > 1 a con-
stant. In [9, 10] it is also shown that 2-tag systems (i.e. k = 2) suffice
to simulate all Turing machines, with halting only when encountering
a special symbol sH .

Since circular Post machines are also monogenic Post Normal sys-
tems we expect to get a more natural simulation of tag systems and
perhaps smaller universal machines.

Circular Post machines may be useful for studying the formal mo-
dels of biocomputing as well as membrane computing where the DNA
molecules are present in the form of a circular sequence [12, 13].

Let UPMi(m, n) be a class of universal circular Post machines of
variant i with m states and n symbols. In previous articles [4, 5] it was
shown that such machines can simulate all Turing machines, and some
small universal circular Post machines have been constructed, namely
in the classes: UPM0(4,18), UPM0(5,11), UPM0(6,8), UPM0(7,7),
UPM0(8,6), UPM0(9,5), UPM0(12,4) and UPM0(18,3).

In this article we improve and complete all previous results on
circular Post machines and present nine universal machines, namely
in the classes: UPM0(2,46), UPM0(3,22), UPM0(4,11), UPM0(5,8),
UPM0(6,6), UPM0(8,5), UPM0(11,4), UPM0(16,3) and UPM0(34,2).

Note that all nine universal Circular Post machines presented here
were checked by the Circular Post machines SIMULATOR program
designed by the first author.

2 Definitions

Definition 1: (Circular Post machine (CPM0)) A Circular Post ma-
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chine is a quintuple (Σ, Q,q0,qf , P ) with a finite alphabet Σ where 0
is the blank, a finite set of states Q, an initial state q0 ∈ Q, a terminal
state qf ∈ Q, and a finite set of instructions of the forms

px → q (erasing of the symbol read)
px → yq (overwriting and moving to the right)
p0 → yq0 (overwriting and creation of a blank)
The storage of such a machine is a circular tape, the read and write

head moving only in one direction (to the right), and with the possibility
to cut off a cell or to create and insert a new cell with a blank.

This version is called variant 0 (CPM0).
Note that by erasing symbols the circular tape might become empty.

This can be interpreted that the machine, still in some state, stops.
However, in the universal machines constructed later, this case will not
occur.

In this article it will be assumed that all machines are deterministic.

There are variants equivalent to such machines [4, 5].
Variant CPM1 : The instructions are of the form
px → q px → yq px → xq0 (0 blank)
Variant CPM2 : The instructions are of the form
px → q px → yq px → yq0 (0 blank)
Variant CPM3 : The instructions are of the form
px → q px → yq px → yzq.
Variant CPM4 : The instructions are of the form
px → q px → yq px → yxq.

Note that there are no universal circular Post machines with either
only one state or one symbol, respectively [5].

Let us now define tag-systems. For a given positive integer m and a
given alphabet Ω = {s1, . . . , sn, sn+1}, a m-tag-system on Ω transforms
the word w on Ω as follows: we delete the first m letters of w and we
append to the right of the result a word that depends on the first letter
of w. This process is iterated until m letters cannot be deleted or the
first letter is sn+1, and then stops. Formally, we have the following
definitions.
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A tag-system is a triple T = (m,Ω, P ), where m is a positive integer,
Ω = {s1, . . . , sn, sn+1} is a finite alphabet, and P maps {s1, . . . , sn}
into the set Ω∗ of finite words on the alphabet Ω and sn+1 to STOP .

A tag-system T = (m,Ω, P ) is called m-tag-system when it is ne-
cessary to stress on number m. Words Pi = P (si) ∈ Ω∗ are called the
productions of the tag-system T . The letter sn+1 is the halting symbol.
Productions are often displayed as follows:

si → Pi, i = 1, . . . , n,
sn+1 → STOP.

A computation of the tag-system T = (m,Ω, P ) on a word w ∈ Ω∗ is
a sequence w = v0, v1, . . . , of words on Ω such that, for all nonnegative
integer k, a current word vk is transformed into vk+1 by deleting the
first m letters of vk and appending the word Pi to the result if the first
letter of vk is ai. The computation stops in k steps if the length of vk

is less than m or the first letter of vk is sn+1. In that latter case, the
result is vk.

It was proved that there are universal 2-tag-systems ([9]), and there-
fore, we will deal only with 2-tag-systems. Due to the proof in [9, 10])
(see also [15]), we can restrict our attention to tag-systems which also
have the following properties:

1. The computation of a tag-system stops only on a word beginning
with the halting symbol sn+1.

2. The productions Pi, i = 1, . . . , n, are not empty.

3. The current word vk, k ≥ 0 contains at least 3 letters.

Henceforth, the tag-systems will be 2-tag-systems satisfying the
above conditions.

3 Universal Circular Post Machines

In this part we present nine small universal machines of variant 0, with
the halting state not included but represented by H in the program.
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In the tables yq stands for px → yq, y for px → yp, q for px → q,
yqx for px → yqx, and H for the unique halting state.

