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Abstract

In the article the notion of analytical space is introduced and
its application to data representation and interactive analysis is
studied. Analytical space is defined through membership rela-
tion among its elements where each element is characterised by
its extensional and intensional. All data element properties are
derived from this fundamental relation. Inference in analytical
space is thought of as finding mapping from one subspace into
another and is carried out through propagation of information
by means of deaggregation and aggregation operations. The gen-
eral goal of data analysis is defined to be simplifying the form
of representation with simultaneous retaining most of the data
semantics. An interactive data analysis procedure is proposed,
which is based on selecting interesting subspaces in analytical
space, finding mapping from this space into the range of values
by means of inference and finally visualising this mapping in an
appropriate form.

Key words: Data analysis, Data modelling, Hierarchical mul-
tidimensional data, Analytical space, Information aggregation,
Data visualisation

1 Introduction

As large organisations accumulate huge databases and begin to realise
the potential value of the information that is stored there the area
of data analysis is being paid more attention. Although automatic
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methods of intelligent data analysis being developed within data mining
area [3] are rather powerful and can be applied to very large databases
they cannot deal with ill structured and informal problems where both
the search space and the goal cannot be precisely defined. For such
tasks where data has highly complicated structure, which in addition
may change in time, interactive methods of analysis are of especially
great importance. To carry out such an interactive analysis appropriate
data representation techniques should be used. For this purpose in this
article we propose a data representation technique based on analytical
space conception and describe how it can be used for interactive data
analysis.

Any data can be characterised by two main notions: multidimen-
stonality and hierarchy. Hierarchy appears where parent-child relation-
ship among data elements has several levels, e.g., primitive attribute
values can be grouped into classes, which themselves are used as val-
ues to characterise other elements. Multidimensionality is interpreted
as a possibility to characterise one and the same element or a set of
elements from several points of view, i.e., by means of several differ-
ent elements, and appears due to existence of more than one parent.
So far these two phenomena, hierarchy and multidimensionality, have
been treated mostly independently, i.e., there exist methods for dealing
with multidimensionality and there exist separate methods for dealing
with hierarchy. Traditionally most methods of interactive data analy-
sis are oriented on studying multidimensional structure of data. Only
relatively recently new methods of data representation and analysis
have appeared like OLAP [2], which try to manipulate hierarchies and
multidimensionality in data simultaneously. In contrast to other data
representation methods we derive both hierarchy and multidimension-
ality from one and the same underlying membership relation among
elements of analytical space. The membership relation can be defined
if each element is assigned a set of parents called the element inten-
stonal and a set of children called the element extensional. The funda-
mental membership relation allows us to explain such phenomena as
characterisation by means of attributes and values, table representa-
tion, existence of levels of detail, common object attributes, common
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attribute values etc. It is very important that all elements of analytical
space are absolutely primitive and it is exclusively their relations with
other elements what provides them some properties.

In addition to its flexible representation capability analytical space
allows us to effectively define the notion of logical inference. By logical
inference we mean finding a mapping from one subspace into another
according to the semantics represented in analytical space. In other
words, the problem of logical inference consists in calculating a func-
tion, which for each element from its domain finds an element from
its range. The inference defined in such a way requires propagation
of information through analytical space and can be carried out in two
steps (for each element from the domain): first deaggregation from the
source element down to the space lowest level, and second aggregation
up to the target element from the function range.

The definition of analytical space as a set of elements along with
some membership relation among them and inference as finding map-
ping from a domain to a range is rather formal and can be used in
different application areas. In this article we demonstrate how the in-
troduced notions can be applied to interactive data analysis. The goal
of any data analysis is defined to be simplifying the form of representa-
tion simultaneously retaining most of the data semantics. For example,
in data mining it might be rules that should be rather simple in form
while keeping a great deal of information from data. In data analysis it
is a mapping from one set of data elements into another that is meant
by both simple and expressive representation of underlying semantics.
However, because of highly complicated data structure and informal
data interpretation the search for such an interesting function is car-
ried out manually by a human analyst (although automatic methods
might be also very useful). A general data analysis scenario introduced
in the article consists of the following steps: data representation and
definition of analytical space, selecting domain and range, calculating
the function, selecting appropriate visualisation for the function.

