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Preface

This spring (2014) the Institute of Mathematics and Computer Sci-
ence (IMCS) of the Academy of Sciences of Moldova has celebrated its
50 years anniversary. Today we have all the reasons to assert that IMCS
is a center for advanced research in the domains of pure mathematics,
the applied one and computer science.

Academician V. Andrunachievici was the founder of the Institute.
He was a talented mathematician and organizer who managed to form
an advanced team.

Throughout the years, the researchers of the Institute have ob-
tained remarcable results in the fields of algebra, functional analysis,
differential equations, mathematical logics, computing mathematics,
mathematical modeling and computer science. Towards the end of 70-
th (XXth century), famous scientific schools in the theory of algebraic
rings (the founder is acad. V. Andrunachievici), in the qualitative
theory of differential equations (acad. C. Sibirschi), in the theory of
quasigroups (cor.m. of Academy of Pedagogical Sciences of the former
Soviet Union, Professor V. Belousov), in functional analysis (cor.m.
I. Gohberg) and in mathematical logic (Dr. A. Kuzneov) has been
formed.

Currently, most mentioned schools continue their successful work
and enjoy international authority. Within the framework of these
schools, over 3000 of scientific papers and about 150 monographs in
different domains of mathematics and computer science have been pub-
lished. Also 127 volumes from series “Mathematical research” (in Rus-
sian “Matematicheskie issledovania”) and 15 volumes “Applied mathe-
matics and programming” (in Russian “Prikladnaia matematika i pro-
grammirovanie”) had appeared.

c©2014 by M. Choban, S. Cojocaru
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In the Institute, 30 doctors in habilitation and about 400 PhDs were
trained through doctoral study or with contribution of Specialized Sci-
entific Councils. Starting from 1989, the Institute publishes the journal
“Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica”
(to this day 73 volumes were out). Also, starting from 1993, the jour-
nal “Computer Science Journal of Moldova” (64 volumes) is published.
In collaboration with colleagues from Poland the journal “Quasigroups
and related systems” (21 volumes) is published.

Over a period of last 20 years the Institute took part in executing
50 international projects with partners from advanced research centers
in different countries of Europe, Asia, America.

The country’s highest distinctions in research – State Award and
National Award – were conferred to 11 researchers, 19 respective awards
were conferred to young researchers. Ten persons (researchers) from
IMCS became laureates of “Academician Constantin Sibirschi” award
for achievements in mathematics and computer science.

The Third Conference of Mathematical Society of the Re-
public of Moldova dedicated to the 50th anniversary of the
foundation of Institute of Mathematics and Computer Sci-
ence “IMCS-50” is a continuation of the number of scientific events,
which started with the International Conference on Intelligent Infor-
mation Systems – IIS 2013 and the 14th International Conference on
Membrane Computing – CMC14, organized by IMCS in August 2013
and dedicated to this anniversary.

We are confident that these Proceedings, which comprise the last
results of moldovan scientists and their foreign colleagues, will con-
tribute considerably to the development and promotion of research in
mathematics and computer science not only in Republic of Moldova,
but abroad as well.

Mitrofan Choban
Svetlana Cojocaru
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Functional subordination in general spaces

Loriana Andrei, Mitrofan Choban

Abstract

In the present paper we study the subordination equations
for certain analytic functions in the open unit disk. These results
are obtained by investigating classes of admissible functions.

Keywords: analytic functions, subordination, differential
subordination.

1 Introduction

Every space is considered to be a completely regular Hausdorff space.
Let X, Y , Z be non-empty spaces and ϕ,ψ : X×Z −→ Y be continuous
mappings. Consider the expression ϕ(ω, z) = ψ(x, z) (1). A solution
of the equation (1) is a function ω : X × Z −→ X such that ϕ(x, z) =
ψ(ω(x, z), z) for all x, z ∈ X × Z. If the solution of the equation (1)
exists, then we put: ϕ(x, z) ≺≺ ψ(x, z) (2). The expression (2) is called
a subordination. A strong solution of the equation (1) is a function
ω : X −→ X such that ϕ(x, z) = ψ(ω(x), z) for all x, z ∈ X × Z.
Any strong solution of the equation (1) is a solution of the equation
(1) too. From the Axiom of Choice it follows that there exist solutions
of the equation (1) if and only if Gϕψ(x, z) = ψ−1(ϕ(x, z)) 6= ∅ for
all x ∈ X and z ∈ Z. Obviously, Gϕψ(x, z) 6= ∅ for all x ∈ X and
z ∈ Z if and only if ϕ(X × {z}) ⊆ ψ(X × {z} for each z ∈ Z. The
equation (1) is called Z-simple if Gϕψ(x, z) = Gϕψ(x,w) for all x ∈ X
and z, w ∈ Z. In this case any solution ω : X×Z −→ X of the equation
(1) and any point z ∈ Z generates the strong solution ωz : X −→ X,
where ωz(x) = ω(x, z) for each x ∈ X, of the equation (1). Let Z

c©2014 by L. Andrei, M. Choban
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be a singleton space. In this case we may assume, without loss of
generality, that X×Z = X and the mappings ϕ,ψ : X −→ Y generate
the following equation of the subordination ϕ(ω(x)) = ψ(x) (3). Any
solution of the equation (3) is a strong solution. If ϕ : X×Z −→ Y and
ψ : X −→ Y are continuous mappings, then we obtain the intermediary
equation of the subordonation ϕ(ω(x, z), z) = ψ(x) (4). The equations
of the form (4) were examined in [3].

2 Conditions of the existence of solutions

Proposition 2.1. Let ϕ,ψ : X × Z −→ Y be continuous mappings
with the following property: for each z ∈ Z the mapping ψz : X 7−→ Y ,
where ψz(x) = ψ(x, z) for each x ∈ X, is an open mapping of X into
Y . Then:

- the mapping ψ is open;
- if the equation (1) is Z-simple, then the mapping Gϕψ is lower

semicontinuous.
Proposition 2.2. Let ϕ,ψ : X ×Z −→ Y be continuous mappings

with the following property: for each z ∈ Z the mapping ψz : X 7−→ Y ,
where ψz(x) = ψ(x, z) for each x ∈ X, is an injection and ϕ(X ×
{z}) ⊆ ψz(X). Then ω = Gϕψ is the unique single-valued solution
of the equation (1). Moreover, if the mapping Gϕψ is lower (upper)
semicontinuous, then the mapping ω is continuous.

Proposition 2.3. Let ϕ,ψ : X×Z −→ Y be continuous mappings,
X be a complete metric space, X × Z be a paracompact space and
dim(X × Z) = 0. If the mapping Gϕψ is lower semicontinuous and
ϕ(X×{z}) ⊆ ψ(X×{z}) for each z ∈ Z, then there exists a continuous
solution of the equation (1).

3 Almost locally homeomorphisms

A point x ∈ X is a point of a locally homeomorphism of a mapping
f : X −→ Y if there exists an open subset V of X such that x ∈ V , the
set W = f(V ) is open in Y and f |V is a homeomorphism of V onto W .

7
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A mapping f : X −→ Y is called an almost locally homeomorphism if
f is an open continuous mapping and if x ∈ X is not a point of locally
homeomorphism of the mapping f , then there exists an open subset V
of X such that x ∈ V and any point y ∈ V \ {x} is a point of locally
homeomorphism of the mapping f .

Theorem 3.1. Let X,Y be topological spaces, ϕ : X −→ Y be a
continuous mapping, ψ : X −→ Y be an almost locally homeomorphism
and ϕ(X) ⊆ ψ(X). Then there exist an open subset D of X and a
continuous mapping h : D −→ X such that: ϕ(x) = ψ(h(x)) for each
x ∈ D; the set D is dense in X; if the mapping ϕ is open, then the
mapping h is open too, and for each point x ∈ D there exist two open
subsets V and W of X such that x ∈ V , h(x) ∈ W , ϕ(V ) = ψ(W ),
and ψ|W is a homeomorphism of W onto ψ(W ); if the mapping ϕ is
an almost locally homeomorphism, then the mapping h is open and for
each point x ∈ D there exist two open subsets V such that h|V is a
homeomorphism of V onto h(V ).

4 Differential subordinations

Let Y be a commutative Banach algebra over the field of complex
numbers C. Denote by 1 the unity in Y . If we identify z ∈ C with
z·1, then we obtain that C is a subalgebra of Y . Denote by U = {z ∈
C : |z| < 1} the unit disc of the complex plane C and by U = {z ∈
C : |z| ≤ 1} the closed unit disc of the complex plane. Consider the
analytic functions ϕn : Cn+1 × U × U −→ Y , and ψ : U −→ Y , where
n ≥ 2. In this case we may write the differential subordination of the
order n: ϕn(p(z), zp′(z), ..., znp(n)(z), z, ξ) ≺≺ ψ(z) (5).

Let H(a, n) be the class of analytic functions f : U → C of the form
f(z) = a + anzn + an+1z

n+1 + ..., A1 = H(1, 1), Qa be the set of all
functions q that are analytic and injective on U\E(q), where E(q) =
{ζ ∈ ∂U : limz→ζ q(z) = ∞}, for which q′(ζ) 6= 0 for ζ ∈ ∂U\E(q) and
q(0) = a. Fix Ω ⊆ C and q(z) ∈ Q1∩H(q(0), 1). The class of admissible
functions Φ[Ω, q] consists of those functions φ : C3×U → C that satisfy
the admissibility condition φ (u, v, w; z) /∈ Ω, whenever u = q(ζ), v =

8
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q(ζ) + λkζq′(ζ)
q(ζ) , q(ζ) 6= 0, λ ≥ 0, Re(v(w−v)

λ(v−u) + v−2u
λ ) ≥ kRe( ζq′′(ζ)

q′(ζ) + 1),
z ∈ U , ζ ∈ ∂U\E(q), k ≥ 1.

Let λ ≥ 0 and n,m ∈ N. Denote by DRm,n
λ : A → A the operator

given by the Hadamard product of the generalized Sălăgean operator
Dm

λ and the Ruscheweyh operator Rn (see [1, 2, 3]).
Theorem 4.1. Let Ω ⊂ C and φ ∈ Φ [Ω, q], or, in particular, q be

univalent in U , q (0) = 1 and φ ∈ Φ [Ω, qρ], for some ρ ∈ (0, 1), where
qρ (z) = q (ρz) . If f ∈ A satisfies

{φ
(

DRm+1,n
λ f(z)

DRm,n
λ f(z)

,
DRm+2,n

λ f(z

DRm+1,n
λ f(z)

,
DRm+3,n

λ f(z)

DRm+2,n
λ f(z)

; z

)
: z ∈ U} ⊂ Ω,

then (DRm+1,n
λ f(z)) : (DRm,n

λ f(z)) ≺ q(z).
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Properties of Main Lattices of Group Topologies

V.I. Arnautov, G.N. Ermakova

Abstract

This paper is a survey of results about properties of various
lattices of group topologies.

Keywords: Hausdorff topology, countable group, group
topology, lattice of group topologies, basis of the filter of neigh-
bourhoods, number of group topologies, metrizable group topol-
ogy.

This paper is a survey of results about the properties of various
lattices of group topologies.

A.A.Markov started study of the lattice of group topologies in an
article of 1945. He proposed a method of constructing of some Haus-
dorff group topologies on any countable group.

Later we proposed a more general method of specifying such group
topologies on countable groups. This method allows to get any metriz-
able group topology on any countable group.

Notation 1. For any group G the following sets of subsets are
considered:

– the set ∆ of all normal subgroups of the group G;
– the set Ω0 of all group topologies on the group G;
– the set Ω1 of all group topologies on the group G, for each of

which the topological group is a subgroup of a complete group;
– the set Ω2 of all group topologies on the group G, for each of

which the left and right uniform structures match;
– the set Ω3 of all group topologies on the group G, for each of

which the topological group has a basis of the filter of neighborhoods
of unity, which consists of subgroups;

c©2014 by V.I. Arnautov, G.N. Ermakova
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– the set Ω4 of all group topologies on the group G, for each of
which the topological group has a basis of the filter of neighborhoods
of unity, which consists of normal subgroups;

– the set Ω5 of all group topologies on the group G, for each of which
the topological group has a finite basis of the filter of neighborhoods of
unity;

– the set Ω6 of all group topologies on the group G, for each of
which the topological group is a subgroup of a compact group.

Theorem 2. For any group each of the above sets, with the
procedure, which is defined by the inclusion, is a complete lattice, and
the following conditions are true:

- the lattices Ω5 and ∆ are anti-isomorphic;
- the lattices ∆, Ω2, Ω4, Ω5 and Ω6 are modular lattices.
Theorem 3. Let τ1 and τ2 be group topologies on the group G,

and let B1 and B2 be filters of bases of neighborhoods of the unity in
topological groups (G, τ1) and (G, τ2), respectively. Then the following
assertions are true:

- if Ω ∈ {Ω0,Ω1, Ω2,Ω3,, Ω4, Ω5, Ω6} and τ1, τ2 ∈ Ω, then Ω =
{V ∩ U |V ∈ B1, U ∈ B2} is a basis of the filter of neighborhoods of
unity in the topological group (G, sup{τ1, τ2});

- if Ω ∈ {Ω2, Ω4, Ω5,Ω6} and τ1, τ2 ∈ Ω, then Ω = {V · U |V ∈
B1, U ∈ B2} is a basis of the filter of neighborhoods of unity in the
topological group (G, inf{τ1, τ2}).

The methods for specifying group topologies, which are given above,
allow to get the following criterion (see below Theorem 5) of the exis-
tence of non-discrete, Hausdorff group topologies on a countable group.

Definition 4. The equality g1 ·x±1 ·g2 ·x±1 · . . . ·gn ·x±1gn+1 = g0,
where gi ∈ G for any natural number 0 ≤ i ≤ n + 1, will be called an
equation over a group G with variable x.

Theorem 5. Any countable group G admits a non-discrete, Haus-
dorff, group topology iff for any finite number of equations over the
group G such that the identity element of the group G is not a root of
each of these equations, there is an element such that it is not equal to
the identity element and it is not a root of each of these equations.

11
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Theorem 6. Every infinite Abelian group admits non-discrete
Hausdorff group topology (A.Kertesz, T.Szele 1953).

Remark 7. A.Yu. Ol’shansky constructed an example of countable
group, which does not allow non-discrete Hausdorff group topologies in
1980.

Theorem 8. If a countable group G admits group topology in which
topological group does not have a finite basis of the filter of neighbor-
hoods of unity, then the following statements are true:

- the lattice of all group topologies on the group G contains a sub-
lattice isomorphic to the lattice of real numbers with the usual order;

- the lattice of all group topologies on the group G contains two to
the power continuum of pairwise incomparable topologies.

Theorem 9. If a countable group G admits a non-discrete group
topology in which topological space (G, τ) is Hausdorff, then the lattice
of all group topologies on the group G contains two to the power of the
continuum coatoms.

Definitions 10. As usual, we say that:
- an element a2 covers an element a1 in partially ordered set (A,<),

if a1 < a2 and there is no element b ∈ A, such that a1 < b < a2. In
this case we write a1 ≺ a2.

- a chain a1 < a2 < . . . < an of elements of a partially ordered
set (A,<) is called an unrefinable chain if ak ≺ ak+1 for any natural
number 1 ≤ k < n.

Since for an arbitrary group G(·) any lattice Ω ∈ {Ω2, Ω4, Ω5, Ω6}
is a modular lattice, then the following theorem is true:

Theorem 11. Let G(·) be any group and let Ω ∈ {Ω2, Ω4, Ω5, Ω6}.
Then for any unrefinable chain τ1 ≺ τ2 ≺ . . . ≺ τn in the lattice Ω the
following statements are true:

11.1. If τ ′1 < τ ′2 < . . . < τ ′k is a chain topologies in the lattice Ω
such that τ1 = τ ′1 and τn = τ ′k, then k ≤ n. In particular, if the chain
τ ′1 < τ ′2 < . . . < τ ′k is a unrefinable chain, then k = n;

11.2. If τ ∈ Ω, then sup{τi, τ} ≺ sup{τi+1, τ} or sup{τi, τ} =
sup{τi+1, τ} for each natural number 1 ≤ i ≤ n− 1;

11.3. If τ ∈ Ω and τ ′1 < τ ′2 < . . . < τ ′k is a chain in the lattice Ω

12
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such that τ ′1 = inf{τ1, τ} and τ ′k = inf{τn, τ}, then k ≤ n;
11.4. If τ ∈ Ω and τ ′1 < τ ′2 < . . . < τ ′k is a chain in the lattice Ω

such that τ ′1 = sup{τ1, τ} and τ ′k = sup{τn, τ}, then k ≤ n.
Theorem 12. Let G(·) be arbitrary nilpotent group, and let

Ω ∈ {Ω0, Ω1,Ω2, Ω3,, Ω4, Ω5,Ω6}. Then for every unrefinable chain
τ1 ≺ τ2 ≺ . . . ≺ τn of group topologies in the lattice Ω the following
statements are true:

12.1. If τ ′1 < τ ′2 < . . . < τ ′k is such that τ1 = τ ′1 and τn = τ ′k, then
k ≤ n. In particular, if the chain τ ′1 < τ ′2 < . . . < τ ′k is an unrefinable
chain, then k = n;

12.2. If τ ∈ Ω, then sup{τi, τ} ≺ sup{τi+1, τ} or sup{τi, τ} =
sup{τi+1, τ} for each 1 ≤ i ≤ n− 1;

12.3. If τ ′1 < τ ′2 < . . . < τ ′k is a chain such that τ ′1 = sup{τ1, τ}
and τ ′k = sup{τn, τ}, then k ≤ n.

Remark 13. There exists an example of a nilpotent group G and
group topologies τ1 and τ2 on the group G, such that τ1 is a coatom
in the lattice Ω0 (i.e. τ1 ≺ τd, where τd is the discrete topology),
and between the topologies inf{τ1, τ2} and τ2 = inf{τd, τ2} there is a
chain of group topologies which is infinitely increasing and infinitely
decreasing.