The machines are constructed by simulation of tag systems. Let
the alphabet be Ω = {s1, · · · , sn+1} with sH = sn+1. A symbol si is
encoded in unary form by some number Ni, together with a separator.
In a 2-tag instruction si → αi (Pi = αi) with αi = si1 · · · sim(i) the
symbols sij are encoded in the same way, with other separators.

UPM0(2,46)

i i2 i3 i4 i5 i6 i7
1 i22 2 i4 1 i5 i7 i5
2 i3 a41 i i5 i6 i

c c2 c3 c4 c5 c6 c7

1 c22 1 c4 2 c5 c7 c5

2 c3 a51 c c5 c6 c

e e2 e3 e4 e5 e6 e7 e8

1 e6 e32e2 i5 e22 c5 e72 e22 e5

2 e e4 e8 e6 c e2 e1

a a2 a3 a4 a5 a6 a7 a8

1 a2 a5 a4 a a6 a5 a8 a5

2 a3 a a3 a4 i21 a7 c21 a4

b b2 b3 b4 b5 b6 b7 b8

1 b3 b5 b6 b5 b b8 d52 b6

2 b21 b4 b b4 b5 b71 b5 d5

d d2 d3 d4 d5 d6 d7 d8

1 d2 d3 d3 d3 d6 b6 d d4

2 H d1 d8 d7 d61 b5

N1 = 1; Nk+1 = Nk + mk + 2 (1 ≤ k ≤ n)
Blank symbol: e2

Encoding of symbol si: iNic and aNib
Encoding of αi : baNi1b · · · baNim(i)bb
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Separators : c, b, d

The initial configuration is
bbaN11b · · · baN1m(1)bbb · · · bbbaNn1b · · · aNnm(n)bbd1iNrciNsciNt · · · ciNwce

In the first stage iNr is read, Nr separators b’s are changed into b5’s
(actually we consider the first string of two b’s as one b, and strings of
three b’s as strings consisting only of two separators b), and iNrciNsc
is erased, giving

b5b5a
N11
4 b5a

N12
4 b5 · · · b5a

N1m(1)

4 b5b5b5 · · · b5b5b5a
N(r−1)1

4 b5 · · ·
b5a

N(r−1)m(r−1)

4 b5b5b5 2aNr1
5 b6 · · · aNrm(r)

5 b6b6b6 · · · b6b6b6a
Nnm(n)

5 b6b6

d3i
Nt
5 c5 · · · c5i

Nw
5 c5e2

In the second stage, starting with 2, the part aNr1
5 b6 · · · aNrm(r)

5 b6b6

is copied to the end of iNt
5 c5 · · · iNw

5 c5e2 as iNr1
5 c5 · · · c5i

Nrm(r)

5 c5 and the
last b6b6 implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 2 encounters d.
The result is immediately after string dc2 and before symbol e, and

it is a string over {i3, c3} where i3 corresponds to i and c3 corresponds
to c.

UPM0(3,22)

i i2 i3 c c2 c3 e e2 e3 d d2 d3

1 2 1 i3 3 3 c3 e33e2 i3 d d2 d2

2 i i3 c d1 c3 e 2 c31 H d3 c23
3 i2 i3 i c2 c3 c e2 e2 e2 d21

a a2 a3 a4 a5 b b2 b3 b4 b5

1 a a3 a3 b a3 b3

2 a2 a2 a5 a a4 b21 b2 b5 b b4

3 a3 a4 a41 a4 a41 b3 b4 b42 b4 b42

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: e2

Encoding of symbol si: iNic and aNib
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Encoding of αi : aNi1b · · · baNim(i)bb
Separators : c, b, d

The initial configuration is

baaN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bbd1iNrciNsciNt · · · ciNwce

In the first stage iNr is read, Nr separators b’s are changed into b4’s,
and iNrciNsc is erased, giving

b4a4a
N11
4 b4a

N12
4 b4 · · · b4a

N1m(1)

4 b4b4 · · · b4b4a
N(r−1)1

4 b4 · · ·
b4a

N(r−1)m(r−1)

4 b4b4 3aNr1
3 b3 · · · aNrm(r)

3 b3b3 · · · b3b3a
Nnm(n)b3b3

d2i
Nt
3 c3 · · · c3i

Nw
3 c3e2

In the second stage, starting with 3, the part aNr1
3 b3 · · · aNrm(r)

3 b3b3

is copied to the end of iNt
3 c3 · · · iNw

3 c3e2 as iNr1
3 c3 · · · c3i

Nrm(r)

3 c3 and the
last b3b3 implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 2 encounters d.

The result is immediately after string dc and before string ce.