The earlier ideas used in this paper were described in [6] where the
conception of multidimensional hierarchical space was proposed. In
this article this idea is further developed and applied to the task of
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data representation and analysis.

2 Data Representation

2.1 Elements of Analytical Space

An element is a primitive building block of analytical space. It is an
elementary indivisible unit, which does not have any internal structure.
Each element taken by itself without any relationships with other el-
ements of analytical space is by definition a primitive entity. It is a
relation among elements in analytical space what brings a structure
into each individual element. In other words, each element in isolation
does not have any structure, which appears and is explained exclusively
because of existing relations among all other elements.

In particular, at this fundamental level of abstraction we do not
suppose that elements or objects of analytical space are characterised
by any (internal) properties, which may take different values and thus
distinguish elements from each other. Thus objects are distinguished
exclusively by their position in analytical space, which is determined
by the ties with other elements. In other words, the analytical space
element semantics is always external in relation to each element. Yet
at lower level of abstraction object properties can be derived from rela-
tionships among elements by means of an appropriate interpretation of
different elements and their position. Such an interpretation in terms of
object properties is more suitable for applications and will be described
below in the article. In particular, different elements can be interpreted
as tables, columns (properties), values, dimensions etc. The advantage
of using the described abstraction where elements take their structure
from relations is a possibility to generalise these and other conventional
notions as well as manipulate them formally correctly and effectively.
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2.2 Membership Relation among Elements

Analytical space is formally defined as a set of elements with member-
ship relation among them. Thus for any pair of elements from analyt-
ical space we can ask if one of them is a member of another or not,
i.e., if the relation is satisfied for these two elements. If one element
includes another as its member then it can be formally considered a
set in the sense of the set theory. Analytical space then can be consid-
ered a number of nested sets. Some sets may be empty (lowest level
elements) while others are not members of any other element (highest
level elements). Below we will show that all main properties of elements
and many conventional notions can be derived from their position in
relation to other elements in analytical space. It should be noted that
analytical space itself can be viewed as the highest level element which
directly or indirectly includes all other elements.

The membership relation among elements of analytical space is not
arbitrary and has to satisfy some additional constraints. These con-
straints are highly natural and are derived from conventional require-
ments. The main requirement any analytical space structure must
satisfy is the absence of transitive relations between elements, i.e., if
a € b € ¢ then a ¢ ¢. We also prohibit circular relations. In particular,
an element cannot be a member of itself. Thus the structure of analyt-
ical space is equivalent to the acyclic non-transitive graph. Note that
elements may well be members of simultaneously more than one other
element and include as members more than one other element.

All elements, which are direct members of the given element are said
to be its extensional or child elements. All elements the given element
is included into as a direct member are said to be its intensional or
parent elements. Below it will be shown that extensional is responsible
for hierarchy while intensional is responsible for multidimensionality.
Informally, the power of extensional expresses the element size while
the power of intensional determines the element dimensionality.

To deeper understand the difference between these two notions it
should be noticed that from logical point of view all elements of the ex-
tensional are combined with the OR-connective (logical sum). Dually
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all elements of the intensional are combined with the AND-connective
(logical product). Thus any element has two definitions: through its
extensional and through its intensional. We assume that extensional
is represented with the help of a data structure called collection which
combines a set of elements by means of OR-connective while intensional
is represented with the help of a so called combination which unites a
number of elements by means of logical AND operation. Collection is
normally implemented as an array. Conventional (in object oriented
programming) object or record is an example of combination where
fields are combined with logical AND. Collection can be thought of
as a set of children while combination is a set of parents. To distin-
guish them we use {} to write collection elements and () for uniting
combination elements.