This example shows that for nilpotent groups the lattice Ω0 can be
non modular in general case.
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Successively orthogonal systems of k-ary

operations and their transformations

Galina B. Belyavskaya

Abstract
In this article systems of k-ary operations, k ≥ 2, generalizing

orthogonal sets are considered. These systems have the follow-
ing property: every k successive k-ary operations of the system
are orthogonal. We call these systems successively orthogonal,
suggest methods of construction and consider admissible trans-
formations of these systems.

Keywords: k-ary operation, k-ary quasigroup, orthogonal
set of k-ary operations.

1 Introduction

It is known that k-ary operations, k ≥ 2, correspond to k-dimensional
hypercubes which are objects of combinatorial analysis. A binary
quasigroup is an algebraic equivalent of a Latin square and a k-ary
quasigroup respects to a permutation cube of the dimension k. The
algebraic approach is useful for research of such combinatorial objects.
All these objects and their corresponding orthogonal sets (systems)
have many applications in various areas including affine and projective
geometries, designs of experiments, error-correcting and error-detecting
coding theory and cryptology.

2 Preliminaries

A k-ary operation A (briefly, a k-operation) on a set Q is a mapping
A : Qk → Q, defined by A(xk

1) → xk+1. In this case write A(xk
1) =

c©2014 by G.B. Belyavskaya
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xk+1.
A k-groupoid (Q,A) is a set Q with one k-ary operation A, defined

on Q.
The k-operation Ei : Ei(xk

1) = xi, 1 ≤ i ≤ k, on Q is called the i-th
identity operation (or the i-th selector) of arity k.

An i-invertible k-operation A defined on Q, is a k-operation with the
following property: the equation A(ai−1

1 , x, ak
i+1) = ak+1 has a unique

solution for each fixed k-tuple (ai−1
1 , ak

i+1, ak+1) of Qk [2].
A k-tuple < Ak

1 > of k-operations is orthogonal if and only if the
mapping θ = (Ak

1) : Qk → Qk, (xk
1) → (A1(xk

1), A2(xk
1), ..., Ak(xk

1)) =
(Ak

1)(x
k
1) is a permutation on Qk [1].

All 2-invertible binary operations, given on a set Q, form the group
(Λ2; ·)Q under the multiplication (A ·B)(x, y) = A(x,B(x, y)).

A k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid
(Q,A) such that the k-operation A is i-invertible for each i = 1, 2, . . . , k.

Definition 1 [1]. A k-tuple < A1, A2, ..., Ak >=< Ak
1 > of k-

operations, given on a set Q, is called orthogonal if the system
{Ai(xk

1) = ai}k
i=1 has a unique solution for all ak

1 ∈ Qk.

Definition 2 [1]. A set {A1, A2, . . . , At}, t ≥ k, of k-operations is
called orthogonal if every k-tuple of these k-operations is orthogonal.

Definition 3 [1]. A set Σ = {At
1}, t ≥ 1, of k-ary operations, given

on a set Q, is called strongly orthogonal if the set Σ = {At
1, E

k
1} is

orthogonal.

3 Successively orthogonal systems

We give the following

Definition 4. A system Σ = {At
1}, t ≥ k, of k-ary operations, given

on a set Q, | Q |≥ 3, is called successively orthogonal system (briefly,
a SOS) if any successive k operations are orthogonal.

Every orthogonal set of k-operations is a successively orthogonal
system.

15
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Proposition 1. Let Σ1 = {A1, A2, ..., As1}, Σ2 = {B1, B2, ..., Bs2} be
strongly orthogonal sets of k-operations. Then the system

Σ3 = {E1, E2, ..., Ek, A1, A2, ..., As1 , E1, E2, ..., Ek, B1, B2, ..., Bs2}
is a SOS.

Let (Q,A) be a quasigroup, Ai(x, y) = A(x,Ai−1(x, y)), i = 2, ... .

Theorem 1. If A, A1, A2, ..., At are binary quasigroups of the order
s0, s1, ..., st respectively, in the group (Λ2; ·)Q of all 2-invertible binary
operations, given on a set Q, then the system

F,E, A,A2, ..., As0−1, F,E, A1, A
2
1, ..., A

s1−1
1 ,

F,E, A2, A
2
2, ..., A

s2−1
2 , ..., F,E, At, A

2
t , ..., A

st−1
t

is a SOS.
Let A−1 be the inverse element to a binary 2-invertible operation A

in the group (Λ2; ·)Q. Simultaneously this operation is the right inverse
quasigroup for (Q,A), if (Q, A) is a quasigroup.

Proposition 2. Let (Q, A) be a binary quasigroup, s be the order of
A in the group (Λ2; ·)Q, A−(i) = (Ai)−1. Then the system

Σ = {A−(s−1), A−(s−2), ..., A−1, E, A, A2, ..., As−1}
is a SOS of 2-invertible binary operations.

Theorem 2. Let A be an 1-invertible k-operation on a set Q,
θ = (E2, E3, ..., Ek, A) = (Ek

2 , A), and s0 be the order of the permu-
tation θ in the group SQk , then the system of k-operations

E1, E2, ..., Ek, A,Aθ, Aθ2, ..., Aθk−1, Aθk, ..., Aθs0−k−1,

E1, E2, ..., Ek, A, Aθ,Aθ2, ..., Aθk−1, Aθk, ..., Aθs0−k−1, ...

is successively orthogonal.

Theorem 3. Let a permutation (Ek
2 , A) have the order s0, then a

successively orthogonal system of Theorem 2 contains s0 different k-
operations. If s0 = k + 1, then the k-operation A is a quasigroup
k-operation. For any 1-invertible k-operation s0 ≥ k + 1.
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4 Transformations of successively orthogonal
systems

The successively orthogonal systems admit the known transformations
of orthogonal sets of k-operations. This enables to get one from another
system.
Theorem 4. Let a k-tuple ϕ = (C1, C2, ..., Ck) of k-operations, k ≥ 2,
given on a set Q, be orthogonal, a system Σ =< B1, B2, ..., Bt > be
a SOS, then the system of k-operations Σϕ =< B1ϕ,B2ϕ, ..., Btϕ >,
where Biϕ(xk

1) = Bi(C1(xk
1), C2(xk

1), ..., Ck(xk
1)), is a SOS.

Proposition 3. Let a system of k-operations Σ = {B1, B2, ..., Bt},
t ≥ k, be a SOS and ϕ = (Bi+1, ..., Bi+k) be a permutation of successive
k-operations of Σ for some i = 0, 1, ..., t− k. Then the system Σϕ−1 =
{B1ϕ

−1, B2ϕ
−1, ..., Btϕ

−1} = {B1ϕ
−1, B2ϕ

−1, ..., Biϕ
−1, E1, E2, ..., Ek,

Bi+k+1ϕ
−1, ..., Btϕ

−1} is a SOS, the operation Biϕ
−1 is k-invertible if

i ≥ 1 and the operation Bi+k+1ϕ
−1 is 1-invertible if i ≤ t− k − 1.

Theorem 5. Any orthogonal set of k-operations can be continued to a
SOS.
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On a Method of Constructing Medial and

Paramedial Quasigroups

Natalia Bobeica, Liubomir Chiriac

Abstract

In this paper was developed a new method of constructing
paramedial and medial quasigroups using the special direct prod-
uct of Abelian groups.

Keywords: Abelian group, special direct product, parame-
dial and medial quasigroups.

1 Introduction

The results established here are related to the results of M. Choban
and L. Chiriac in [2] and to the research papers [1,3,4,5]. Our main
goal is to prove a new method of constructing non-associative medial
quasigroups and non-associative paramedial quasigroups.

2 Basic notions

A non-empty set G is said to be a groupoid relatively to a binary op-
eration denoted by {·}, if for every ordered pair (a, b) of elements of G
there is a unique element ab ∈ G.

A groupoid (G, ·) is called a quasigroup if for every a, b ∈ G the
equations a · x = b and y · a = b have unique solutions.

A groupoid (G, ·) is called medial if it satisfies the law xy ·zt = xz ·yt
for all x, y, z, t ∈ G.

A groupoid (G, ·) is called paramedial if it satisfies the law xy · zt =
ty · zx for all x, y, z, t ∈ G.

c©2014 by N. Bobeica, L. Chiriac
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If a paramedial guasigroup G contains an element e such that e·x =
x(x ·e = x) for all x in G, then e is called a left (right) identity element
of G and G is called a left (right) paramedial loop.

A groupoid (G, ·) is called a groupoid Abel-Grassmann or AG-
groupoid if it satisfies the left invertive law (a · b) · c = (c · b) · a for
all a, b, c ∈ G.

A groupoid (G, ·) is called AD-groupoid if it satisfies the law a · (b ·
c) = c · (b · a) for all a, b, c ∈ G.
Example 1 Let (G,+) be a commutative additive group with a zero 0.
Consider a new binary operation x · y = y− x. Then (G, ·) is a medial
quasigroup with a (1, 2)-identity 0. If x + x 6= 0 for some x ∈ G, then
0 is not an identity in (G, ·).

The notion of (n,m)-identity was introduced in [2].

3 Main Results

Theorem 1 Let (G,+) be a commutative group. The set G × G with
the operation

(x1, y1) ◦ (x2, y2) = (x2 + y2 − x1, x1 + y1 − y2)

is a paramedial, non-medial, non-associative quasigroup.

Example 2 Let G = {0, 1}. We define the binary operation ” + ”:
0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1. Then (G,+) is a
commutative group.Define a new operation (◦) on the set G × G by
(x1, y1) ◦ (x2, y2) = (x2 + y2 − x1, x1 + y1 − y2), for all x1, y1, x2, y2 ∈
G × G. If we label the elements as follows (0, 0) ↔ 0, (0, 1) ↔ 1,
(1, 0) ↔ 2, (1, 1) ↔ 3, then obtain:

(◦) 0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 3 0 1 2
3 2 1 0 3
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Then (G × G, ◦) is a paramedial, non-medial, non-associative quasi-
group.
Theorem 2 Let (G,+) be a commutative group. The set G × G with
the operation

(x1, y1) ◦ (x2, y2) = (−x1 − y1 + y2,−x2 − y2 + x1)

is a non-associative, non-paramedial, medial quasigroup, AD and AG−
quasigroup.
Example 3 Let G = {0, 1, 2}. We define the binary operation ” + ”.

(+) 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Then (G,+) is a commutative group. Define a binary operation (◦)
on the set G×G by (x1, y1)◦(x2, y2) = (−x1−y1+y2,−x2−y2+x1), for
all x1, y1, x2, y2 ∈ G×G . If we label the elements as follows (0, 0) ↔ 0,
(0, 1) ↔ 1, (0, 2) ↔ 2, (1, 0) ↔ 3, (1, 1) ↔ 4, (1, 2) ↔ 5, (2, 0) ↔ 6,
(2, 1) ↔ 7, (2, 2) ↔ 8, then obtain:

(◦) 0 1 2 3 4 5 6 7 8
0 0 5 7 2 4 6 1 3 8
1 6 2 4 8 1 3 7 0 5
2 3 8 1 5 7 0 4 6 2
3 7 0 5 6 2 4 8 1 3
4 4 6 2 3 8 1 5 7 0
5 1 3 8 0 5 7 2 4 6
6 5 7 0 4 6 2 3 8 1
7 2 4 6 1 3 8 0 5 7
8 8 1 3 7 0 5 6 2 4

Then (G × G, ◦) is a non-associative, non-paramedial, medial quasi-
group, AD and AG−quasigroup.
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4 Conclusion

In this article we demonstrate a method of constructing various types
of medial and paramedial quasigroups using the special direct product
of commutative groups.
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Semireflexive subcategories and pairs

of conjugate subcategories

Dumitru Botnaru, Olga Cerbu

Abstract

We examine some relations between semireflexive subcate-
gories, semireflexive product, the right product of two subcat-
egories and pairs of conjugate subcategories.

Keywords: reflector and coreflector functor, left exact func-
tor, semireflexive spaces, semireflexive subcategories, semireflex-
ive product of two subcategories, the right product of two sub-
categories.

We shall consider the category C2V of locally convex topological
vector Hausdorff spaces, defined on the field K of real or complex
numbers (see [3]). The semireflexive product and semireflexive sub-
categories were defined and studied by the authors in [5]. The pairs
of the conjugate subcategories were defined and studied by the first
author (see [4]).

We shall use the following notations: (Eu,Mp), where Eu is the
universal epimorphism class and Mp is the class of exact monomor-
phisms);
Π – the subcategory of complete spaces with weak topology;
S – the subcategory of spaces with weak topology;
Γ0 – the subcategory of complete spaces;
qΓ0 – the subcategory of quasicomplete spaces;
sR – the subcategory of semireflexive spaces;
M̃ – the subcategory of the spaces with Mackey topology.
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22



Semireflexive subcategories and pairs of conjugate subcategories

A factorization structure (P ′′(R), I ′′(R)), where P ′′(R) = Ep◦(εR),
corresponds to any nonzero reflective subcategory R of the category
C2V (see [4]).

The factorization structure (Eu,Mp) divides the lattice R of the
nonzero reflective subcategory of the category C2V into three classes
R(Eu) = {R ∈ R, R is Eu-reflective}, R(Mp) = {R ∈ R, R is Mp-
reflective}, R(Eu,Mp) = (R \ (R(Eu) ∪ R(Mp))) ∪ {C2V}.

Definition 1. ([5]). The subcategory R of the class R(Eu,Mp)
is called semireflexive if there exists a subcategory B ∈ R(Eu) and a
subcategory Γ ∈ R(Mp) such that R = B ×sr Γ.

Let (K,R) be a pair of conjugate subcategories, and Γ ∈ R(Mp).
We denote by l : C2V −→ L, where L = R ∩ Γ, the reflector functor.
Since the subcategory R is closed under the extension, it follows that
l = g · r, where g : C2V −→ Γ and r : C2V −→ R are reflector functors.
Moreover, according to the Theorem 4.6 [5], the subcategory T = R×sr

Γ is reflective. Let t : C2V −→ T and v : C2V −→ V, where V = K×d L
be reflector functors. Obviously, L ⊂ T .

Theorem 1. Using the notations given above, we have:
1. R×sr Γ = K ×d (R∩ Γ).
2. v · r = r · v = l.
3. v · k = k · l · k.
Theorem 2. Let k, g : C2V −→ C2V be two functors. The following

statements are equivalent:
1. k · g = g · k.
2. The subcategory R×sr Γ is P ′′(Γ)-reflective.
Theorem 3. The following statements are equivalent:
1. k(εL) ⊂Mp.
2. The subcategory R×sr Γ is Mp-reflective.
Definition 2. (see [4]). Let K be a coreflective and R be a reflec-

tive, both nonzero, subcategories of the category C2V, with the corre-
sponding functors k : C2V −→ K and r : C2V −→ R. Then (K,R) is
called a pair of conjugate subcategories if the following equalites hold:

a) k · r = k, b) r · k = r.
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In this case, K (respectively, R) is called a c-coreflective, (respec-
tively, R – c-reflective) subcategory.

Denote µK = {m ∈ Mono C2V | k(m) ∈ Iso} and εR = {e ∈
Epi C2V | r(e) ∈ Iso}.

Theorem 4. (see [4]). For a pair (K, R) of subcategories of the
category C2V, where K is coreflective and R is reflective, the following
statements are equivalent:

1. (K,R) is a pair of conjugate subcategories.
2. µK = εR.
Theorem 5. The following statements are equivalent:
1. k(εL) ⊂Mp.
2. The subcategory R×sr Γ is Mp-reflective.
Proposition 1. Let (K, R) be a pair of conjugate subcategories, Γ1

and Γ2 – two Mp-reflective subcategories and Γ1 ⊂ Γ2. If R×sr Γ1 is a
Mp-reflective subcategory, then R×sr Γ2 is a semireflexive subcategory.

Proposition 2. Let (K, R) be a pair of conjugate subcategories, Γ1

and Γ2 – two Mp-reflective subcategories and Γ1 ⊂ Γ2. If R×sr Γ2 is a
semireflexive subcategory, then R×sr Γ2 is a semireflexive subcategory
too.

Proposition 3. Let (K1, R1) and (K2, R2) be two pairs of con-
jugate subcategories, R1 ⊂ R2 and Γ ∈ R(Mp). If R2 ×sr Γ is a
semireflexive subcategory, then R1 ×sr Γ is a semireflexive subcategory
too.

Theorem 6. (see [4]). For every nonzero reflective subcategory R
of the category C2V, the following statements are equivalent:

1. R is c-reflective (see [2]).
2. R contains the subcategory of spaces with weak topology S and

the reflector functor r : C2V −→ R is left-exact (see [6]).
Theorem 7. Let (K, R) be a pair of conjugate subcategories. If

the subcategory S of a space with weak topology is not contained in the
subcategory K, then R×sr Γ0 is a semireflexive subcategory.

Theorem 8. Let (K,R) be a pair of conjugate subcategories and
Γ ∈ R(Mp). If there exists an object X ∈ |S|, such that: X ∈ |K| and
its Γ-replique coincides with Γ0-replique, then R×srΓ is a semireflexive
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subcategory.
Example 1. If (M̃, S) is a pair of conjugate subcategories in the

category C2V and Π = S ∩ Γ0 then we have:

S ×sr Γ0 = M̃ ×d Π = Π.

Example 2. The subcategory Sch of the Schwartz spaces is c-
reflective. Let K be a coreflective subcategory of the category C2V, such
that (K,Sch) is a pair of conjugate subcategories. Then

Sch×sr Γ0 = iR = K ×d (Sch ∩ Γ0),

where iR is a subcategory of an inductive semireflexive space [1].
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Abstract
We formulate necessary and sufficient conditions for a pair of

subcategories to form a relative torsion theory.
Key words: reflective and coreflective subcategories, relative

torsion theories, the right and left product of two subcategories,
locally convex spaces.