UPM0(4,11)

i i2 c c2 e e2 e3 d d2 a b

1 2 i2 3 c2 i22e2 c2 d d a b
2 i i c c e e23 4 H i c1
3 3 i2 4 c2 e32e2 i21 c24
4 i2 a c2 b e2 e d1 d23 e32 a b

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: e2

Encoding of symbol si: iNic and aNib
Encoding of αi : aNi1b · · · baNim(i)bb
Separators : c, b, d

The initial configuration is

baN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bbd1iNrciNsciNt · · · ciNwe
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In the first stage iNr is read, Nr separators b’s are changed into c2’s,
and iNrciNsc is erased, giving

c2i
N11
2 c2i

N12
2 c2 · · · c2i

N1m(1)

2 c2c2 · · · c2c2i
N(r−1)1

2 c2 · · ·
c2i

N(r−1)m(r−1)

2 c2c2 3aNr1b · · · aNrm(r)bb · · · bbaNnm(n)bb

d2i
Nt
2 c2 · · · c2i

Nw
2 e3e2

In the second stage, starting with 3, the part aNr1b · · · aNrm(r)bb is
copied to the end of iNt

2 c2 · · · iNw
2 e3e2 as iNr1

2 c2 · · · c2i
Nrm(r)

2 and the last
bb implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 2 encounters d.
The result is immediately after string dc and before symbol e.

UPM0(5,8)

i c e e2 e3 d a b

1 2 3 e24 d2 a b
2 i c e i1e2 c H i c5
3 3 4 d4 a b
4 i c e2 e31e2 c5 i1 c3
5 a b e d1 a b

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: e2

Encoding of symbol si: iNic and aNib
Encoding of αi : aNi1b · · · baNim(i)bb
Separators : c, b, d

The initial configuration is
baN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bbd1iNrciNsciNt · · · ciNwce

In the first stage iNr is read, Nr separators b’s are changed into c’s,
and iNrciNsc is erased, giving

ciN11ciN12c · · · ciN1m(1)cc · · · cciN(r−1)1c · · ·
ciN(r−1)m(r−1)cc 4aNr1b · · · aNrm(r)bb · · · bbaNnm(n)bb

diNtc · · · ciNwce2
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In the second stage, starting with 4, the part aNr1b · · · aNrm(r)bb is
copied to the end of iNtc · · · iNwce2 as iNr1c · · · ciNrm(r)c and the last bb
implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 2 encounters d.
The result is immediately after string dc and before string ce.

UPM0(6,6)

i c e d a b

1 2 3 d5 a b
2 i c e H i c6
3 3 4 e4 d4 a b
4 i c d3e 6 i1 c3
5 i c i3e c
6 a b e d1 a b

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: e
Encoding of symbol si: iNic and aNib
Encoding of αi : aNi1b · · · baNim(i)bb
Separators : c, b, d

The initial configuration is
baN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bbd1iNrciNsciNt · · · ciNwe

In the first stage iNr is read, Nr separators b’s are changed into c’s,
and iNrciNsc is erased, giving

ciN11ciN12c · · · ciN1m(1)cc · · · cciN(r−1)1c · · ·
ciN(r−1)m(r−1)cc 4aNr1b · · · aNrm(r)bb · · · bbaNnm(n)bb

diNtc · · · ciNwde

In the second stage, starting with 4, the part aNr1b · · · aNrm(r)bb is
copied to the end of iNtc · · · iNwde as iNr1c · · · ciNrm(r) and the last bb
implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 2 encounters d.
The result is immediately after string dc and before symbol e.
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UPM0(8,5)

i c e a b

1 2 8 e2 a b
2 i c e3 i5 c6
3 i c H i3 c1
4 i c c1e a b
5 i c i1e a b
6 a b b1 a4 e7
7 i c e6 a b
8 8 4 e2

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2

Blank symbol: e

Encoding of symbol si: iNic and aNib

Encoding of αi : aNi1b · · · baNim(i)bb

Separators : c, b

The initial configuration is

baN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bb1iNrciNsciNt · · · ciNwe

In the first stage iNr is read, Nr separators b’s are changed into c’s,
and iNrciNsc is erased, giving

ciN11ciN12c · · · ciN1m(1)cc · · · cciN(r−1)1c · · ·
ciN(r−1)m(r−1)cc 2aNr1b · · · aNrm(r)bb · · · bbaNnm(n)bb

iNtc · · · ciNwce

In the second stage, starting with 2, the part aNr1b · · · aNrm(r)bb is
copied to the end of iNtc · · · iNwce as iNr1c · · · ciNrm(r) and the last bb
implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 3 encounters e.