Let us now consider how simple conventional elements of data rep-
resentation can be modelled in analytical space (Fig. 1). Perhaps, the
simplest and the most important notion (not only for data description)
is that of attribute and its values. It is well know that this construction
can be represented by an attribute element with extensional consisting
of all its values elements. For example, two-valued attribute consists
of two value elements while continuous attribute counsists of an infi-
nite number of values in its extensional. Obviously, the attribute-value
construction can be easily generalised onto the hierarchical case where
values may themselves play the role of attributes and be interpreted as
groups or classes. If each element has only one parent then we obtain
tree-like structure. The space is characterised by only one dimension
but arbitrary number of levels of detail.

The main idea of using attributes and values is a possibility to
characterise other objects by means of one set of values so that all ob-
jects are put into one space where they can be compared or managed
in some other way. Dual to the notion of attribute is the notion of
object. In contrast to attribute, object combines its values by means
of logical AND connective, i.e., all its values constitute its intensional
rather than extensional (Fig. 1). One practical difference between at-
tributes and objects is that objects in most cases take a fixed number
of values (although it is not formally necessary). This number essen-
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tially determines the object dimensionality. For example, if an object
is characterised by 3 fields then it is 3-dimensional element.

Figure 1. Duality of attribute and object

These two dual constructions can be easily and naturally combined
into one where an object takes values of a number of attributes. It is
the most important building block used to represent and analyse data.
Oune very important formal property of this construction is that any
object is always included into each of its attribute values, i.e., value
is a container for objects it characterises. For example, the following
relations are true: (11,25) € 11 and (11,25) € 25. In dual form it is
obvious: 11 € (11,25) and 25 € (11,25). By increasing the number
of attributes we can easily obtain conventional multidimensional data
representation mechanism by means of tables (Fig. 2). However, the
final form this method acquires if we add one special attribute the
values of which are objects themselves. Indeed, the table representation
mechanism (as well as other object approaches) supposes that rows are
individual objects, which can be identified even with no columns at all,
i.e., theoretically we may have a table with not columns where rows
are still distinguishable. Such a 0-dimensional table can be represented
as an attribute with the extensional counsisting of all rows. In other
words, the values of such a table-attribute are object references.

It is a subtle but very important moment that references are not
object properties — they are object themselves. Object and its reference
are equivalent notions just because there does not exist any other way
of perceiving an object except for its reference. Moreover, object refer-
ence is the only thing we have, particularly, there is not such a notion
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as real object as opposed to object reference. This fundamental role
of references distinguishes them, e.g., from identifiers, which are con-
sidered user specific attributes just like any other attributes. Because
of this property of references and one-to-one unique correspondence
between references and rows we do not consider references as special
values, which are taken by rows. Instead rows themselves are viewed
as values.

Figure 2. Multidimensional analytical space equivalent to table

The following aspects are important to notice. Attribute elements
have the highest level in the membership hierarchy (except for ana-
lytical space itself) because they have empty intensional. The table
element is formally equivalent to attributes so it is also at the top level
(in the next section it will be shown that table represents lower level
of detail in relation to attributes). The row (object) elements have
the lowest level since they have empty extensional (although in gen-
eral case it is not necessary, i.e., rows may have their own non-empty
extensional). In this sense attributes and rows are opposite elements
in the membership hierarchy of such a conventional multidimensional
analytical space. Row objects may be members of maximum one at-
tribute value, i.e., informally, attribute is intentionally defined so that
objects may take only one or no of its values. (Although there may be
more complex cases, e.g., multivalued attributes where it is possible.)

Objects are generally not required to take some concrete attribute
value, i.e., to have a parent from all attribute extensionals. Formally
any element may take as many parent elements, i.e., as many values,
as needed for describing this element semantics (element semantics is
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described exclusively externally through the ties with other elements).
If an object does not belong to any value of some attribute then we say
that it is not characterised by this attribute at all, i.e., the attribute
is not relevant for the object. Yet if it is for some reason necessary to
describe the object in terms of this attribute then the special null value
is used, which is formally equivalent to empty set. The equivalence of
null value to the absence of attribute for the object is rather important
moment of the formalism. It is used, e.g., for equivalent analytical
space transformations and logical inference. In other words, null value
and its interpretation is not just a convention useful for applications. It
is an important formal notion, which should not be mixed with such out
of formalism notions like, e.g., unknown value, NA etc. For example,
because of this the following identities are true: (11,null) = 11 and
(null,25) = 25 (essentially they can be viewed as a definition of the
null element).