1 Introduction

In the category C2V of the vectorial topological locally convex Hausdorff
spaces we examined the subcategories: Γ0 – the subcategory of the com-
plete spaces, S – the subcategory of the spaces with weak topology, M̃
– the subcategory of the spaces with the Mackey topology (see [4]); the
classes of morphisms: Mu – the class of universal monomorphisms (see
[2]), Epi – the class of epimorphisms; Mono – the class of monomor-
phisms, Iso – the class of isomorphisms, if r : C2V −→ R (respectively:
k : C2V −→ K) is a reflector functor (respectively: coreflector), then:
εR = {e ∈ Epi | r(e) ∈ Iso}, µK = {m ∈ Mono | k(m) ∈ Iso}. The
factorization structures (Eu,Mp), (E ′(K),M′(K)), (P ′′(R),P ′′(R)) are
described in [2], the right and left product of two subcategories are
described in [3].

2 The right and left product of two subcate-
gories and the relative torsion theories

Definition 1 [1]. Let K be a coreflective subcategory, and R be a
reflective subcategory of category C. The pair (K,R) is called a relative

c©2014 by D. Botnaru, A. Ţurcanu
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torsion theory (RTT), i.e. relative to the subcategory K ∩ R, if the
functors k : C → K and r : C → R verify the following two relations:

1. The functors k and r commute: k · r = r · k;
2. For any object X of category C the square rX · kX = krX · rkX

is pull-back and puschout, where kX : kX → X, krX : krX → rX are
the K-coreplique, and rX : X → rX and rkX : kX → rkX = krX are
R-replique of the respective objects.

Remark 1. In the abelien categories a torsion theory (T ,F) is a
RTT relative to the intersection T ∩ F = 0.

Theorem 1 ([1]). Let K be a coreflective subcategory, and R –
a reflective subcategory of category C2V and Γ0 ⊂ R. The pair (K,R)
forms a RTT iff the coreflector functor k : C2V −→ K and the reflector
r : C2V −→ R commute: k · r = r · k.

Remark 2. Examples of RTT and coreflective and reflective
functors that commute, can be found in [1].

Let K be a coreflective subcategory, and R be a reflective subcate-
gory of category C2V. We examine the following conditions:

(S) The subcategory K is closed with respect to (εR)-factorobjects.
(D) The subcategory R is closed with respect to (µK)-subobjects.

Lemma 1. The subcategory R has the property (D), if for any
object (E, u) and every locally convex topology v with properties u ≤
v ≤ k(u), where (E, k(u)) is K-coreplique of object (E, u), the object
(E, v) also belongs to subcategory R.

Lemma 2. For the subcategories K and R of category C2V the
following affirmations are equivalent:

1. K ∗s R = K.
2. The subcategory K satisfies the condition (S).
If the subcategory M̃ ⊂ K, then the previous conditions are equiva-

lent to the condition:
3. The subcategory K is closed with respect to P ′′(R)-factorobjects.

Dual statement.
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Lemma 3. For the subcategories K and R of category C2V the
following conditions are equivalent:

1. K ∗d R = R.
2. The subcategory R satisfies the condition (D).
If S ⊂ R, then the previous conditions are equivalent to the condi-

tion:
3. The subcategory R is closed with respect to M′(K)-subobjects.

Theorem 2. Let K be a coreflective subcategory, and R – a reflec-
tive subcategory. The following statements are equivalent:

1. The pair (K,R) forms a RTT.
2. a) The functors k and r commute: k · r = r · k;
b) K ∗s R = K;
c) K ∗d R = R.
3. a) The functors k and r commute: k · r = r · k;
b) The subcategory K possesses the property (S);
c) The subcategory R possesses the property (D).
If M̃ ⊂ K and S ⊂ R then the previous conditions are equivalent

to the following:
4. a) The functors k and r commute: k · r = r · k;
b) The subcategory K is closed with respect to P ′′(R)-factorobjects;
c) The subcategory R is closed with respect to M′(K)-subobjects.

Theorem 3. Let it be M̃ ⊂ K and Γ0 ⊂ R. Then:
1. The subcategory K is closed with respect to (Epi ∩ Mp)-

factorobjects. In other words, the subcategory K is closed with respect
to extensions.

2. The subcategory R is closed with respect to (µM̃)-subobjects. In
other words, if the locally convex spaces (E, t) belong to the subcategory
R, then the space E belongs to the subcategory R with every locally
convex topology u stronger than t, but compatible with the same duality:
t ≤ u ≤ m(t), where (E, m(t)) is the M̃-coreplique of the object (E, t).

Remark 3. 1. For some subcategories K with the property
M̃ ⊂ K, in particular, for the subcategory M̃, it is well known that
they are closed with respect to extensions ([4], Affirmation IV.3.5.).
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2. Every locally convex complete space (E, t) remains complete in
any topology u stronger than t but compatible with the same duality:
t ≤ u ≤ m(t) ([4], VI Corollary of Proposition 3).
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On a poset of extensions with first-countable

remainder

Laurenţiu Calmuţchi

Abstract

In the present paper we study the poset of extensions with
first-countable remainders. We prove that for a Lindelöf (or a
paracompact with the non-measurable Lindelöf number) space
that poset is cofinal.

Keywords: extension, poset.

1 Introduction

Every space is considered to be a completely regular T1-space. Denote
by βX the Stone-Čech compactification of a space X. If X is a dense
subspace of a space Y , then Y is called an extension of X and the
subspace Y \X is called a remainder of X. If Y and Z are extensions
of X and there exists a continuous mapping f : Y −→ Z such that
f(x) = x for any x ∈ X, then we put Z ≤ Y . Hence the set E(X) of
all extensions of X is a poset (a partially ordered set).

An extension Y of a space X is called: an fc-extension if Y \X 6= ∅
and the space Y has a countable base at each point p ∈ Y \ X; a
one-point fc-extension if Y \X is a singleton subset of Y .

Denote by Efc(X) the poset of all fc-extensions of the space X and
En

fc(X) = {Y ∈ Efc(X) : |Y \X| ≤ n}. Hence E1
fc(X) is the poset of

all one-point fc-extensions of the space X.
The present research was motivated initially by the Bel’nov’s study

of the poset M(X) of metric extensions of a locally compact metric
space X [2] and by the M.Henriksen, L.Janos and R. G. Woods’s study

c©2014 by L. Calmuţchi
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of the poset S(X) of one-point metric extensions of a locally compact
metric space X [4].

All one-point fc-extensions of the spaces are constructed in [1, 4],
using the notion of the extension traces. The following statement is
obvious.

Proposition 1.1. Let X be a non-empty space. The following
assertions are equivalent:

1. X is not a pseudocompact space.
2. Efc(X) 6= ∅.
3. E1

fc(X) 6= ∅.

2 Construction of extensions with first-count-
able remainder

A subset L of a space X is bounded in X if any continuous function f
on X is bounded on L.

Let Y be an extension of X. A point y ∈ Y \X is of countable type
if there exists a compact subset F ⊆ Y \X of the countable character
in Y such that y ∈ F .

We say that the family F of functions is discrete at infinity if the
following conditions hold: the family F is non empty and each function
f ∈ F is unbounded on f−1(0, +∞); the family {f−1(0, +∞) : f ∈ F}
is discrete in X.

Theorem 2.1. Let F be a discrete at infinity family of continuous
functions on a space X. Then there exists an fc-extension eFX such
that:

1. eFX \X = {yf : f ∈ F} is a discrete closed subspace of eFX.
2. For each f ∈ F there exists an open subset Vf of eFX such

that Vf ∩ (eFX \ X) = ∩{cleFXf−1(n,+∞) : n ∈ N} = {yf} and
Vf ∩X ⊆ f−1(0,+∞).

Proof. We can assume that f ≥ 0 for each f ∈ F . Let aR =
R ∪ {∞} be the one-point Alexandroff compactification of the reals.
Consider the continuous extension βf : βX → aR of the function
f . Then Wf = βf−1(0, +∞] is an open subset of βX. Obviously,
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Wf ∩ Wg = ∅ for distinct f, g ∈ F . The set H(f) = f−1[2, +∞) is
closed and unbounded in X. By construction, Φ(f) = βf−1(∞) is a
non-empty compact subset of eFX \ X and of countable character in
eFX. We put Z = X ∪ ∪{Φ(f) : f ∈ F} as a subspace of βX. Then
Z is an extension of the space X and {Φ(f) : f ∈ F} is a cover of
open and compact subsets of the space Z \X. Moreover, that family
is discrete in Z. Now, each set Φ(f) we identify in a singleton set
and obtain the set eFX and the mapping p : Z −→ eFX with the
properties: p(x) = x for each x ∈ X; p(Φ(f)) is a singleton set and
p−1(p(Φ(f))) = Φ(f) for each f ∈ F . On eFX consider the quotient
topology. Then p is a perfect mapping, eFX is an extension of X and
the space eFX has a countable base at the point yf = p(Φ(f)). The
set {yf : f ∈ F} is discrete in eFX. The proof is complete.

3 On cofinal families of extensions

The family {Yα : α ∈ A} of extensions of a space X is cofinal if for any
compactification bYα of Yα, α ∈ A, we have βX = sup{bYα : α ∈ A}.

We say that the space X is pure non-pseudocompact if X is not
compact and has the properties: if y ∈ βX \X, then either y ∈ clβXL
for some bounded subset L of X, or there exists a Gδ-subset H of βX
such that y ∈ H ⊆ βX\X; if F and L are non-compact closed bounded
subsets of X, then clβXL ∩ clβXH 6= ∅.

Let νX be the real-compactification of X. The space X is pure non-
pseudocompact if and only if |νX \X| ≤ 1 and νX 6= βX. Any non-
compact realy-compact space is pure non-pseudocompact. In particu-
lar, any Lindelöf non-compact space (or a Dieudonné complete space
with the non-measurable Lindelöf number) is pure non-pseudocompact.

Theorem 3.1. For a space X the following assertions are equiva-
lent:

1. X is a pure non-pseudocompact space.
2. The family of extensions Efc(X) 6= ∅ is cofinal.
3. The family of extensions E1

fc(X) 6= ∅ is cofinal.
Proof. If νX \X contains two distinct points a, b, then we identify

32



On a poset of extensions with first-countable remainder

a, b in βX and obtain the compactification cX. For any Y ∈ Efc(X)
there exists a compactification bY such that bY ≤ cX. This fact proves
the implications 3 → 2 → 1.

Let X be a pure non-pseudocompact space. If a ∈ βX \ νX and
the set W is open in βX, then for Theorem 2.1 it follows that there
exists Y ∈ E1

fc(X) such that for each compactification bY of Y we have
h−1(Y \X) ⊆ W , where h : βX −→ bY is the continuous mapping with
h(x) = x for each x ∈ X. From this fact we have implication 1 → 3.
The proof is complete.

Remark 3.2. If νX 6= βX, then βX = sup{βY : Y ∈ E1
fc(X)}.

Example 3.3. Let X be a discrete space and X is not real-
compact, i.e. |X| is a measurable cardinal and on the algebra of all
subsets of X there exists a σ-additive measure m with m(X) = 1.
Then βX 6= νX 6= µX = X, βX = sup{βY : Y ∈ E1

fc(X)} =
sup{βY : Y ∈ Efc(X)} and the family of extensions Efc(X) 6= ∅ is
not cofinal.

References

[1] C. C. Alexander. Metrically isolated sets, Amer. Math. Monthly
78 (1971), pp. 892–895.

[2] V. Belnov. The structure of the set of metric extensions of a non-
compact metrizable space, Trans. Moscow Math. Soc. 32 (1975),
pp. 1–30.

[3] R. Engelking. General Topology, PWN. Warszawa, 1977.

[4] M. Henriksen, L.Janos, R. G. Woods. Properties of one-point com-
pletions of a noncompact metrizable space, Comment. Math. Univ.
Carolin. 46:1 (2005), pp. 105–123
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On the holomorph of π-quasigroups of type T1

Dina Ceban, Parascovia Syrbu

Abstract
Quasigroups satisfying the identity x·(x·(x·y)) = y are called

π-quasigroups of type T1. Necessary and sufficient conditions for
the holomorph of a π-quasigroup of type T1 to be a π-quasigroup
of type T1 are established. Also, it is proved that the left (right)
multiplication group of a π-quasigroup of type T1 is isomorphic
to some normal subgroup of the left (right) multiplication group
of its holomorph, respectively.

Keywords: π-quasigroup of type T1, holomorph, multiplica-
tion group, normal subgroup.

Quasigroups satisfying identities of length five, with two variables,
are called π-quasigroups. V. Belousov [1] and, independently F. Ben-
nett [2], have given a classification of minimal identities, consisting of
seven identities. The general form of an identity of length five with two
variables in a quasigroup (Q,A) is:

αA(x,β A(x,γ A(x, y))) = y, (1)

where α, β, γ ∈ S3. In this case, the tuple [α, β, γ] is called the type of
the identity (1), and the quasigroup (Q,A) which satisfies (1), is called
a π-quasigroup of type T = [α, β, γ]. Using the notations from [1], a
quasigroup (Q, ·) which satisfies the identity

x · (x · (x · y)) = y (2)

is called a π-quasigroup of type T1 = [ε, ε, ε], where ε is the identity of
SQ. If (Q, ·) is a quasigroup, then the groupoid (Hol(Q, ·), ◦), where
Hol(Q, ·) = Aut(Q, ·)×Q and

(α, x) ◦ (β, y) = (αβ, β(x) · y),

c©2014 by D. Ceban, P. Syrbu
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for ∀(α, x), (β, y) ∈ Hol(Q, ·), is called the holomorph of the quasigroup
(Q, ·) [3]. From the definition it follows that the holomorph of a quasi-
group is a quasigroup. Moreover, the mapping Q 7→ Hol(Q, ·), x 7→
(ε, x), is an embedding of the quasigroup (Q, ·) into its holomorph
(Hol(Q, ·), ◦). Thus, denoting Q1 = {(ε, x)|x ∈ Q}, we obtain
(Q, ·) ∼= (Q1, ◦). If the quasigroup (Q, ·) has a right or a left unit,
then the mapping Aut(Q, ·) 7→ Hol(Q, ·), α 7→ (α, e) is an embedding,
too. In particular, if (Q, ·) is a group with an abelian group of auto-
morphisms, then (Hol(Q, ·), ◦) is a group, (Q1, ◦) / Hol(Q, ·), where
Q1 = {(ε, x)|x ∈ Q}, and Hol(Q, ·)/(Q1, ◦) ∼= Aut(Q, ·). This isomor-
phism is given by the surjection:

ξ : Hol(Q, ·) → Aut(Q, ·), ξ(ϕ, x) = ϕ,

for which Kerξ = (Q1, ◦).
Proposition 1. The holomorph of a π−quasigroup of type T1 is a
π−quasigroup of type T1, if and only if the following conditions hold:
1)α3 = ε,∀α ∈ Aut(Q, ·);
2)x · (α2(x) · (α(x) · y)) = y,∀α ∈ Aut(Q, ·), ∀x, y ∈ Q.

Proof. If (Q, ·) is a π−quasigroup of type T1 and (α, x), (β, y) ∈
Hol(Q, ·), then: (α, x) ◦ ((α, x) ◦ ((α, x) ◦ (β, y))) = (α, x) ◦ ((α, x) ◦
(αβ, β(x) ·y)) = (α, x)◦(α2β, αβ(x) ·(β(x) ·y)) = (α3β, α2β(x) ·(αβ(x) ·
(β(x) · y))) = (β, y), hence:

{
α3 = ε

α2β(x) · (αβ(x) · (β(x) · y)) = y.

Making the replacement x 7→ β−1α(x), and using the equality α3 = ε,
the second relation implies:

x · (α2(x) · (α(x) · y)) = y,

for ∀x, y ∈ Q,∀α ∈ Aut(Q, ·).

2
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Remark 1. The holomorph of a π−quasigroup of type T1 with a
trivial group of automorphisms is a π−quasigroup of type T1. This fact
is used below to obtain π−quasigroups of type T1, the holomorphs of
which are from the same class.

Example. The quasigroup (Q, ·), where Q = {1, 2, 3}, given by the
left translations L1 = (132), L2 = (123), L3 = ε, is a π−quasigroup
of type T1 with Aut(Q, ·) = {ε}, so its holomorph Hol(Q, ·) is a
π−quasigroup of type T1 as well.

Remark 2. 1. If L
(◦)
(β,b) and R

(◦)
(β,b) are the left and, respectively,

the right translations with (β, b) in the holomorph (Hol(Q, ·), ◦), then,
for every (α, a) ∈ (Hol(Q, ·), we have:

L
(◦)−1
(β,b) (α, a) = (β−1α, β−1α(b)\a) = L

(◦)
(β−1,b1)

(α, a),

where α(b1) · a = β−1α(b)\a) and, respectively,

R
(◦)−1
(β,b) (α, a) = (αβ−1, β−1(a/b)) = R

(◦)
(β−1,b2)

(α, a),

where α(b2) = β−1(a/b).
2. Let (Q, ·) be a finite π−quasigroup of type T1. If (Hol(Q, ·), ◦) is

a π−quasigroup of type T1, then there exists a positive integer k such
that |Aut(Q, ·)| = 3k and |Hol(Q, ·)| ≡ 0(mod 3).

Proposition 2. Let (Q, ·) be a π−quasigroup of type T1 and let
Q1 = {(ε, x)|x ∈ Q}. Then (Q, ·) ∼= (Q1, ◦) and the follow-
ing statements hold: 1)LM(Q1, ◦) / LM(Hol(Q, ·), ◦); 2)RM(Q1, ◦) /
RM(Hol(Q, ·), ◦).