The result is immediately after string ccc and before symbol e.
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UPM0(11,4)

i c a b

1 2 B a b
2 i c a3
3 i c i c4
4 H a1 b1
5 i9 a b
6 i7 a b
7 i c bBa 8
8 a b a b1
9 i c iBa c9
A i c i5 c6
B B 7 aA

N1 = 1; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: a
Encoding of symbol si: iNic and aNib
Encoding of αi : aNi1b · · · baNim(i)bb
Separators : c, b

The initial configuration is

baN11b · · · baN1m(1)bb · · · bbaNn1b · · · aNnm(n)bbb1iNrciNsciNt · · · ciNwa

In the first stage iNr is read, Nr separators b’s are changed into c’s,
and iNrciNsc is erased, giving

ciN11ciN12c · · · ciN1m(1)cc · · · cciN(r−1)1c · · ·
ciN(r−1)m(r−1)cc A aNr1b · · · aNrm(r)bb · · · bbaNnm(n)bbb

iNtc · · · ciNwba

In the second stage, starting with A, the part aNr1b · · · aNrm(r)bb is
copied to the end of iNtc · · · iNwba as iNr1c · · · ciNrm(r) and the last bb
implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 4 encounters c.

The result is immediately after string cccc and before symbol a.
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UPM0(16,3)

i c a

1 2 c a
2 i3 4 a8
3 i c a5
4 4 7
5 i c6 i
6 i5 H i1
7 i c c2a
8 i cB i9
9 iA c a
A i c i2a
B i iC
C cE aD
D i7 c a
E iF c a
F i c aG
G a c a1

N1 = 2; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: a
Encoding of symbol si: iNic and aNica
Encoding of αi : aNi1ca · · · caaNim(i)caca
Separators : ca, c

The initial configuration is

caaN11ca · · · caaN1m(1)caca · · · cacaaNn1ca · · · aNnm(n)cacc
1iNrciNsciNt · · · ciNwa

In the first stage iNr is read, Nr separators ca’s are changed into
ci’s, and iNrciNsc is erased, giving

ciiN11ciiN12ci · · · ciiN1m(1)cici · · · ciciiN(r−1)1ci · · ·
ciiN(r−1)m(r−1)cici 8aNr1ca · · · aNrm(r)caca · · · cacaaNnm(n)cacc

iNtc · · · ciNwca
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In the second stage, starting with 8, the part aNr1ca · · · aNrm(r)caca
is copied to the end of iNtc · · · iNwca as iNr1c · · · ciNrm(r) and the last
caca implies a restoration of the tape, and a new cycle may start.

The machine stops if in the first stage 6 encounters c.

The result is immediately after string ccic and before symbol a.

UPM0(34,2)

UPM0(34,2) models UPM0(11,4). Symbols of UPM0(34,2) are 0, 1
and states are letters. String 00 of UPM0(34,2) corresponds to symbol
c of UPM0(11,4), string 01 corresponds to symbol i, string 11 corre-
sponds to symbol b, and string 10 corresponds to symbol a.

A B C D E F G I J K L M
0 B K 0D 0C 0F 0E 1F H 0A L M 0N
1 1J C 1E 1C 1F 0G 0I 1J 1A K 0O

N O P Q R S T U V W X
0 0M 0P0 1Q0 0R 0Q 1T 0W 0T 0W 0V 1Y0
1 1M 1d 1R 0S 0P 1U 1T 0X 1V

Y d e f g j k l m n o
0 1Q0 0e 0N 0e 0k 0g 0n 1m 1l 0k 0l
1 1g 1f 1e 1j 1g 1n 1J 0l 1o

N1 = 2; Nk+1 = Nk + mk + 1 (1 ≤ k < n); Nn+1 = Nn + mn + 2
Blank symbol: 0
Encoding of symbol si: (01)Ni00 and (10)Ni11
Encoding of αi : (10)Ni111 · · · 11(10)Nim(i)1111
Separators : 00, 11

The initial configuration is

11(10)N1111 · · · 11(10)N1m(1)1111 · · · 1111(10)Nn111 · · ·
(10)Nnm(n)111111A(01)Nr00(01)Ns00(01)Nt · · · 00(01)Nw10

In the first stage (01)Nr is read, Nr separators 11’s are changed into
00’s, and (01)Nr00(01)Nsc is erased, giving
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00(01)N1100(01)N1200 · · · 00(01)N1m(1)0000 · · · 0000(01)N(r−1)100 · · ·
00(01)N(r−1)m(r−1)0000 R(10)Nr111 · · · 11(10)Nrm(r)1111 · · ·
11(10)Nnm(n)111111(01)Nt00 · · · 00(01)Nw0010

In the second stage, starting with R, the part

(10)Nr111 · · · (10)Nrm(r)1111

is copied to the end of

(01)Nt00 · · · (01)Nw10

as
(01)Nr100 · · · 00(01)Nrm(r)

and the last 1111 implies a restoration of the tape, and a new cycle
may start.

The machine stops if in the first stage I encounters 00.

The result is immediately after string H00 (where H is a halting
state) and before string 10.
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