2.3 Inclusion and Orthogonality Relations

The general purpose of multidimensionality is representing and view-
ing objects from different points called dimensions. For example, one
and the same set of objects looks differently if viewed from the sides
of two attributes. Multidimensionality of data in analytical space is
represented by orthogonality relation among elements (Fig. 3). Two
elements (attributes) are said to be orthogonal if elements from their
extensional (values) have common children (objects). Conventionally,
attributes characterising one set of objects are mutually orthogonal.

It should be noted that orthogonality is defined in relation to some
objects and it is normally used as a constraint when defining the struc-
ture of analytical space. For example, if we say that a set of objects
from some table is characterised by two orthogonal attributes then it
means that we must include each new object into one value for each at-
tribute (yet, the final semantics is defined by the membership relation
among elements).

In contrast to orthogonality, the main purpose of inclusion rela-
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tion is representing hierarchy and viewing objects at different levels of
detail or scale. One element is said to include (hierarchical relation) an-
other element if its elements (values) consist of elements of another one
(Fig. 3). Orthogonal elements represent completely incompatible enti-
ties while hierarchy is represented by elements, which are completely
included into one another and represent levels of detail of one dimen-
sion. Just like for orthogonality the inclusion relation is derived from
the underlying membership relation rather than defined independently.
However, for practical purposes it is convenient to define elements of
hierarchy in advance as a constraint imposed on the analytical space
structure. For example, we might say that some attribute has a higher
level of detail where numeric values are mapped into discrete intervals
or classes.

Figure 3. Orthogonality and inclusion relations

It is very easy to illustrate the inclusion relation already on simple
tables. Indeed, the table element consists of individual objects (rows)
and represents the highest level of detail (all objects are distinguishable
by their reference). However, if we select one attribute then all objects
can be broken into larger classes depending on what value each of them
takes. Thus each class is represented by one attribute value and objects
taking one value are not distinguishable. Obviously, there exist as many
such lower levels of details as we have attributes for describing objects.
The table element in this case is included into each attribute element.
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In this sense attributes can be defined as classifiers for a set of objects.

The attributes themselves can be further classified by decreasing
their level of detail. This procedure is frequently applied to attributes
with a lot of values, which appear to have too high level of detail, e.g.,
numeric attributes. The values of attributes are grouped into classes
where each class is represented as a value of classifier attribute.

Clustering is very similar to classification in that they both intended
to decrease the level of detail. The main difference is that clustering
as a grouping process is normally applied to complex multidimensional
objects, which are characterised by many features while classification is
used for grouping simpler objects like attribute values. Clusters break-
ing a set of objects into groups can be easily represented in analytical
space by values of special attributes. Objects, which belong to one
cluster, are members of the corresponding values.

The above examples were more or less simple and emphasised only
one aspect of analytical space. Let us now consider more complex ex-
ample where we illustrate how multidimensionality and hierarchy can
be combined more tightly. We can notice that for any attribute its
values can be thought of as normal objects. By standard definition
any value has only one parent, which is common for all values of one
attribute. In other words, the only characteristic of any value is that
it belongs to some attribute element representing the corresponding
feature. Yet we can suppose that the values themselves may be char-
acterised by more than one feature. In this case their attribute plays a
role of table (a container of objects) while attributes characterise the
value elements by assigning different properties (Fig. 4). For example,
the date attribute may be viewed as consisting of concrete indivisible
objects representing concrete moments in time, which are used as values
and characterise some set of objects. However, the dates themselves
can be further (at lower level of detail) characterised by additional
properties and grouped into the corresponding classes such as, e.g.,
day of week and month, which are mutually orthogonal. We can de-
crease the level of detail even more by grouping months into quarters
or introducing additional characteristics of date like if it a holiday or
not.
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Figure 4. Structured multidimensional attributes

This example demonstrates that elements in analytical space can-
not be always clearly referred to such wide spread notions as table,
attribute, value, object, record, class etc. because many of them have
intermediate position and complex membership relation with neigh-
bours. What is important to notice is that many of them combine both
multidimensional properties having more than one parent element and
hierarchical properties having both parents and children.