Proof. 1) (Q, ·) ∼= (Q1, ◦) implies LM(Q, ·) ∼= LM(Q1, ◦). More-
over, LM(Q1, ◦) is a subgroup of LM(Hol(Q, ·), ◦). Now, let L

(◦)
(ε,x) ∈

LM(Q1, ◦) and L
(◦)
(β,b) ∈ LM(Hol(Q, ·), ◦), then:

L
(◦)
(β,b)L

(◦)
(ε,x)L

(◦)−1
(β,b) (α, a) = L

(◦)
(β,b)L

(◦)
(ε,x)(β

−1α, β−1α(b) · a) =

L
(◦)
(β,b)(β

−1α, β−1α(x) · (β−1α(b)\a)) =
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(α, β−1α(b) · (β−1α(x) · (β−1α(b)\a))) = L
(◦)
(ε,c)(α, a),

for ∀(α, a) ∈ Hol(Q, ·), where α(c) · a = β−1α(b) · (β−1α(x) ·
(β−1α(b)\a)). Thus,

L
(◦)
(β,b)L

(◦)
(ε,x)L

(◦)−1
(β,b) ∈ LM(Q1, ◦). (3)

Analogously,

L
(◦)−1
(β,b) L

(◦)
(ε,x)L

(◦)
(β,b)(α, a) = L

(◦)−1
(β,b) L

(◦)
(ε,x)(βα, α(b) · a) =

L
(◦)−1
(β,b) (βα, βα(x) · (α(b) · a)) =

(α, α(b)\(βα(x) · (α(b) · a))) = L
(◦)
(ε,g)(α, a),

for ∀(α, a) ∈ Hol(Q, ·), where α(g) · a = α(b)\(βα(x) · (α(b) · a)). So,

L
(◦)−1
(β,b) L

(◦)
(ε,x)L

(◦)
(β,b) ∈ LM(Q1, ◦). (4)

(3) and (4) imply that LM(Q1, ◦)/LM(Hol(Q, ·), ◦). The proof of the
second relation is similar. 2

Remark 3. The function ξ : LM(Hol(Q, ·)) 7→ Aut(Q, ·),
ξ(Lδ1

(α1,x1)L
δ2
(α2,x2), ..., L

δn

(αn,xn)) = αδ1
1 αδ2

2 ...αδn
n , where δi = 1 or −1,

for every i = 1, 2, ..., n, is a surjective homomorphism with Kerξ =
LM(Q1, ◦), so LM(Hol(Q, ·))/LM(Q1, ◦) ∼= Aut(Q, ·).
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Coloring hyperplanes of CAT(0) cube complexes

Victor Chepoi, Mark Hagen

Abstract

In these notes, we briefly describe the results which we will
present in the talk Coloring hyperplanes of CAT(0) cube com-
plexes. They are based on the papers [4] and [5].

Keywords: geometry, combinatorics, CAT(0) cube com-
plexes, isometric embedding, hyperplanes.

1 CAT(0) cube complexes

In his seminal paper [7], among many other results, Gromov gave a
nice combinatorial characterization of CAT(0) cube complexes as sim-
ply connected cube complexes in which the links of 0-cubes are simpli-
cial flag complexes. Subsequently, Sageev [9] introduced and investi-
gated the concept of hyperplanes of CAT(0) cube complexes, showing
in particular that each hyperplane is itself a CAT(0) cube complex
and divides the complex into two CAT(0) cube complexes. These two
results identify CAT(0) cube complexes as the basic objects in geomet-
ric group theory. For instance, many well-known classes of groups are
known to act nicely on CAT(0) cube complexes. On the other hand,
[3] established that the 1-skeleta of CAT(0) cube complexes are exactly
the median graphs, i.e. the graphs in which any triplet of vertices admit
a unique median vertex. Median graphs and related median structures
have been investigated in several contexts by quite a number of au-
thors for more than half a century. They have many nice properties
and admit numerous characterizations relating them to other discrete
structures. Barthélemy and Constantin [1] showed that pointed median

c©2014 by V. Chepoi, M. Hagen
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graphs are exactly the domains of event structures with binary conflict
(investigated in computer science in concurrency theory [10, 8]).

All CAT(0) cube complexes X and median graphs – the 1-skeleta
G(X) of X – are intimately related to hypercubes: they are constituted
of cubes and themselves embed isometrically into hypercubes. The
minimum dimension of a hypercube into which G(X) (or X) isometri-
cally embeds equals the number of hyperplanes of X, or, equivalently,
the number of equivalence classes of the transitive closure of the “oppo-
site” relation of edges of G(X) on 2-cubes of X. While the dimension
of the smallest hypercube into which the median graph G(X) embeds
is easy to determine, the problem of determining the least number
τ(X) = τ(G(X)) of tree factors necessary for an isometric embedding
of the 1-skeleton of X into a cartesian product of trees is hard. For
arbitrary CAT(0) cube complexes X, the value τ(X) is closely related
to the chromatic number of the so-called crossing graph Γ#(X) of X.
Γ#(X) can be viewed as the intersection graph of the hyperplanes of
X: its vertices are the hyperplanes of X sensu [9] and two hyperplanes
are adjacent in Γ#(X) iff they cross (or, equivalently, they intersect).

Extending the fact that τ(κ(G)) = χ(G), it can be shown that the
equality τ(X) = χ(Γ#(X)) holds for all CAT(0) cube complexes X.
Since an arbitrary graph can be realized as the crossing graph of a
CAT(0) cube complex X, to better capture the structure of X, the
concept of the contact graph Γ(X) of X introduced in [6] is useful:
the vertices of Γ(X) are the hyperplanes of X and two hyperplanes are
adjacent in Γ(X) iff they cross or osculate (i.e., their carriers touch each
other). Γ(X) can be also viewed as the intersection graph of the carriers
of the hyperplanes of X. The clique number ω(Γ(X)) of the contact
graph of X is exactly the maximum degree in G(X) of a 0-cube of X,
i.e., to the maximum number of 1-cubes incident to a 0-cube of X. The
contact graph Γ(X) always contains the crossing graph Γ#(X). Γ(X)
also hosts the pointed contact graph Γα(X) of the 1-skeleton Gα(X) of
X pointed at arbitrary vertex α. The graph Γα(X) has hyperplanes of
X as vertices and two hyperplanes H,H ′ are adjacent in Γα(X) if and
only if they are adjacent in Γ(X) and two incident 1-cubes, one crossed
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by H and another crossed by H ′, are directed away from the common
origin.

Pairwise-independently, F. Haglund, G. Niblo, M. Sageev, and the
first author of these notes asked the following question:

Question 1. Is it true that all CAT(0) cube complexes X with uni-
formly bounded degrees can be isometrically embedded into a finite num-
ber of trees?

2 Event structures

Question 1 is closely related with the conjecture of Rozoy and Thia-
garajan [8] (also called the nice labeling problem) asserting that:

Question 2. Any event structure with finite (out)degree admits a la-
beling with a finite number of labels.

An event structure is a triple E = (E,≤,^), where E is a set of events,
≤ is a partial order on E, called causal dependency, and ^ is a sym-
metric, irreflexive binary relation on E called conflict. For all e, e′, e′′, if
e ^ e′ and e′ ≤ e′′, then e ^ e′′. The events e and e′ are concurrent if
they are incomparable in the partial ordering ≤ and e 6^ e′. The events
e and e′ are independent if they are either concurrent or in minimal
conflict. An independent set is a set of pairwise independent events in
E. The degree of E is the maximum cardinality of an independent set
in E. In [8], Rozoy and Thiagarajan formulated the nice labeling prob-
lem for event structures (Question 2). A labeling is a map λ : E → Λ,
where Λ is some alphabet, and λ is a nice labeling if λ(e) 6= λ(e′) when-
ever e and e′ are independent. Solving the nice labeling problem for E
entails constructing a nice labeling λ such that Λ is finite. The domain
D(E) of the event structure E is defined as follows. A configuration C
is a subset C ⊆ E of the set of events such that no two elements of
C are in conflict, and, if e ≤ e′ ∈ C are not in conflict, then e ∈ C.
The domain D(E) is the set of all such configurations C, ordered by
inclusion. This construction naturally gives rise to a median graph and
an accompanying CAT(0) cube complex associated to E . Indeed, let
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G = G(E) be the graph whose vertices are the elements of the domain
D(C), with C and C ′ joined by an edge if and only if C = C ′ ∪ {e} for
some e ∈ E −C. In this situation, the edge C ′C is directed from C ′ to
C. In other words, an event e ∈ E is viewed as a minimal change from
one configuration to another [10].

As noted above, pointed median graphs are exactly the domains
of event structures [1]. Then, in view of the bijection between me-
dian graphs and 1-skeleta of CAT(0) cube complexes, the nice labeling
problem for such event structures can be equivalently viewed as the
colouring problem of the pointed contact graph Γα(X) of the CAT(0)
cube complex X associated to the domain of the event structure. Since
χ(Γα(X)) ≤ χ(Γ(X)) and χ(Γ#(X)) ≤ χ(Γ(X)), in relation with Ques-
tions 1 and 2, the following question is natural:

Question 3. Is it true that the chromatic number χ(Γ(X)) of the
contact graph of a CAT(0) cube complex X of degree ∆ can be bounded
by a function ε of ∆?

3 Results

Since ω(Γ(X)) = ∆ and Γ#(X),Γα(X) are subgraphs of Γ(X), all three
questions can be reformulated, namely: which of the classes of graphs
Γ#(X), Γα(X), and Γ(X) are χ-bounded? A class C of graphs is called
χ-bounded if there exists a function f such that χ(G) ≤ f(ω(G)) for any
graph G of C. Via a series of nontrivial examples, Burling [2] showed
that the class of intersection graphs of axis-parallel boxes of R3 is not
χ-bounded. Based on Burling’s examples, it was recently shown in [4]
that for CAT(0) cube complexes the classes of graphs Γ(X) and Γα(X)
are not χ-bounded, thus disproving the nice labeling conjecture of [8]:

Theorem 1. [4] There exists a pointed median graph G̃∗
α of maximum

out-degree 5 such that the chromatic number of its pointed contact graph
Γ(G̃∗

α) is infinite. In particular, any nice labeling of the event structure
Eα (of degree 5) whose domain is G̃∗

α, requires an infinite number of
labels.
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We adapted this counterexample by using the recubulation tech-
nique from [6] to show that the class of crossing graphs Γ#(X) of
CAT(0) cube complexes is also not χ-bounded, thus answering in the
negative the first open question:

Theorem 2. [5] For any n > 0, there exists a CAT(0) cube complex Xn

with constant maximum degree such that any colouring of the crossing
graph of Xn requires more than n colours, i.e., any isometric embedding
of Xn into a Cartesian product of trees requires > n trees. There exists
an infinite CAT(0) cube complex X with constant maximum degree
which cannot be isometrically embedded into a Cartesian product of a
finite number of trees, i.e., the chromatic number of its crossing graph
is infinite.

On the other hand, and this is the main contribution of [5], we
show that in the case of 2-dimensional CAT(0) cube complexes X the
contact graphs Γ(X) (and therefore the crossing and the pointed con-
tact graphs) are χ-bounded by a polynomial function in ω(Γ(X)) = ∆,
thus showing that in the 2-dimensional case the three questions have
positive answers; this is the content of our main result:

Theorem 3. [5] Let X be a 2-dimensional CAT(0) cube complex such
that the degrees of all its vertices are bounded by ∆. Then there exists
M < ∞, independent of X, such that χ(Γ(X)) ≤ ε(∆) = M∆26. In
particular, τ(X) ≤ ε(∆), i.e. the 1-skeleton of X isometrically embeds
into the Cartesian product of at most ε(∆) trees. Finally, all event
structures of (out)degree ∆0, whose domains are 2-dimensional, admit
a nice labeling with at most ε(∆0 + 2) labels.

We actually obtain the following bound: χ(Γ(X)) ≤ ε(∆) =
1165226∆26, or, simply M = 1165226.

Idea of the proof: To show that the chromatic number χ(Γ(X)) of
the contact graph Γ(X) is polynomially bounded in ∆, we show that
the edges of Γ(X) can be distributed over six spanning subgraphs of
Γ(X), such that the chromatic numbers of each of these subgraphs can
be polynomially bounded. As a result, each vertex of Γ(X) (hyperplane
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of X) receives a sextuple of colours, each colour corresponding to the
colour received by this vertex in the colouring of the corresponding
subgraph. Since each edge of Γ(X) is present in at least one spanning
subgraph, the sextuple-colouring of the hyperplanes of X is a correct
colouring of the contact graph Γ(X). The number of colours is the
product of the six numbers of colours used to colour the spanning
subgraphs, whence it is polynomial in ∆. In Sections 4-6, one after
another, we will define and colour the six spanning subgraphs. For
this, we will study the geometrical and the combinatorial properties of
contact graphs of 2-dimensional CAT(0) cube complexes.
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Study on properties of non-isomorphic finite

quasigroups using the computer

Liubomir Chiriac, Natalia Bobeica, Dorin Pavel

Abstract

In this paper we elaborate mathematical algorithms for gener-
ating non-isomorphic finite quasigroups using the computer. We
study some algebraic properties of non-isomorphic quasigroups.

Keywords: Non-isomorphic TS-quasigroups, AG-quasigroups
and AD-quasigroups.

1 Introduction

Our main goal is to elaborate algorithms for generating non-isomorphic
finite TS-quasigroups, AG-quasigroups and AD-quasigroups using the
computer. The results established here are related to the work in
([1,2,3,4]).

2 Basic notions

A non-empty set G is said to be a groupoid relatively to a binary op-
eration denoted by {·}, if for every ordered pair (a, b) of elements of G
there is a unique element ab ∈ G.

A groupoid (G, ·) is called a quasigroup if for every a, b ∈ G the
equations a · x = b and y · a = b have unique solutions.

A quasigroup (G, ·) is called an Abel-Grassmann quasigroup or an
AG-quasigroup if it satisfies the left invertive law (a · b) · c = (c · b) · a
for all a, b, c ∈ G.

c©2014 by L. Chiriac, N. Bobeica, D. Pavel
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A quasigroup (G, ·) is called AD-quasigroup if it satisfies the law
a · (b · c) = c · (b · a) for all a, b, c ∈ G.

A quasigroup (G, ·) is called TS-quasigroup if it satisfies the laws
a · (a · b) = b and a · b = b · a for all a, b ∈ G.

Let (G, +) be a groupoid and let n,m ≥ 1. The element e of the
groupoid (G, +) is called:

- an (n,m)-zero of G if e + e = e and n(e, x) = (x, e)m = x for
every x ∈ G;

- an (n,∝)-zero if e + e = e and n(e, x) = x for every x ∈ G;
- an (∝,m)-zero if e + e = e and (x, e)m = x for every x ∈ G.

Clearly, if e ∈ G is both an (n,∝)-zero and an (∝,m)-zero, then it
is also an (n,m)-zero. If (G, ·) is a multiplicative groupoid, then the
element e is called an (n,m)-identity.
The notion of the (n,m)−identity was introduced by M. Choban and
L. Chiriac in [2].

We consider the following problems:
Problem 1. How many non-isomorphic TS-quasigroups, AG-quasi-
groups and AD-quasigroups of order 3, 4, 5 do there exist?
Problem 2. How many types of (n,m)−identities of the non-
isomorphic TS-quasigroups, AG-quasigroups and AD-quasigroups of
order 3, 4, 5 do there exist?

3 Main Results

Applying the elaborated algorithms, we prove the following results:
Theorem 1. There are exactly 2 non-isomorphic TS-quasigroups of
order 3 such that:
- 1 of them is a quasigroup where each element is (2, 2)−identity;
- 1 of them is a quasigroup which does not contain multiple identities.

Theorem 2. There are exactly 2 non-isomorphic TS-quasigroups
of order 4 such that:
- 1 of them is an associative quasigroup;
- 1 of them is a quasigroup which contains one (1, 2)−identity.
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Theorem 3. There is exactly one TS-quasigroup of order 5, which
contains one (2, 2)− identity.

Theorem 4. There are exactly 2 non-isomorphic AG-quasigroups
of order 3 such that:
- 1 of them is an associative quasigroup;
- 1 of them is a quasigroup which contains one (1, 2)−identity.

Theorem 5. There are exactly 6 non-isomorphic AG-quasigroups
of order 4 such that:
- 2 of them are associative quasigroups;
- 2 of them are quasigroups which contain one (1, 2)−identity;
- 1 of them is a quasigroup where each element is (3, 3)−identity;
- 1 of them is a quasigroup which does not contain (n,m)−identities.

Theorem 6. There are exactly 5 non-isomorphic AG-quasigroups
of order 5 such that:
- 1 of them is an associative quasigroup;
- 1 of them is a quasigroup which contains one (1, 2)−identity;
- 1 of them is a quasigroup, every element of which is (2, 4)−identity;
- 1 of them is a quasigroup which contains one (2, 4)−identity;
- 1 of them is a quasigroup which does not contain (n,m)−identities.

Theorem 7. There are exactly 2 non-isomorphic AD-quasigroups
of order 3 such that:
- 1 of them is an associative quasigroup;
- 1 of them is a quasigroup which contains one (2, 1)− identity.

Theorem 8. There are exactly 6 non-isomorphic AD-quasigroups
of order 4 such that:
- 2 are associative quasigroups;
- 2 are quasigroups which contain one (2, 1)−identity;
- 1 is quasigroup where each element is (3, 3)−identity;

46



Study on properties of non-isomorphic finite quasigroups . . .

- 1 is quasigroup which does not contain (n,m)−identities.

Theorem 9. There are exactly 5 non-isomorphic AD-quasigroups
of order 5 such that:
- 1 of them is an associative quasigroup;
- 1 of them is a quasigroup which contains one (2, 1)−identity;
- 1 of them is a quasigroup, every element of which is (4, 2)−identity;
- 1 of them is a quasigroup which contains one (4, 2)−identity;
- 1 of them is a quasigroup which does not contain (n,m)−identities.
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Abstract

In the present paper we introduce and study special families
of spaces and, in particular, the following notions: the notion of a
family of p-subspaces; the notion of a family of strictly (complete)
p-subspaces.

Keywords: metrizable families, p-space.

1 Introduction. Main results

Every space is considered to be a T1-space.
In the present article we examine the collective conditions of loca-

tion of a family of subspaces in topological spaces. We continue the
investigations from [1, 2].

We say that a property P of spaces is of the compact type if: any
space with property P is countably compact and the property P is
hereditary with respect to closed subspaces. Consider the next proper-
ties of the compact type: s – the property to be a countably compact
space; k – the property to be a compact space; Ω – the property to be
a one point space.

Fix a property P of the compact type. Let d be a pseudometric on
a space X. For all x ∈ X and ε > 0 we put: V (x, d, ε) = {y ∈ X :
d(x, y) < ε}; H(x, d) = {y ∈ X : d(x, y) = 0}. There exist a metric
space (X/d, d̄) and a mapping pd : X −→ X/d such that d(x, y) =
d̄(pd(x), pd(y)) for all x, y ∈ X. On X/d we consider only the topology
generated by the metric d̄. The pseodometric d is continuous if the
mapping pd is continuous. If the metric space (X/d, d̄) is complete,
then we say that d is a complete pseudometric.

c©2014 by M. Choban, E. Mihaylova
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A family A of subsets of a space X is called P-metrizable by the
pseudometric d if d is a continuous pseudometric on the space X and
for any L ∈ A and any point x ∈ L the set H(x, d) ∩ L is a countably
compact subset of X with the property P, and for any open subset
U ⊇ H(x, d)∩L of X there exist an open subset V of X and a number
ε > 0 such that x ∈ V and V (y, d, ε) ∩M ⊆ U provided M ∈ A and
y ∈ M ∩ V . If H(x, d) ∩ L is a singleton set for all L ∈ A and x ∈ L,
then we say that the family A is metrizable by the pseudometric d.

If L ∈ A and the metric d̄ is complete on the subspace pd(L), then
we say that the set L is complete relatively to the pseudometric d. If
any set L ∈ A is complete relatively to the pseudometric d, then we
say that the family A is complete metrizable by the pseudometric d.

Theorem 1. Let A be a P-metrizable by the pseudometric d family
of subsets of a space X and X = ∪A. Then there exist a T1-space Y , a
family B of subsets of the space Y metrizable by a pseudometric ρ and
a continuous closed mapping g : X −→ Y such that g−1(y) is a closed
subset with the property P for each y ∈ Y , A = {g−1(L) : L ∈ B} and
d(x, z) = ρ(g(x), g(z)) for all x, z ∈ X. Moreover, the pseudometric
d is complete on the set L ∈ A if and only if the pseudometric ρ is
complete on the set g(L).

Let X be a space, γ = {γn = {Uα : α ∈ An} : n ∈ N} be a sequence
of open families of X, and let π = {πn : An+1 → An : n ∈ N} be a
sequence of mappings. A sequence α = {αn : n ∈ N} is called a c-
sequence if αn ∈ An and πn(αn+1) = αn for every n ∈ N. The sequence
α = {αn : n ∈ N} is called a mc-sequence if it is a c-sequence and
H(α) = ∩{Uαn ; n ∈ N} is a non-empty subset of the space X.

Consider the following conditions: (SC1) ∪{Uβ : β ∈ An} = X for
each n ∈ N; (SC2) ∪{Uβ : β ∈ π−1

n (α)} = ∪{clXUβ : β ∈ π−1
n (α)} =

Uα for all α ∈ An and n ∈ N; (SC3) for any mc-sequence α = {αn ∈
An : n ∈ N}, the set H(α) = ∩{Uαn ; n ∈ N} has the property P and
any sequence {xn ∈ Uαn ; n ∈ N} has an accumulation point; (SC4) any
c-sequence α = {αn ∈ An : n ∈ N} is a mc-sequence.

The sequences γ and π are called an A-sieve if they have the Prop-
erties (SC1) and (SC2).
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Let X be a space. A family A of subsets of the space X is called
a family of strong A(P)-subspaces if there exists an A-sieve (γ, π) such
that if α = {αn : n ∈ N} is a c-sequence, x ∈ L ∈ A and x ∈ H(α) =
∩{Uαn : αn ∈ α}, then:

(FS1) L ∩H(α) has the property P;
(FS2) any sequence {xn ∈ L ∩ Uαn : n ∈ N} has an accumulation

point in L;
(FS3) if U is an open subset of X and H(α) ⊆ U , then there exist

an open subset V of X and a natural number m ∈ N such that x ∈ V
and Uαm ∩M ⊆ U provided M ∈ A and M ∩ V 6= ∅.

A family A of subsets of the space X is called a family of complete
A(P)-subspaces if there exists an A-sieve γ = (γ, π) with properties
(FS1)− (FS3) and with the next property:

(FS4) if L ∈ A, β = {βn : n ∈ N} is a c-sequence, y ∈ H(β) and
we have Uβn ∩ L 6= ∅ for each n ∈ N, then L ∩H(β) 6= ∅.

In the above conditions we say that A is an (a complete) A(P)-
family relatively to the A-sieve (γ, π).

A family A of subsets of a space X is called a complete family of
subsets of X if there exists an A-sieve (γ, π) with the property:

(FS5) (γ, π)|L = ({γn|L = {L ∩ Uα : α ∈ An} : n ∈ N}, {πn :
An+1 → An : n ∈ N}) is an A-sieve of the subspace L with the proper-
ties (SC3) and (SC4) for the property s and any L ∈ A.

Theorem 2. For any family A of subspaces of a regular space X
the next assertions are equivalent:

1. A is a family of complete A(P)-subspaces of the space X.
2. A is a complete family of subsets of X and a family of A(P)-

subspace of the space X.
Let A be a family of subsets of a space X and X ⊆ Z, where Z be

an arbitrary space. A countable family F of A in Z if:
(FP1) X ⊆ ∪ξ for every ξ ∈ F ;
(FP2) for all L ∈ A and x ∈ L there exists an element ξ ∈ F such

that the set L ∩ clZSt(x, ξ) is closed in X;
(FP3) for all L ∈ A, x ∈ L and z ∈ Z \ X there exist an open

subset V of X and ξ ∈ F such that x ∈ V and z 6∈ St(x, ξ) ∩ clZM
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provided M ∈ A and V ∩M 6= ∅.
Let X be a subspace of a space Z, A be a family of subsets of a

space X and a countable family F of families of open subsets of Z
be a plumage of A in Z. For any point x ∈ X we put H(x,F) =
∩{St(x,F) : ξ ∈ F} and H̄(x,F) = ∩{clZSt(x,F) : ξ ∈ F}.

A countable family F of families of open subsets of Z is said to be
a strictly plumage (Arhangel’skii for one subspace) of A in Z if it is a
plumage of A in Z and has the following two properties:

(FP4) For all L ∈ A, x ∈ L and an open subset U ⊇ H̄(x,F) of
the space Z there exist an open subset V of X and ξ ∈ F such that
x ∈ V and St(y, ξ) ∩M ⊆ U provided M ∈ A and y ∈ V ∩M .

(FP5) H(x,F) ∩ L = H(x,F) ∩ M provided L,M ∈ A and x ∈
L ∩M .

A family A of subsets of a space X is called a family of (strictly)
p-subspaces of X if the space X is completely regular and there exists
a (strictly) plumage of A in some compact Hausdorff space Z ⊇ X.

Theorem 3. Any family A of strictly p-subspaces of a space X is
a family of A(k)-subspaces of the space X.
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On skew polynomial rings and some

related rings
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Abstract

For a ring A with identity and a monoid G we consider
”monoid rings” with respect to G over A where the multipli-
cation (a ·x)(b ·y) (a, b ∈ A, x, y ∈ G) is determined by a monoid
homomorphism G → End(A). Examples include various skew
polynomial rings. There is also a link to Z2− graded rings.

Keywords: Derivation, higher derivation, ring, monoid al-
gebra.

A system called a D-structure in [3] and introduced in [2] consists
of a ring A with identity 1, a monoid G with identity e and mappings
σx,y : A → A for x, y ∈ G satisfying the following condition:

Condition (A)
(0) For each x ∈ G and a ∈ A, we have σx,y(a) = 0 for almost all
y ∈ G.
(i) Each σx,y is an additive endomorphism.
(ii) σx,y(ab) =

∑
z∈G σx,z(a)σz,y(b).

(iii) σxy,z =
∑

uv=z σx,u ◦ σy,v.
(iv1) σx,y(1) = 0 if x 6= y; (iv2) σx,x(1) = 1;
(iv3) σe,x(a) = 0 if x 6= e; (iv4) σe,e(a) = a.

In [2] a sort of ”skew” or ”twisted” monoid ring associated with
A and G was constructed by means of the mappings σx,y. Examples
include group rings, skew polynomial rings, the Weyl algebras and other
related ones. There are also connections with gradings of rings [3].

c©2014 by E. Cojuhari, B. Gardner
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One way of getting a D-structure is from a monoid homomorphism
G → End(A): we define

σx,y =
{

σ(x) if x = y,
0 if x 6= y.

There is also a converse.

Theorem 1. For a monoid G and a unital ring A, a D-structure
has all σx,y for x 6= y equal to the zero map if and only if there is a
homomorphism σ : G → End(A) with σx,x = σ(x) for all x ∈ G.

The modified monoid ring A < G; σ > in this case has the multi-
plication

(a · x)(b · y) = (aσ(x)(b)) · xy

for a, b ∈ A, x, y ∈ G, rather than (a · x)(b · y) = ab · xy as in the usual
monoid ring A[G].

Proposition 1. If G′ is another monoid, σ′ : G′ → End(A) is a
monoid homomorphism and ϕ : G → G′ is a monoid homomorphism,
then there is a unique ring homomorphism

ψ : A < G; σ >−→ A < G′; σ′ >

such that ψ(ax) = aϕ(x) for all a ∈ A, x ∈ G.
Thus in a suitable sense the correspondence (G; σ) → A < G′;σ′ >

is functorial.
For any endomorphism f of A there is a homomorphism from the

free monoid < x > on a single generator to End(A) given by xn 7→ fn.
The associated monoid ring in this case is a skew polynomial ring of
some kind.

Example 1. Let G be the infinite cyclic monoid

{
x0 (= e) , x1, x2, ..., xn, ...

}
,

R a ring with identity, R [t] the usual polynomial ring.
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We define σ : G → EndR [t] by σ (xn) (p (t)) = p
(
t2

n)
. Then

σ (xn) as defined is indeed a ring endomorphism, and σ is a monoid
homomorphism. Let

σmn = σxm,xn =
{

σ (xn) if m = n,
0 if m 6= n.

In R [t] 〈G;σ〉 we have xt = x1 · tx0 = 1σ11 (t) xx0 = t2x.
Thus we get Example 2.5, [3] by a simpler construction.
Example 2. Similarly if K is a field of prime characteristic p, and

for our endomorphism we take the one for which a 7→ ap for all a ∈ K,
then K < G;σ > is the Frobenius polynomial ring in x over K in which
xa = apx for all a ∈ K.

In these examples we have D-structures essentially defined by in-
dividual endomorphisms. There is another way to get D-structures
from endomorphisms. In [2] it was shown that if f is a homomor-
phism, δ an (f, id)− derivation of A, i.e. δ(ab) = δ(a)b + f(a)δ(b), and
δ ◦ f = f ◦ δ, then we get a D-structure using the free monoid on x and
defining σxmxn =

(
n
m

)
δn−m ◦ fm for n ≥ m and all others to be zero.

(If δ ◦ f 6= f ◦ δ there is a more complicated D-structure.)

Proposition 2. Let f : A → A be an endomorphism, and let δ(a) =
a − f(a) for all a ∈ A. Then δ is an (f, id) and an (id, f) derivation
and δ ◦ f = f ◦ δ.

As above we get a D-structure from f and δ and hence, in effect,
from f . As a simple illustration we have

Example 3. In C, if f(x + yi) = x− yi, then δ(x + yi) = 2yi. Let
us note three things about this elementary example.

(1) f2 = id;
(2) 1

2δ exists and is also an (f, id) and an (id, f) derivation which
commutes with f and

(3) C is graded by Z2.
More generally we have:

Theorem 2. The following conditions are equivalent for a ring A.
(i) A has an automorphism f of order ≤ 2 such that a− f(a) ∈ 2A
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for all a ∈ A.
(ii) A has an automorphism f of order ≤ 2 and an idempotent

(f, id) and (id, f) derivation δ such that a = f(a)+2δ(a) for all a ∈ A.
(iii) A is Z2− graded.
The following special cases have been proved by Yu. A. Bahturin

and M. M. Parmenter:
(1) If 2A = 0, then f = id and Z2− gradings correspond to idem-

potent derivations. [4]
(2) If A is 2 – torsion free, then Z2− gradings correspond to auto-

morphisms f of order ≤ 2 such that a− f(a) ∈ 2A for all a ∈ A [1].
Full details of our results will appear elsewhere.
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Star non-compact and compact hyperbolic

lens polytopes

Florin Damian, Vitalii Makarov, Peter Makarov

Abstract

In the present work the authors discuss the construction of
star complexes over regular maps on hyperbolic manifolds analo-
gously with the construction of star polytopes over regular maps
on two- and three-dimensional spheres. In particular, the con-
struction of star polytopes which correspond to equidistant reg-
ular hyperbolic polytopes and their factors (lens polytopes) are
considered.

Keywords: regular maps, hyperbolic manifolds, star poly-
topes, lens polytopes, star complexes.

1. Introduction

Coxeter and Moser [1] have noted that the incidence structure of faces
of the regular star polytope {5, 5/2} (or its dual {5/2, 5}) gives one
of the most symmetrical regular maps of genus 4. The manifold M2

is geodesically immersed into the well-known hyperbolic 3-manifold of
the regular dodecahedron (Seifert–Weber manifold [2]).

2. Seifert–Weber and Davis manifolds’s similarities

A natural 4-dimensional analogue of Seifert–Weber manifold is the hy-
perbolic space of the regular 120-cells D4 (Davis manifold D4 [3]). D4

can be obtained by gluing the opposite hyperfaces (3-faces) of the reg-
ular hyperbolic 120-cells D4, with dihedral angle of 2π/5, by transla-
tions. The hyperplanes of these 3-faces form a hyperbolic bundle. The
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base 3-plane of the bundle perpendicularly intersects D4 in a regular
dodecahedron D3

N with dihedral angle of 2π/5. The identification of
opposite 3-faces of the polytope D4 induces an identification of 2-faces
of narrow dodecahedra. The latter yields a hyperbolic 3-manifold M3

1,
geodesically immersed into D4. On the manifold M3

1 this construction
gives a regular self-dual map from 120 dodecahedra.

3. Star polytope {5, 3, 5/2} and corresponding 3-manifold

We see that the manifoldM3
1 is immersed into the Davis manifold D4 in

the same way as the manifold M2 is immersed into the Seifert–Weber
manifold. The regular map on the manifold M2 is well represented
by the star polytope {5, 5/2}. In [4] it is proved that the manifold
M3

1 has an analogous representation by the 4-dimensional regular star
polytope {5, 3, 5/2}. We remark that both the regular star polytope
{5, 3, 5/2} and the regular star polytope {3, 5, 5/2} lead us to hyper-
bolic 3-manifold with rich symmetry group (of icosahedral type).

4. Manifolds and their representations on lens polytopes

In topology a three-dimensional manifold is often given by the indi-
cation of the way how to identify pairwise faces of polytopes of some
homogeneous complex. Already A. Poincare noticed that one polytope
is sufficient. In [5] and present paper, we discussed an ”intermediate”
way which will be illustrated by examples.

We take the identification of opposite faces of the regular dodeca-
hedron that gives the Seifert–Weber manifold, and transfer it on the
map of the star dodecahedron {5, 5/2}, i.e. will pair the opposite
faces of the star dodecahedron with the same motions. As the map of
the incidences of the star dodecahedron coincides with the map of the
manifold under consideration, we obtain the pairwise correspondence
of cells of the map of the manifold. This pairwise correspondence gives
cycles consisting of three edges. Choosing the height of the lens so that
the dihedral angle be equal to 2π/3 we obtain from the lens polytope
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over the surface of genus 4 a three-dimensional manifold. And this is
just the same manifold we obtained from the truncated icosahedron.

If we ”reconstruct” the map {5, 5} taking the Dirichlet tiling for
the centres of the edges of the initial map, then on the same manifold
we obtain the map from 15 squares meeting by 5 at vertices. If we
construct the lens polytope over this map, we can easy find a pairwise
correspondence of faces which gives cycles of edges by three. It turned
out that the corresponding manifold can be given by an identification
of faces of the truncated rombic triacontahedron.

If we use the Poincare identification given on the spherical dodeca-
hedron we obtain a 3-manifold with orthogonal boundary. Its bound-
ary consists of two surfaces of genus 4 congruent to the initial surface.
There are different methods to eliminate boundary for obtaining a new
manifold. We have not managed yet to present it in any nice way via
an identification of faces of a convex polytope.