Characterising objects by means of several values from different at-
tributes is a conventional practice where all objects are characterised by
the same set of attributes. The dual situation where objects from dif-
ferent extensionals are characterised by one and the same attribute(s)
is much less obvious for understanding. For example, we may have a
set of country objects characterised by some properties like name, area,
religion and so on. Each country however can be viewed as consisting
of demographic objects and economic objects both described by their
own attributes set like age and profit, respectively. Thus all children
of one country object are broken into two groups according to their
involvement into two tables: demography and economy (Fig. 5). This
is obviously dual to the situation where all parents of one object are
broken into several groups depending on their involvement into one of
the attributes. In other words, it may well happen that both parent
objects and child objects do not constitute one set, i.e., they do not
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have a common container element. Note that precisely the same situ-
ation appears if one attribute is used to characterise (classify) objects
from two or more tables. In this case each its value may have chil-
dren from more than one table. The country table can be viewed as
such a common attribute which groups objects from demography and
economy tables according to their country membership.

Figure 5. Common attribute with additional structure

2.4 Inference and Aggregation

Logical inference is rather wide area, which strongly overlaps with dif-
ferent approaches and formalisms. Here in this section we present a
simplified interpretation of this notion adapted to the purposes of data
representation and analysis by means of analytical space. Yet being
further developed the conception described below can be applied to
many other fields. By inference we mean the procedure of finding the
mapping between all objects in the source space and objects in the
destination space. Thus by means of inference we can for each object
in the source space associate one object in the target space. Obviously,
it is the definition of function where the source space is the domain
and the destination space is the range. In particular, such a mapping
can be represented in the form of a table. The problem in finding such
a mapping is that source and target subspaces are located in different
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parts of analytical space and some formalism is required to calculate
the mapping proceeding from the analytical space semantics.

To be able to derive the mapping we need first concrete definition
what is the source space (domain of definition) and what is the destina-
tion space (range of function). One way consists in choosing concrete
elements, which have to be interpreted as containers for domain points
and range points. If such elements do not exist then we need to add
one element for the source space and another element for the desti-
nation space. However for practical purposes building these spaces in
explicit form may be not very efficient or even possible. Since we do not
actually need explicit representation for carrying out logical inference
these space can be defined implicitly. Normally it is done by choosing
attribute elements, which constitute the source space multidimensional
structure. Additionally, there may be constraints imposed on selected
elements.

Inference is based on the process of propagation of information
through analytical space. Depending on the direction of the propa-
gation we distinguish deaggregation and aggregation of information.
Aggregation means that information moves from lower level child ele-
ments to higher level parent elements up to the destination elements.
Thus each parent element collects information from a number of child
elements and then transfers this information in aggregated form to its
parent. The typical form of aggregation operation is sum but there
may be other methods including qualitative like creating a set of val-
ues and user defined methods. Deaggregation spreads in the opposite
direction from higher level elements down to the lower level elements.
Normally, information during deaggregation is propagated down to the
lowest level. Each child element collects information from all its par-
ents then splits it and transfers down to all its children in deaggregated
form.

Inference in analytical space consists of two stages, which are exe-
cuted for each object in the source domain (Fig. 6). At the first stage
a source element is deaggregated down to the lowest level. At the sec-
ond stage the information from the lowest level is aggregated up to the
destination space elements.
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Figure 6. Inference as deaggreagtion and aggregation

In the previous section all elements were defined to have no prop-
erties. For practical applications and particularly to easier describe
logical inference procedure we should suppose that elements can be de-
scribed by some primitive property like number, logical value or text
string. Councrete type of each element is determined either from con-
text, e.g., from query specification or when the element is created. For
example, for numeric attributes all its children are characterised by
the corresponding numeric type while for text attributes the elements
have strings associated with them. The values associated with elements
are directly used in inference by propagating them through analytical
space.