5. Equidistant regular lens star polytopes

We have shown above some examples when finite regular lens poly-
topes can be obtained from infinite equidistant regular polytopes in
Lobachevski spaces, and that these regular lens polytopes can be
used to obtain new three-dimensional hyperbolic manifolds. On the
other hand, we have shown in [6] that a regular lens polytope of type
{2m+1, 3} can always be ”stellate”, using the Coxeter terminology,
yielding infinite regular star equidistant polytopes with convex 2-faces
and stellar vertices (we obtain also the dual star equidistant regular
polytopes with stellar faces and convex honohedra). Obviously, using
factorization of a base, the star regular lenses can be transformed into
regular finite star lens polytopes, analogously as for usual convex reg-
ular infinite star lenses. One of the most simple and interesting cases
is the Klein surface of genus 3 with the regular map {7, 3}.

In an analogous way we can transfer this method to regular maps
on equidistant surfaces or on their factors (lens polytopes). Having the
corresponding combinatorial ”stellating” schemes we can consider the
possibility of their metrical realization.
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On Some Classes of Quasigroups

Ivan I. Deriyenko, Wieslaw A. Dudek

Abstract

We present a short survey of our recent results on two classes
of quasigroups. Firstly we characterize loops with the antiau-
tomorphic inverse property, next – quasigroups having only one
autotopism.
Keywords: D-loop, rigid quasigroup, super rigid quasigroup.

1 Introduction

One of methods used for examination of finite quasigroups is based
on investigations of some special permutations determined on a given
quasigroup. The main role plays right middle translations (tracks) of a
quasigroup Q(·) defined as permutations ϕa of Q satisfying the identity
x · ϕa(x) = a, where a ∈ Q. The composition ϕiϕ

−1
j of two tracks of a

quasigroup Q(·) is called a spin of Q(·) and is denoted by ϕij . Obviously
ϕii = ε for i ∈ Q and ϕij 6= ϕik for j 6= k, but the situation where ϕij =
ϕkl for some i, j, k, l ∈ Q also is possible (cf. [2]). Hence the collection
Φ of all spins of a given quasigroup Q(·) can be divided into disjoint
subsets Φi = {ϕij : j ∈ Q} (called spin-basis) in which all elements
are different. Generally, Φi are not closed under the composition of
permutations but in some cases Φi are groups.

Theorem 1 [2]. A quasigroup Q(·) is isotopic to some group if and
only if its spin-basis Φ1 is a group. In this case Φ1 = Φi for all i ∈ Q.

c©2014 by I.I. Deriyenko, W.A. Dudek
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2 D-loops

A loop Q(◦) is an IP-loop, if for each a ∈ Q there exists a uniquely
determined inverse element a′ ∈ Q such that a′◦(a◦b) = (b◦a)◦a′ = b.

On the other hand, in any loop Q(◦) for each a ∈ Q there are
uniquely determined left and right loop-inverse elements a−1

L
, a−1

R
∈ Q

for which we have a−1
L
◦ a = a ◦ a−1

R
= 1. A two-sided loop-inverse

element to a ∈ Q is denoted by a−1. Clearly, (a−1)−1 = a. In a loop
each inverse element is loop-inverse but a loop-inverse element may not
be inverse.

Recall that a loop Q(◦) satisfies the antiautomorphic inverse prop-
erty (or the dual automorphic property) if for each x ∈ Q there exists
a two-sided loop-inverse element x−1 such that (x ◦ y)−1 = y−1 ◦ x−1

holds for all x, y ∈ Q. Loops with this property are also called D-loops.
The class of D-loops is much larger than the class of IP -loops and con-
tains as a proper subclass the class of middle Bol loops. The smallest
D-loop which is not an IP -loop has six elements.

Theorem 2 [4]. A loop Q(·) is a D-loop if and only if ϕ1ϕaϕ1 = ϕ−1
a−1

holds for all a ∈ Q, where a−1 is the inverse of a.

Theorem 3 [4]. Let Q(·) be an IP -loop and let a ∈ Q be fixed. If an
element a′ ∈ Q is inverse to a in Q(·), then Q(◦) with the operation
x ◦ y = Ra′(x) · La(y) is a D-loop with the same identity as in Q(·).
In this case, an element a ∈ Q has the same inverse in Q(·) and Q(◦)
if and only if LaLa = La2 and RaRa = Ra2, where La and Ra are left
and right translations of Q(·).
Theorem 4. A D-loop is isotopic to a group if and only if its spin-basis
Φ1 is closed under the composition of permutations, or equivalently, if
and only if for all i, j ∈ Q there exists k ∈ Q such that ϕiϕ1ϕj = ϕk.

Theorem 5. A principal isotope Q(·) of a D-loop Q(◦) is a D-loop if
and only if each a ∈ Q has the same inverse element in Q(·) and Q(◦),
or equivalently, if and only if they have the same tracks induced by the
identity of Q(◦).
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Theorem 6. If a quasigroup Q(·) is isotopic to a D-loop Q(◦), then
there exists a permutation σ of Q and an element p ∈ Q such that for
all tracks ϕi of Q(·) we have ϕpϕ

−1
i ϕp = ϕσ(i).

Let {ϕ1, ϕ2, . . . , ϕn} be tracks of a D-loop Q(·) with the identity 1,
Q = {1, 2, 3, ..., n}. We say that tracks ϕi, ϕj , where i 6= j 6= 1, are
decomposable if there exist two nonempty subsets X, Y of Q such that
Q = X ∪ Y, X ∩ Y = ∅, 1 ∈ X and ϕi = ϕ̄iϕ̂i, ϕj = ϕ̄jϕ̂j , where
ϕ̄i, ϕ̄j are permutations of X, ϕ̂i, ϕ̂j are permutations of Y.

Putting ψi = ϕ̄iϕ̂j , ψj = ϕ̄jϕ̂iand ψk = ϕk for k 6∈ {i, j} we obtain
the new system of tracks which defines on Q the new loop Q(◦) with
the same identity as in Q(·).

Using different pairs of decomposable tracks we obtain different
loops which may not be isotopic. Obtained loops may not be isotopic
to the initial loop Q(·), too.

Theorem 7. Let Q(·) be a D-loop with the identity 1. If ϕi, ϕj, where
i · j = 1 and i 6= j, are decomposable tracks of Q(·), then a loop Q(◦)
obtained from Q(·) by exchanging of tracks is a D-loop.

The assumption i · j = 1 is essential.

3 Super rigid quasigroups

Autotopies of a quasigroup form a group. Isotopic quasigroups have
isomorphic groups of autotopies but groups of automorphisms of such
quasigroups may not be isomorphic.

A quasigroup having only one automorphism is called rigid.
A quasigroup isotopic to a rigid quasigroup may not be rigid. Quasi-

groups of order two are rigid. No rigid quasigroups of order three [1],
but for every k > 3 there exists at least one rigid quasigroup of order
k [5].

The next interesting class of quasigroups is a class of quasigroups
having only one (trivial) autotopism. Quasigroups with this property
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are called super rigid. Clearly, a super rigid quasigroup has only one
automorphism. Hence a super rigid quasigroup is rigid. The small-
est super rigid quasigroup has 7 elements. We have known only two
examples (given below) of super rigid quasigroups.

· 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 1 7 6 4 5 3
3 3 6 1 2 7 4 5
4 4 5 2 1 3 7 6
5 5 7 4 3 6 2 1
6 6 3 5 7 2 1 4
7 7 4 6 5 1 3 2

· 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 3 1 8 6 7 5 9 4
3 3 1 2 9 7 5 6 4 8
4 4 5 6 7 9 8 1 3 2
5 5 6 4 2 1 9 8 7 3
6 6 4 5 3 8 1 9 2 7
7 7 8 9 5 3 2 4 6 1
8 8 9 7 1 4 3 2 5 6
9 9 7 8 6 2 4 3 1 5

Open problem 1. Give more examples of super rigid quasigroups.

Open problem 2. Describe the class of super rigid quasigroups.

4 Indicators of quasigroups

Any permutation ϕ ∈ Sn can be decomposed into disjoint cycles. De-
note by C(ϕ) the sequence l1, l2, . . . , ln, where li denotes the number
of cycles of the length i. By the indicator of a permutation ϕ with
C(ϕ) = {l1, l2, ..., ln} we mean the polynomial w(ϕ) = xl1

1 xl2
2 · · ·xln

n .

For example, for

ϕ =
(

1 2 3 4 5 6 7
2 3 1 5 4 6 7

)

and

ψ =
(

1 2 3 4 5 6 7 8
2 1 8 6 4 7 5 3

)
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we have C(ϕ) = {2, 1, 1, 0, 0, 0, 0} and C(ψ) = {0, 2, 0, 1, 0, 0, 0, 0}.
Hence, w(ψ) = x2

1x2x3 and w(ψ) = x2
2x4.

Consider the following three matrices:

Φ = [ϕij ] , L = [Lij ] , R = [Rij ] ,

where ϕij = ϕiϕ
−1
j , Lij = LiL

−1
j , Rij = RiR

−1
j for all i, j ∈ Q.

Obviously, ϕii(x) = Lii(x) = Rii(x) = x and ϕij(x) 6= x, Lij(x) 6= x,
Rij(x) 6= x for all i, j, x ∈ Q and i 6= j.

By the indicator of the matrix Φ we mean the polynomial

w(Φ) =
n∑

i=1

w(Φi),

where Φi = {ϕi1, ϕi2, . . . , ϕin} and

w(Φi) =
n∑

j=1, j 6=i

w(ϕij).

Indicators of the matrices L and M are defined analogously.

Theorem 8 [3]. Isotopic quasigroups have the same indicators of the
matrices Φ, L and R.

For a quasigroup isotopic to a group we have w(Φ) = w(Φ1).
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About extensions of mappings into topologically

complete spaces

Radu N. Dumbrǎveanu

Abstract

In the present paper, for a subspace Y of a space X and a
space E the conditions, for which any continuous mapping f :
Y −→ E is continuous extendable on X, are determined.

Keywords: collectionwise normal space, continuous exten-
sion.

1 Introduction

Every space is considered to be a completely regular T1-space. Consider
a topological space X. We denote by clXA the closure of any set A
from X. A subset B of X is clopen if it is simultaneously closed and
open. A regular space X is said to be zero-dimensional if it is of small
inductive dimension zero (indX = 0), i.e. X has a base of clopen sets.
A normal space X has large inductive dimension zero (IndX = 0) if
and only if for any two disjoint closed subsets A and B of X there is
a clopen set C such that A ⊆ C and B ⊆ (X \ C). A normal space X
has Lebesgue covering dimension zero (dimX = 0) if any finite open
cover of X can be refined to a partition of X into clopen sets. It is
well known that IndX = dimX for any metric space X. Also if X is
Lindelöf, then indX = 0 if and only if IndX = 0 [2, Theorem 1.6.5] and
if X is normal, then IndX = 0 if and only if dimX = 0 [2, Theorem
1.6.11]. A topological space X is Dieudonné complete if there exists
a complete uniformity on the space X [3]. A space X is topologically
complete if X is homeomorphic to a closed subspace of a product of

c©2014 by R.N. Dumbrǎveanu
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metrizable spaces. The Dieudonné completion µX of a space X is a
topological complete space, for which X is a dense subspace of µX and
each continuous mapping g from X into a topologically complete space
Y admits a continuous extension µg over µX.

2 On extension of discrete-valued mappings

All spaces considered in this section are assumed to be zero-dimensional.
We are going to use the symbol Dτ (τ is any cardinal number) for the
discrete space consisting of τ elements. As usual, we write D instead
of D2 and it is very convenient to view D as being {0, 1} endowed with
the discrete topology. Also C(X, Z) is the set of all continuous func-
tions defined on the topological space X and with values in a space Z.
If Y ⊆ X and f ∈ C(Y, Z), then we say that f extends to a function
g ∈ C(X, Z) if g(x) = f(x), for every x ∈ Y .

Theorem 1.1. Let Y ⊆ X, X normal and dimX = 0, then the
following assertions are equivalent:

(i) For every clopen subset U of Y the set clXU is clopen in clXY .
(ii) For every clopen partition γ = {U, V } of Y there exists a clopen

partition γ′ = {U ′, V ′} of X such that U = U ′ ∩ Y and V = V ′ ∩ Y .
(iii) Every function f ∈ C(Y,D) extends to a function in C(X,D).
Proof. (i)→(ii). Let X be normal and dimX = 0. Then IndX = 0,

which means that any two disjoint closed subsets of X can be separated
by disjoint clopen subsets of X, i.e., X is ultranormal [1]. Let γ =
{U, V } be a clopen partition of Y . Then, by assumption, clXU is
clopen in clXY . As clXY is a closed subset of X and dimX = 0, we
can find a clopen subset U ′ of X, such that clXU = U ′ ∩ clXY . On the
other hand, U ⊆ clXU and U is clopen in Y , therefore U ′ ∩ Y = U .
The collection {U ′, X \ U ′} is the desired partition.

(ii)→(i). Let U be a clopen subset of Y . Then the collection
{U, V = Y \ U} is a clopen partition of Y . Therefore, by assumption,
we can find a clopen partition {U ′, V ′} of X such that U = U ′ ∩ Y
and V = V ′ ∩ Y . Now, as {U, V } is partition of Y , we have that
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clXY = clXU ∪ clXV . On the other hand, U ⊆ clXU ⊆ U ′, therefore
clXU = U ′ ∩ clXY , i.e. clXU is clopen in clXY .

(ii)↔(iii). This is obvious.

Example. Let Y = N with the discrete topology and X = βN.
Then X is normal and dimX = 0. Let τ < ω. Then every continuous
function from Y into D2 extends to a continuous function on X. But
if τ ≥ ω then, since a continuous function on a compact space must
be bounded, not every continuous function from Y into Dτ extends
to a continuous function on X. Thus, in case of continuous functions
on an infinite discrete space, the conditions for X to be normal and
dimX = 0 are not enough.

Theorem 1.2. Let Y ⊆ X, X be a collectionwise normal space
and dimX = 0. Then the following assertions are equivalent:

(i) For every cardinal τ and a discrete collection {Uα : α ∈ Dτ} of
clopen subsets of Y , the collection {clXUα : α ∈ Dτ} is discrete in X.

(ii) For every clopen subset U of Y , the set clXU is clopen in clXY
and every discrete collection {Uα : α ∈ A} of clopen subsets of Y is
locally finite in X.

(iii) For each discrete space Z every function f ∈ C(Y, Z) extends
to a function in C(X, Z).

(iv) If Z is a topologically complete space and f ∈ C(Y, Z), then
there exists g ∈ C(clXY, Z) such that f = g|Y .

(v) clµXY ⊆ µY .

3 Extension of mappings into metric spaces

Theorem 3.1. Let Y be a subspace of the space X, E be a topologically
complete space and for each closed subspace Z of X and any continuous
mapping g : Z −→ E there exists a continuous extension ḡ : X −→ E.
If µY = clµXY , then for each continuous mapping g : Y −→ E there
exists a continuous extension ḡ : X −→ E.

A family {Fα : α ∈ A} of the space X is functionally discrete if
there exists a family {fα : α ∈ A} of continuous functions on X such
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that the family {f−1
α (0, 2) : α ∈ A} is discrete in X and Fα ⊆ f−1

α (1)
for each α ∈ A}.

Theorem 3.2. Let Y be a subspace of the space X, and for any
continuous mapping g : Z −→ E of a closed subspace Z of X into a
Banach space E there exists a continuous extension ḡ : X −→ E. Then
the following assertions are equivalent:

(i) µY = clµXY ,
(ii) For each continuous mapping g : Y −→ E into a Banach space

E there exists a continuous extension ḡ : X −→ E.
(iii) For each continuous mapping g : Y −→ E into a metrizable

space E there exists a continuous extension µg : clXY −→ E.
(iv) For each functionally discrete family {Fα : α ∈ A} of the space

Y the family {clXFα : α ∈ A} is discrete in X.
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On a construction of orthogonal operations

Iryna Fryz

Abstract

We propose a construction method of orthogonal operations.
It is a generalization of the recursive method. We call it step
algorithm. For this purpose we introduce a notion of retract
orthogonality and give its construction method. This notion does
not coincide with usual notion of orthogonality.

Keywords: orthogonality of operations, retract orthogonal
operations, recursive method, step algorithm.

1 Introduction

A problem of construction of MDS-codes, hash-functions and secret-
sharing schemes is connected with the construction of orthogonal op-
erations, partial orthogonal operations, orthogonal quasigroups. Some
applications of orthogonal operations in cryptography are described in
survey [2].

P.N.Syrbu [3] proposed a system of identities which warrants or-
thogonality of n-ary operations. Couselo E., Gonzalez S., Markov
V., Nechaev A. [1] and Belyavskaya G., Mullen G.L. [4] considered
a method for construction of n-ary orthogonal operations. We call it
recursive method.

Here, we propose a new method for the construction of n-ary or-
thogonal operations which is a generalization of recursive method and
is called a step algorithm.

c©2014 by I. Fryz
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2 Preliminaries

By xj
i we denote the sequence xi, xi+1, . . . , xj , when i 6 j and empty

sequence otherwise. An operation f is called: i-invertible if for ar-
bitrary elements ai−1

1 , b, an
i−1 there exists a unique element x such

that f(ai−1
1 , x, an

i+1) = b; and invertible or quasigroup operation, if it
is i-invertible for all i. σ-parastrophe of f is an operation σf which is
defined by

σf(x1σ, . . . , xnσ) = x(n+1)σ :⇐⇒ f(x1, . . . , xn) = xn+1.

Following [4], a tuple of n-ary operations (f1, . . . , fk) (n > 2, k 6
n) defined on Q (m := |Q|) is called orthogonal, if for an arbitrary
a1, . . . , ak ∈ Q the system

{
fi(xn

1 ) = ai|k1 has exactly mn−k solutions.

3 Retract orthogonality

Let δ := {i1, . . . , is} ⊆ 1, n and f be n-ary operation on Q. An s-ary
operation g being obtained from f(x1, . . . , xn) by replacing all variables
from {x1, . . . , xn} \ {xi1 , . . . , xis} with some elements from Q, is called
δ-retract of f . δ-retracts of operations f1, . . . , fs are called similar if
the same variables are replaced with the same elements.

Consider a sequence of operations f1, . . . , fs. If all sequences of
operations being similar δ-retracts of f1, . . . , fs are orthogonal, then
the operations f1, . . . , fs are called δ-recract orthogonal.

Theorem 1. Let p1, . . . , ps be arbitrary 1-invertible (n− s+1)-ary
operations, h1, . . . , hs arbitrary operations, and let operations f1, . . . , fs

be defined by




f1(x1, . . . , xn) := p1(h1(x1, . . . , xs), xs+1, . . . , xn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fs(x1, . . . , xn) := ps(hs(x1, . . . , xs), xs+1, . . . , xn).

Then f1, . . . , fs are 1, s-retract orthogonal if and only if h1, . . . , hs are
orthogonal.
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The notion of orthogonality and retract orthogonality do not coin-
cide. The following example confirms this.

Example. Let operations f1(x, y, z) = x + 2y + z, f2(x, y, z) =
x + 2y + 3z be defined on Z5.1 They are orthogonal, but their {1, 2}-
retracts are not orthogonal.

4 Step algorithm of construction of orthogonal
operations

Let f1, . . . , fn be n-ary operations on Q and let π := {π1, π2, . . . , πs}
be a partition of 1, n, where πi := {ni−1 + 1, . . . , ni}, n0 := 0, ns := n,
i = 1, . . . , s. Define operations g1,. . . , gn by





g1(xn
1 ) := f1(xn

1 ),

. . . . . . . . . . . . . . . . . .

gn1(x
n
1 ) := fn1(x

n
1 ),

gn1+1(xn
1 ) := fn1+1(g1(xn

1 ), . . . , gn1(x
n
1 ), xn

n1+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn2(x
n
1 ) := fn2(g1(xn

1 ), . . . , gn1(x
n
1 ), xn

n1+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gns−1+1(xn
1 ) := fns−1+1(g1(xn

1 ), . . . , gns−1(x
n
1 ), xn

ns−1+1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gn(xn
1 ) := fn(g1(xn

1 ), . . . , gns−1(x
n
1 ), xn

ns−1+1),

This construction method of a tuple (g1, . . . , gn) of operations is
called π-step algorithm or step algorithm.

Theorem 2. If for every i ∈ 1, s n-ary operations fni−1+1, . . . , fni

are πi-retract orthogonal, then the operations g1, . . . , gn, defined by π-
step algorithm, are orthogonal.

1Z5 denotes ring of integers modulo 5.
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5 Conclusion

If the partition π is trivial, i.e. for every class of the partition πi =
{i}, then retract orthogonality of fi means i-invertibility of fi. So,
Theorem 2 implies Theorem 3 from [4]. In other words, step algorithm
is a generalization of recursive algorithm.

Acknowledgments. The author would like to expresses her sin-
cere thanks to Dr. Fedir Sokhatsky for suggesting the problem and for
attention to the article.
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Limit Theorems For Random Walks In The

General Linear Group

Ion Grama, Emile Le Page, Marc Peigné

Abstract

Let Gn = gn . . . g1 be a random walk in the general linear
group. We study the asymptotic of the exit time from the com-
plement Bc of a closed unit ball B of the associated walk Gnv in
the vector space V = Rd, where v is any starting vector in Bc.
We establish a limit theorem for this walk conditioned to stay
in Bc.

Keywords: general linear group, random walks, conditional
random walk, limit theorems.

1 Introduction and previous results

Let G = GL (d,R) be the general linear group of d × d invertible ma-
trices w.r.t. ordinary matrix multiplication. If g is an element of G
by ‖g‖ we mean the operator norm and if v is an element of the vec-
tor space V = Rd, the norm ‖v‖ is Euclidean. Endow the group G
by the usual Borel σ-algebra w.r.t. ‖·‖ . Let µ be a probability mea-
sure on G and suppose that on the probability space (Ω,F ,Pr) we are
given an i.i.d. sequence (gn)n≥1 of G-valued random elements of the
same law Pr (g1 ∈ dg) = µ (dg) . A random walk in G is the product
Gn = gn . . . g1. Let v ∈ V r {0} be any starting point. The object of
interest is the size of the vector Gnv which is controlled by the quantity
log ‖Gnv‖ . It follows from the results of Le Page [3] that, under appro-
priate assumptions, the sequence (log ‖Gnv‖)n≥1 behaves like a sum of
i.i.d. r.v.’s and satisfies standard classical properties such as the law of
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large numbers, law of iterated logarithm and the central limit theorem.
There is a vaste literature on this subject. We refer to Bougerol and
Lacroix [1] and to the references therein.

Introduce the following conditions. Let N (g) = max
{
‖g‖ , ‖g‖−1

}
,

suppµ be the support of the measure µ and P (V) be the projective
space of V.

P1. There exists δ0 > 0 such that
∫

G
N (g)δ0 µ (dg) < ∞.

The next condition requires, roughly speaking, that the dimension
of the support of suppµ cannot be reduced.

P2 (Strong irreducibility). The support suppµ of µ acts strongly
irreducibly on V, i.e. no proper union of finite vector subspaces of V
is invariant with respect to all elements g of the group generated by
suppµ.

We say that the sequence (hn)n≥1 of elements of G is contracting

for the projective space P (V) if limn→∞ log a1(n)
a2(n) = ∞, where a1 (n) ≥

... ≥ ad (n) are the eigenvalues of the symmetric matrix h′nhn and h′n
is the transpose of hn.

P3 (Proximality). The closed semigroup generated by suppµ con-
tains a contracting sequence for the projective space P (V) .

For example P3 is satisfied if the closed semigroup generated by
suppµ contains a matrix with a unique simple eigenvalue of maximal
modulus.

In the sequel for any v ∈ V r {0} we denote by v = Rv ∈ P (V) its
direction and for any direction v ∈ P (V) we denote by v a vector in
V r {0} of direction v. Define the function ρ : G × P (V) → R called
norm cocycle by setting

ρ (g, v) := log
‖gv‖
‖v‖ , for (g, v) ∈ G× P (V) .
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It is well known (see Le Page [3] and Bougerol and Lacroix [1]) that
under conditions P1-P3 there exists a unique µ-invariant measure ν
on P (V) such that, for any continuous function ϕ on P (V) ,

(µ ∗ ν) (ϕ) = ν (ϕ) .

Moreover the upper Lyapunov exponent

γ = γµ =
∫

G×P(V)
ρ (g, v) µ (dg) ν (dv)

is finite and there exists a constant σ > 0 such that for any v ∈ Vr {0}
and any t ∈ R,

lim
n→∞Pr

(
log ‖Gnv‖ − nγ

σ
√

n
≤ t

)
= Φ (t) ,

where Φ (·) is the standard normal distribution.

2 Main results

Denote by B the closed unit ball in V and by Bc its complement. For
any v ∈ Bc define the exit time of the random process Gnv from Bc by

τv = min {n ≥ 1 : Gnv ∈ B} .

In the sequel we consider that the upper Lyapunov exponent γ is equal
to 0. The fact that γ = 0 does not imply that the events

{τv > n} = {Gkv ∈ Bc : k = 1, ..., n} , n ≥ 1

occur with positive probability for any v ∈ Bc. To ensure this we need
the following additional condition:

P4. There exists δ > 0 such that

inf
s∈Sd−1

µ (g : log ‖gs‖ > δ) > 0.
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Under conditions P1-P4 we prove that, for any v ∈ Bc,

Pr (τv > n) =
2V (v)
σ
√

2πn
(1 + o (1)) as n →∞,

where V is a positive function on Bc. Moreover, we prove that the limit
law of the quantity 1

σ
√

n
log ‖Gnv‖ , given the event {τv > n}, coincides

with the Rayleigh distribution Φ+ (t) = 1− exp
(
− t2

2

)
: for any v ∈ Bc

and for any t ≥ 0,

lim
n→∞Pr

(
log ‖Gnv‖

σ
√

n
≤ t

∣∣∣∣ τv > n

)
= Φ+ (t) .

Our proofs rely upon the strong approximation result for Markov
chains established in [2].

References

[1] P. Bougerol, J. Lacroix. Products of Random Matrices with Ap-
plications to Schödinger Operators. (1985), Birghäuser, Boston-
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On multiplication groups of isostrophic

quasigroups

Ion Grecu

Abstract

Relations between the multiplication groups of loops which
are isostrophes of quasigroups are studied in the present work.
We prove that, if (Q, ·) is a quasigroup and its isostrophe (Q, ◦),
where x ◦ y = ψ(y) \ ϕ(x), ∀x, y ∈ Q, is a loop, then the right
multiplication group of (Q, ◦) is a subgroup of the left multiplica-
tion group of (Q, ·). Moreover, if ϕ ∈ Aut(Q, ◦), then RM(Q, ◦)
is a normal subgroup of LM(Q, ·). As a corollary from this result
we get that the right multiplication group of a middle Bol loop
coincides with the left multiplication group of the corresponding
right Bol loop.

Keywords: Right (left, middle) Bol loop, isostrophy, (right,
left) multiplication group.

Recall that the isotopes of parastrophes of a quasigroup (Q, ·) are
called isostrophes of (Q, ·). A loop satisfying the identity (xy · z)y =
x(yz·y) is called a right Bol loop. A loop (Q, ·) is called a middle Bol if it
satisfies the identity x(yz\x) = (x/z)(y\x), where ”\” (”/”) is the right
(respectively, left) division in the loop (Q, ·). Moreover, the middle Bol
identity is a necessary and sufficient condition for the universality of the
anti-automorphic inverse property (x · y)−1 = y−1 · x−1 [1]. According
to [2], a loop (Q, ◦) is middle Bol if and only if there exists a right Bol
loop (Q, ·) such that

x ◦ y = y−1 \ x, (1)

for all x, y ∈ Q. Middle Bol loops are studied also in [4,5].

c©2014 by I. Grecu
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Let (Q, ·) be a quasigroup and let SQ be the symmetric group
on Q. Denote by LM(Q, ·) =< L

(·)
a |a ∈ Q > (resp. RM(Q, ·) =

< R
(·)
a |a ∈ Q >, M(Q, ·) =< L

(·)
a , R

(·)
a |a ∈ Q > ) the left multiplica-

tion group (resp. the right multiplication group, multiplication group),
where L

(·)
a (x) = a · x,R

(·)
a (x) = x · a,∀a, x ∈ Q. K.Shchiukin proved

in [3] that, if a loop (Q, ◦) is isotopic to a quasigroup (Q, ·), then
the left (right) multiplication group of (Q, ◦) is a subgroup in the left
(right) multiplication group of (Q, ·). Moreover, if the second (first)
component of the isotopy is an automorphism of (Q, ◦), then the left
(right) multiplication group of (Q, ◦) is a normal subgroup in the left
(right) multiplication group of (Q, ·). We prove in the present work
some analogous results for the multiplication groups of loops which are
isostrophes of a quasigroup. Namely, we prove that, if (Q, ·) is a quasi-
group and its isostrophe (Q, ◦), where x ◦ y = ψ(y) \ ϕ(x), ∀x, y ∈ Q,
is a loop, then the right multiplication group of (Q, ◦) is a subgroup
of the left multiplication group of (Q, ·). Moreover, if ϕ ∈ Aut(Q, ◦),
then RM(Q, ◦) is a normal subgroup of LM(Q, ·). As a corollary from
this result we get that the right multiplication group of a middle Bol
loop coinsides with the left multiplication group of the corresponding
right Bol loop.

Theorem. Let (Q, ·) be a quasigroup and let ϕ,ψ ∈ SQ, such that
the isostrophe (Q, ◦), where x ◦ y = ψ(y)\ϕ(x), ∀x, y ∈ Q, is a loop.
Denoting I

(·)
x (y) = y \ x, ∀x, y ∈ Q, the following statements are true:

1. LM(Q, ◦) =< I
(·)
x ψ|x ∈ Q >;

2. RM(Q, ◦) =< L
(·)
x ϕ|x ∈ Q >=< L

(·)−1
x L

(·)
y |x, y ∈ Q >;

3. M(Q, ◦) =< I
(·)
x ψ,L

(·)
y ϕ|x, y ∈ Q >=

=< I
(·)
x ψ, L

(·)−1
y L

(·)
z |x, y, z ∈ Q >;

4. RM(Q, ◦) £ LM(Q, ·) if ϕ is an automorphism of (Q, ◦);
5. LM(Q, ·) =< RM(Q, ◦), ϕ >.
Proof. 1. According to the definition of ” ◦ ”, for every x, y ∈ Q,

we have: x ◦ y = ψ(y)\ϕ(x), which implies L
(◦)
x (y) = I

(·)
ϕ(x)ψ(y), so

LM(Q, ◦) =< I
(·)
x ψ|x ∈ Q >.
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2. Let e ∈ Q be the unit of the loop (Q, ◦). Then x = x ◦ e =
ψ(e)\ϕ(x)⇒ ϕ(x) = ϕ(e)·x, so L

(·)
ψ(e)(x) = ϕ(x), ∀x ∈ Q and ϕ = L

(·)
ψ(e).

Hence, from x ◦ y = ψ(y)\ϕ(x) follows R
(◦)
y (x) = L

(·)−1
ψ(y) ϕ(x), ∀x ∈ Q,

which implies
R(◦)

y = L
(·)−1
ψ(y) ϕ = L

(·)−1
ψ(y) L

(·)
ψ(e) (2)

and, in particular, we get that, ∀y ∈ Q, the following equality holds:

L
(·)−1
ψ(y) = R(◦)

y ϕ−1. (3)

Using (2),we have: RM(Q, ◦) =< L
(·)
x ϕ|x ∈ Q >⊆< L

(·)−1
x L

(·)
y |x, y ∈

Q >. On the other hand, L
(·)−1
x L

(·)
y = L

(·)−1
ψ(ψ−1(x))

L
(·)
ψ(e)L

(·)−1
ψ(e) L

(·)
ψ(ψ−1(y))

=

R
(◦)
ψ−1(x)

R
(◦)−1
ψ−1(y)

∈ RM(Q, ◦), so RM(Q, ◦) =< L
(·)−1
x L

(·)
y |x, y ∈ Q > .

3. Follows from 1 and 2.
4. Let ϕ be an automorphism of (Q, ◦), then ϕ(x ◦ y) = ϕ(x) ◦

ϕ(y), for every x, y ∈ Q. The last equality implies: ϕR
(◦)
y (x) =

R
(◦)
ϕ(y)ϕ(x), ∀x, y ∈ Q and ϕR

(◦)
y = R

(◦)
ϕ(y)ϕ, ∀y ∈ Q, so

ϕR(◦)
y ϕ−1 = R

(◦)
ϕ(y), (4)

for every y ∈ Q. Hence, for L
(·)
x ∈ LM(Q, ·) and R

(◦)
y ∈ RM(Q, ◦),

we’ll use (3) and (4) to show that L
(·)
x R

(◦)
y L

(·)−1
x ∈ RM(Q, ◦):

L
(·)
x R

(◦)
y L

(·)−1
x = ϕR

(◦)−1
ψ−1(x)

R
(◦)
y R

(◦)−1
ψ−1(x)

ϕ−1 =

ϕR
(◦)−1
ψ−1(x)

ϕ−1ϕR
(◦)
y ϕ−1ϕR

(◦)−1
ψ−1(x)

ϕ−1 =

R
(◦)−1
ϕ(ψ−1(x))

R
(◦)
ϕ(y)R

(◦)−1
ϕ(ψ−1(x))

∈ RM(Q, ◦).
Analogously, using (3) and (4) we shall prove that L

(·)−1
x R

(◦)
y L

(·)
x ∈

RM(Q, ◦):
L

(·)−1
x R

(◦)
y L

(·)
x = R

(◦)
ψ−1(x)

ϕ−1R
(◦)
y ϕR

(◦)−1
ψ−1(x)

=

R
(◦)−1
ψ−1(x)

R
(◦)
ϕ−1(y)

R
(◦)−1
ψ−1(x)

∈ RM(Q, ◦).
So as

L
(·)
x R

(◦)−1
y L

(·)−1
x = (L(·)

x R
(◦)
y L

(·)−1
x )−1 =
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(R(◦)−1
ϕ(ψ−1(x))

R
(◦)
ϕ(y)R

(◦)−1
ϕ(ψ−1(x))

)−1 ∈ RM(Q, ◦)
and L

(·)−1
x R

(◦)−1
y L

(·)
x = (L(·)−1

x R
(◦)
y L

(·)
x )−1 =

(R(◦)−1
ψ−1(x)

R
(◦)
ϕ−1(y)

R
(◦)−1
ψ−1(x)

)−1 ∈ RM(Q, ◦).
So, we proved that RM(Q, ◦) £ LM(Q, ·).

5. Follows from 2. 2

Corollary Let (Q, ◦) be a middle Bol loop and let (Q, ·) be the
corresponding right Bol loop. Then the following equalities are true

RM(Q, ◦) =< L
(·)
x |x ∈ Q >= LM(Q, ·).

Proof. From (1) follows x ◦ y = y−1\x = I(y)\x, for every x, y ∈
Q. From the previous Theorem, for ϕ = ε and ψ = I, we obtain
RM(Q, ◦) =< L

(·)
x |x ∈ Q >= LM(Q, ·). 2
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On the completion of incomplete non-orientable

hyperbolic 3-manifolds

I.S. Gutsul

Abstract

The present work is devoted to the study of the geometry of
the completion of non-orientable hyperbolic 3-manifolds.

Keywords: hyperbolic geometry, 3-manifold, discrete group.