To specify concretely how inference is carried out we need to set
propagation rules for each element, i.e., what values and how are dis-
tributed among parents (aggregation) and children (deaggregation).
During deaggregation normally logical rules are used where each el-
ement is either enabled (true) or disabled (false). More precisely, if
an element if enabled then all its children are also enabled. Such a
deaggregation results in a set of objects enabled at the lowest level of
analytical space. During aggregation higher level objects collect in-
formation from all enabled children and produce one value according
to the aggregation function definition. This value is then transferred
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upper until the target space is reached.

3 Interactive Data Analysis

3.1 General Procedure

By interactive analysis we mean a capability to view the data from as
many different sides as possible. The final goal is to find an interest-
ing view where the data looks simple and informative simultaneously.
Different views can be generated both manually and automatically pos-
sibly with the appropriate data transformations. This formulation can
be opposed to automatic data analysis or data mining where an al-
gorithm searches through the space of hypothesis according to formal
interestingness criteria and the search strategy. In interactive analysis
it is the space of views and data transformations what is searched for.
It is also important that both the search strategy and measure of in-
terestingness are determined by the data analyst from his experience
and deeply informal criteria although some stages of this process can
be partially automated.

We assume that the goal of any analysis is simplifying the form of
representation by retaining most of the data semantics. In other words,
we want to express most of information in the data in as simple form
as possible. Notice that this definition is rather general and, partic-
ularly, can be used as a goal of data mining. In interactive analysis
the form of representation means choosing data elements to be shown
(including structure elements and the data itself) and the type of their
representation. It is important that elements of the data structure can
be created on demand. In other words, some elements can be deleted
(ignored) while new elements can be added into the structure (e.g., new
attributes or classifications).

The approach to interactive data analysis described in this section
can be described as follows (Fig. 7). The source data is represented
in the form of analytical space. This analytical space includes all re-
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ally existing data elements and dependencies among them. During the
analysis this space is modified by selecting necessarily existing elements
and/or creating new elements. This is the most important stage of in-
teractive analysis, which is carried out mostly manually. At the last
stage the result of selection is visualised in one or another form, which is
chosen from a list of all possible visualisations for the current selection.
Choosing visualisation technique means choosing the way elements of
analytical space are displayed [4].

08
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Figure 7. Main stages of interactive data analysis

3.2 DModifying Analytical Space

According to this approach there is a set of all possible (meaningful)
analytical spaces, which can be obtained from the initial one by ap-
plying a number of elementary modification operations. Thus it is a
set of operations that determines the richness and expressiveness of
any interactive analysis method. The main modification operations
are adding, removing and updating elements of analytical space. The-
oretically, these operations are based on and in practice can be reduced
to manipulations with element connections (membership relation). In
other words, to add new element we just add an isolated entity and

75



A.A. Savinov

then connect it to other existing elements. To delete an element we
just disconnect it from all other elements. Updating means changing
the structure of element connections. Such an approach requires clear
and deep understanding the analytical space fundamentals and even in
this case may be too complicated for real applications. Although in
some cases (e.g., fine tuning of analytical space or manipulating really
arbitrary and complicated structures) it may be useful we will describe
higher level approach where elements are divided into groups accord-
ing to their purpose. The purpose of this mechanism is similar to that
being developed within other formalism for dealing with conceptual
structures like Entity-Relationship modelling [7].

Adding elements is the most important operation. To add a value
element it is necessary to specify at least its container (simple attribute
value). Depending on the container it may be required to specify also
how this value is characterised in terms of other (orthogonal or hier-
archical) containers. This information may be absolutely necessary in
the case of the corresponding integrity constraints. It is important that
table rows are also considered value objects since they are members of
already existing container.

To add a container we need to specify its characteristics according
to its intended role in the analytical space. Normally for each con-
tainer we need to know its relationship to other containers, i.e., how
it is located within orthogonality and hierarchy relations. The typical
cases are adding an orthogonal container for some existing container
or adding higher/lower level container. Depending on the added con-
tainer type its extensional (a set of all possible values) is populated
either automatically or manually. For example, for numeric attributes
this process is carried out automatically while for finite categorical at-
tributes it is normally manual. Once a container has been added it may
be required to characterise objects in terms of its values or connect it
in some other way with the rest of the analytical space.

It should be noted that the task of creating and modifying analyti-
cal space structure requires certain experience so in many applications
the structure already exists and users/analysts have only restricted
possibilities in modifying it. For example, it may be possible to change
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element parameters.

Deletion of an element is very simple operation from the user point
of view but it is more complicated from the formal point of view. The
main issue for this operation is maintaining integrity of analytical space
by propagating the deletion over the whole structure just like we propa-
gate information during logical inference. This process is also analogous
to garbage collection in programming languages. It can be described as
follows. The deleted element is disconnected from all other elements.
Then all its children are checked for connectivity and if they do not
have any parent elements then they are disconnected from their chil-
dren, i.e., deleted. Then the process proceeds in the directions of new
children. It should be noted that this process is propagated from the
deleted element down to the bottom level elements where it stops.

Updating elements theoretically means changing the structure of
their connections. For example, changing an object attribute value
means disconnecting it from the old value and connecting to a new
value as a child. In practice it should be implemented as changing ele-
ment parameters where some parameters can be easily reduced to the
element connections while other describe their role in the analytical
space and are treaded differently. For example, an element describing
an interval of real values has two parameters for its lower and up-
per bound. Obviously, changing these parameters may influence many
other elements in the analytical space explicitly or implicitly.

3.3 Visualisation

Once analytical space has all necessary elements the user can select
elements to be included into the source and destination spaces. Given
the source and destination spaces the inference procedure automatically
builds mapping between them, i.e., for each element from the source
space one or more elements from the destination space are found. This
information can be easily represented as a table. It should be noted
that in general case both spaces may have hierarchical multidimensional
structure but in practice their structure should be reasonably restricted
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(the goal of analysis is simplifying the form).

The task of visualisation consists in determining how all elements
are shown on the screen or other device. The type of visualisation and
its parameters have to be chosen in such a way that all data elements
and their dependencies are clearly displayed, i.e., we do not loose in-
teresting information discovered on the previous steps. If we have a
repository of all possible visualisations with constraints on their use
then this can be described as mapping from each element to some vi-
sualisation type with additional information how different parameters
of visualisation are calculated from element parameters. The prob-
lem of finding an appropriate visualisation is not trivial, particularly,
currently there exist a great number of them starting from the con-
ventional bar charts and ending with such sophisticated methods as
thematic visualisations in geographic information systems [1].

4 Conclusions

The analytical space conception provides highly effective and flexible
way of data representation. All data elements are characterised by
their position relative to other elements, which is determined by mem-
bership relation. All other higher level relations among elements can
be derived by means of logical inference where information is propa-
gated through analytical space. Oun its way down to the lowest level
information is deaggregated and aggregated again when it moves up
to the target elements. Such an approach to data representation and
inference allows us to effectively define interactive data analysis and
visualisation procedures. By interactive analysis we mean the proce-
dure of searching through the space of all possible derived data views.
The final view should be simple enough on the form and rich on the
semantics. The last stage consists in visualising interesting data view
by means of available visualisation techniques.

The described approach can be applied to the following problem
domain:
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General purpose interactive data analysis tool.

Data preprocessing tool used to transform data into a form suit-
able for further analysis, e.g., data mining.

Data modelling tool used to find data structure suitable for the
problem domain.

Data representation model used to store and retrieve data from
databases [5] with analytical capabilities.

This paper focuses on features appropriate mainly for the first task.

In future problems specific for other tasks will be considered. In par-
ticular, the problem of data modelling and conceptual analysis are of
especially great interest so that the results described in the paper can
be developed into a new data representation model.
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