1 Introduction

In the work [1] W.Thurston developed the theory of the completion of
orientable hyperbolic 3-manifold. But he did not consider the comple-
tion of incomplete non-orientable hyperbolic manifolds. It is possible
to develop the theory of the completion of such non-orientable man-
ifolds, too, but the method of Thurston cannot be used in this case.
For this case the hyperbolic space should be considered from the point
of view of synthetic, i.e. Poincare models, or some other models of the
hyperbolic space cannot be used.

In the present communication we consider the completion of in-
complete non-orientable hyperbolic 3-manifolds with manifolds being
non-compact but having finite volume.

2 Completion of 3-manifolds

Non-compact non-orientable hyperbolic 3-manifolds with finite volume
can have cusps of two kinds: orientable and non-orientable. An ori-
entable cusp is the set T 2×[0,∞), i.e. the product of a two-dimensional

c©2014 by I.S. Gutsul
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torus and a half-line. An non-orientable cusp is the set K2 × [0,∞),
i.e. the product of a Kleins bottle and a half-line.

Consider a complete non-orientable non-compact hyperbolic 3-
manifold M with finite volume. As it is shown in [2] it is rigid which
means that two such manifolds with isomorphic fundamental groups
are homeomorphic. If we begin to deform the manifold M it becomes
incomplete but its completion is possible.

Let M be a complete non-orientable non-compact hyperbolic 3-
manifold with finite volume. It can be obtained by the identification
of faces of a polyhedron R in the hyperbolic space, some vertices of
R being infinitely removed, i.e. they lie on the absolute. Consider
an horosphere S centered at an infinitely removed vertex A of the
polyhedron R. Then motions which identify faces of this polyhedron
and retain the center of the horosphere S induce on the horosphere S
a discrete two-dimensional group Γ of transformations. As the metric
of horosphere is Euclidean and the group, generated by all the motions
identifying the faces of the polyhedron R, does not contain elements of
finite order, the group Γ is isomorphic to the fundamental group either
of torus or of Kleins bottle. If we begin to deform the polyhedron,
we obtain a similarity group Γ1 on the horosphere S. If the group Γ1

is non-orientable, the completion of such an end of the manifold M
cannot yield a manifold. It is so because of all the non-orientable two-
dimensional similarity symmetry groups for which tile-transitive tilings
of the punctured plane with compact convex polygons exist, contain
either rotations or reflections [3]. But if the group Γ1 is orientable,
the completion of such an end of the manifold M yields a countable
series of non-orientable manifolds Mi. Moreover, the volumes of the
manifolds Mi converge to the volume of the manifold M .

As an illustration consider a manifold obtained by the identification
of faces of the octahedron O with all the vertices being on the absolute.
Let us label infinitely removed vertices of the octahedron O by numbers
1, 2, 3, 4, 5, 6. It can be easy proved that the set of such octahedra is a
family with 6 parameters. Identify faces of the octahedron by motions
using the following scheme:
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(1, 2, 5)ϕ1(4, 3, 5); (2, 3, 5)ϕ2(1, 4, 5);

(1, 2, 6)ϕ3(4, 1, 6); (3, 4, 6)ϕ4(2, 3, 6).

As a result we obtain a non-orientable manifold with one orientable
cusp and two non-orientable cusps. To do metrical calculations, we
partition the octahedron O into 4 simplexes:

T1(1, 2, 3, 5), T2(1, 3, 4, 5);T3(1, 3, 4, 6);T4(1, 3, 2, 6)
Let dihedral angles of these tetrahedra be:
T1(α1 , β1 , γ1); T2(α2 , β2 , γ2 ; T3(α3 , β3 , γ3); T4(α4 , β4 , γ4).

Then the identifications ϕ1 , ϕ2 , ϕ3 , ϕ4 lead to a non-complete non-
orientable manifold M if the dihedral angles of the above simplexes
satisfy the following system of equations:

α1 + β1 + γ1 = π , α2 + β2 + γ2 = π ; α3 + β3 + γ3 = π;

α4 + β4 + γ4 = π ; α1 + α2 + α3 + α4 = 2π ;

sinβ1/sinγ1 × sinβ2/sinγ2 = 1 sinβ3/sinγ3 × sinβ4/sinγ4 = 1;

sinβ1/sinα1 × sinβ2/sinα2 × sinα3/sinγ3 × sinα4/sinγ4 = 1.

The obtained manifold has an orientable cusp given by the vertex 5,
a non-orientable cusp of the vertex 6 and a non-orientable cusp given
by the vertices 1, 2, 3, 4. If we require that the non-orientable cusps
be complete (i.e. the discrete groups on the respective horospheres
be isometry groups), then the parameters of the octahedron give the
equalities: α3 = α4 , β3 = β4 , γ3 = γ4 .

Then obtain the following system of equations:

α1 + β1 + γ1 = π , α2 + β2 + γ2 = π , α3 + 2× β3 = π,

α1 + α2 + 2× α3 = 2π , sinβ1/sinγ1 × sinβ2/sinγ2 = 1 ,

sinβ1/sinα1 × sinβ2/sinα2 × sin2α3/sin2β3 = 1. (1)

Thus we obtained that 8 parameters are connected by 6 equations.
Therefore we have two free parameters which can be used for the com-
pletion of the orientable cusp connected with the vertex 5.

84



On the hyperbolic 3-manifolds

Consider the horosphere S centered at the vertex 5. On S we obtain
a two-dimensional similarity symmetry group induced by the motions
ϕ1 and ϕ2 . In order that this group to be discrete, it is necessary that
it should be generated by two spiral rotations f1 and f2 . Then to the
completion of the cusp to the system of equations (1) the following
equations should be added:

m× ψ1 + n× ψ2 = 2π; km
1 = kn

2 ,

where m and n are natural coprime numbers and m + n > 5. In these
equations ψ

!
, ψ2 are rotation angles, k1 , k2 are coefficients of spiral

rotations f1 and f2 . Then to the completion of the cusp to the system
of equations (1) the following equations should be added:

m(β1 − β2) + n(γ2 − γ1) = 2π,

((sinγ1/sinα1)×(sinα2/sinγ2))
m = ((sinα1/sinβ1)×(sinβ2/sinα2)

n,

where m and n are natural coprime numbers and m + n > 5. Varying
the numbers m and n, we obtain a countable series of non-orientable
non-compact hyperbolic 3-manifolds Mmn, and the volumes of mani-
folds Mmn are bounded by the volume of the regular hyperbolic octa-
hedron, all the vertices being on the absolute.
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An introduction to Hilbert depth

Bogdan Ichim, Andrei Zarojanu

Abstract

In the first part of this paper we present the Hilbert decompositions
of a module M which depends only on the Hilbert function of M and
an analogous notion of depth, called Hilbert depth.

In the second part we implemented in CoCoA an algorithm for
computing the Hilbert depth of a module.

Keywords: commutative algebra, computer algebra, Stanley depth,
Hilbert depth.

1 Introduction

Stanley decompositions of multigraded modules over polynomial rings R =
K[X1, . . . ,Xn] have been introduced by Stanley in [8]. They break the module
M into a direct sum of graded vector subspaces, each of which is of type Sx,
where x is a homogeneous element and S = K[Xi1 , . . . ,Xid ] is a polynomial
subalgebra. Stanley conjectured that one can always find such a decomposi-
tion in which d ≥ depthM for each summand.

One says that M has Stanley depth m, sdepthM = m, if one can find a
Stanley decomposition in which d ≥ m for each polynomial subalgebra in-
volved, but none with m replaced by m+1.

In [1] the authors introduce a weaker type of decomposition in which
we no longer require the summands to be submodules of M, but only vector
spaces isomorphic to polynomial subrings. Evidently, such decompositions
depend only on the Hilbert series of M, and therefore they are called Hilbert
decompositions. The Hilbert depth hdepthM is defined accordingly.

c©2014 by B. Ichim, A. Zarojanu
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In [4] the authors introduce a method for computing the Hilbert depth of a
multigraded module and this work was extended in [5] where the authors im-
proved the method and introduced an effective algorithm for performing com-
putations. Using it they completely resolved the following questions asked by
Herzog in [3]:

Problem 1. [3, Problem 1.66] Find an algorithm to compute the Stanley
depth for finitely generated multigraded R-modules M with dimK Ma ≤ 1 for
all a ∈ Zn.

The answer can be found in [[5], Algorithm 2].

Problem 2. [3, Problem 1.67] Let M and N be finitely generated multigraded
R-modules. Then

sdepth(M⊕N)≥Min{sdepth(M),sdepth(N)}.
Do we have equality?

Problem 3. [3, Text following Problem 1.67] In the particular case, where
I ⊂ R is a monomial ideal, does sdepth(R⊕ I) = sdepth I hold?

The answear of both questions is No, you cand find the counterexamples
in [5] Example 14 and Example 16.

2 An algorithm for computing Hdepth

A first algorithm to compute the Hilbert depth of a standard graded module
was presented in [6]. We next present a CoCoA [2] function which computes
the Hilbert Depth of a multigraded module using recursive backtracking, you
can find the program here:

https://dl.dropboxusercontent.com/s/urhrasy5ntgbwzf/Hdepth.htm.
We performed some tests to compute the stanley depth or hilbert depth,

they are equal in this case, for the maximal ideal and got better results than the
algorithm implemented by Rinaldo [7] which uses iterative backtracking, see
[5] Table 1. Below we present the CheckHilbertDepth function implemented
in CoCoa [2] from [[5], Algorithm 1] which is called recursevely.
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Define CheckHilbertDepth(P,E,F)
TopLevel CurrentRing;
N:=NumIndets(CurrentRing);
If TestNatural(P) = false Then Return false; EndIf; – P /∈ N[X1, ...,XN ]
st:=NewList(N,1);
If len(E) = 0 Then Return true; – check if E = 0
Else

For i:=1 To len(E) Do
C:=FPC(E[i],F); – Find the elementes that cover E[i] with ρ = s
If len(C) = 0 Then Return false; EndIf; – check if C = 0
For j:=1 to Len(C) Do

P2:=0;
D:=E[i]-st;
BuildInterval(C[j],D,D,0,Ref P2); – build P2 = poly[E[i],C[j]]
P1:= P - P2;

t:= CheckHilbertDepth(P1,Deduction(P1,P2,E),Deduction2(P1,C[j],F));
If t= true Then PrintLn P2;

Return true;
EndIf;

EndFor;
EndFor;

Return false;
EndIf;
EndDefine;
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On homogeneity of topological spaces

Dumitru Ipate

Abstract

In the present paper we study distinct conditions of homo-
geneity of spaces. We prove that the topological product of
strongly homogeneous compact spaces is strongly homogeneous.

Keywords: homogeneous space, strongly homogeneous space.

1 Introduction

Every space is considered to be a completely regular T1-space. Give
a topological space X. We denote by clXA the closure of the subset
A ⊆ X in X. A subset B of X is called clopen if it is simultaneously
closed and open. Denote by w(X) the weight of X. A space X is
said to be zero-dimensional if it is of small inductive dimension zero
(indX = 0), i.e. X has a base of clopen sets. A normal space X
has large inductive dimension zero (IndX = 0) if and only if for any
two disjoint closed subsets A and B of X there is a clopen set C such
that A ⊆ C and B ⊆ (X \ C). A normal space X has Lebesgue
covering dimension zero (dimX = 0) if any finite open cover of X can
be refined to a partition of X into clopen sets. It is well known that
indX ≤ IndX for each normal space X. Moreover, IndX = dimX for
any metric space X and dimX ≤ indX for any Lindelöf space X.

A space X is called:
- a homogeneous space if for any two points a, b ∈ X there exists a

homeomorphism g : X −→ X such that g(a) = b;
- a weight homogeneous (briefly, w-homogeneous) space if X has a

base B such that w(U) = w(X) for each U ∈ B;

c©2014 by D. Ipate
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- a strictly homogeneous (briefly, sw-homogeneous) space if indX =
0 and for any non-empty clopen subset U of X there exists a homeo-
morphism g : X −→ U ;

- a weakly strictly homogeneous (briefly, wsw-homogeneous) space
if X has a base B of clopen sets such that for any two non-empty clopen
subsets U, V ∈ B there exists a homeomorphism g : V −→ U .

The notion of strictly homogeneous space was introduced by J.
van Mill in [6]. Distinct notions of homogeneity were introduced and
studied in [1, 2, 3, 4].

Denote by Dτ (τ is a cardinal number) the discrete space consisting
of τ elements.

Any infinite compact homogeneous space is w-homogeneous. Any
sw-homogeneous space is w-homogeneous.

The following assertions are obvious:
Proposition 1.1. Let X be a sw-homogeneous space and |X| ≥ 2.

Then:
1. The spaces X and X × Dτ are homeomorphic for any finite

cardinal τ ≥ 1.
2. If X is a paracompact space with a closed discrete subspace of

cardinality τ ≥ 2, then the spaces X and X ×Dτ are homeomorphic.

2 Examples

The following examples show that the class of sw-homogeneous spaces
is large. If τ ≥ 2, then the space Dτ is homogeneous, wsw-homogeneous
and not sw-homogeneous.

Example 2.1. Let D = D2 and C = Dℵ0 be the Cantor set. The
Cantor set is a compact homogeneous sw-homogeneous space.

Example 2.2. Let Q be the space of rational numbers and J be
the space of irrational numbers as a subspace of real numbers R. Then
Q and J are homogeneous sw-homogeneous non-compact spaces.

Example 2.3. Let A = C0 ∪ C1, C0 = {(t, 0) : 0 < t ≤ 1}, C1 =
{(t, 1) : 0 ≤ t < 1} and let topology on X be generated by the base
consisting of sets of the form On(x, 0) = {(x, 0)} ∪ {(t, 0), (t, 1) ∈ A :
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x− 2−n < t < x} and On(y, 1) = {(y, 1)} ∪ {(t, 0), (t, 1) ∈ A : y < t <
y + 2−n}, where (x, 0), (y, 1) ∈ A and n ∈ N = {1, 2, ...}. The space A
is called the Alexandroff-Urysohn two arrows space ( see [5], p. 270).
The space A is compact, homogeneous and sw-homogeneous.

Example 2.4. The subspaces C0 and C1 of the space A from Ex-
ample 2.3 are homeomorphic to the Sorgenfrey line K (see [5], Example
1.2.2, p. 39). The space K is Lindelöf, homogeneous, sw-homogeneous
and non-compact.

3 Product of homogeneous spaces

The following theorem is the main result.
Theorem 3.1. Let {Xα : α ∈ A} be a family of non-empty sw-

homogeneous compact spaces. Then X = u{Xα : α ∈ A} is a sw-
homogeneous space.

Proof. It is sufficient to prove the assertion of Theorem for the
case when |A| = 2. Assume that A = {1, 2}. The natural projection
pα : X −→ Xα, α ∈ A, is an open and closed continuous mapping.

Fix a non-empty clopen subset U of X. The set Uα = pα(U) is
clopen in Xα for each α ∈ A. Fix a point (x, y) ∈ X1 × X2. Let
{(Vβ(x, y),Wβ(x, y)) : β ∈ B(x, y) be the family of all pairs (V, W ) of
sets with the properties:

- x ∈ V and the set V is open in X1;
- y ∈ W and the set V is open in X1;
- V ×W ⊆ W and U ∩ (V × {y}) ⊆ (V ×W ).
Put V(x, y) = ∪ : Vβ(x, y) : β ∈ B(x, y)}, W(x, y) = ∪ : Wβ(x, y) :

β ∈ B(x, y)} and U(x, y) = V (x, y)×W (x, y). The sets U(x, y), V(x, y)
and W(x, y) are clopen in X, X1 and X2 respectively. For any two
points (x, y), (u, v) ∈ U either U(x, y) = U(u, v), or U(x, y)∩U(u, v) =
∅. Hence, there exists a finite subset L ⊆ X such that U = ∪{U(x, y) :
(y, x) ∈ L} and {U(x, y) : (y, x) ∈ L} is a disjoint family of subsets of
U . On L consider the discrete topology. The spaces X and X × L are
homeomorphic. The spaces U(x, y) and X×{(x, y)} are homeomorphic
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too. Therefore the spaces U , X × L and X are homeomorphic. The
proof is complete.

The following assertion is obvious.
Theorem 3.2. Let {Xα : α ∈ A} be a family of non-empty wsw-

homogeneous spaces. Then X = u{Xα : α ∈ A} is a wsw-homogeneous
space.

Question 3.3. Is K×K a sw-homogeneous space?
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Mappings compatible with equivalence relations

Vladimir Izbash

Abstract

In the present paper we consider mappings compatible with
given equivalence relations and calculate their number.

Keywords: equivalence, mapping, binary relation, partition.

1 Introduction

In the theory of algebraic systems, congruences, i.e. equivalence rela-
tions which are compatible with operations from the signature of the
system, play an important role. For many algebraic systems, compat-
ibility of equivalence relations with respect to operations of algebraic
system is determined by its compatibility with some mappings on the
basic set of the system. This idea is used in [1] and [4]. Following the
ideas formulated in [4], we show how to build all applications that are
compatible with the given equivalence and evaluate the number of such
applications.

2 Definitions and notations

Relations and mappings. Any ordered triplet α = (A,B, Gα), where
Gα is a subset of the Cartesian product A×B is called a binary relation
between elements of the sets A and B, in that order. Often the relation
is identified by Gα, called the graph of this relation. Notations (a, b) ∈
α, (a, b) ∈ Gα, aαb are equivalent and express that a and b are in
the relation α. The inverse relation α−1 of the relation α is defined
by aαb ⇔ bα−1a. Denote by aα or (a)α the image of a, defined as

c©2014 by V. Izbash
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aα = {b ∈ B|aαb}. A binary relation α = (A,B,Gα) is called mapping
from A to B if and only if: a) aα 6= ∅,∀a ∈ A and b) aαb and aαc
implies b = c, which is equivalent to the fact that aα consists only of a
single element, which will be denoted allso by aα and called the value
of α in a. For mappings the common notation is α : A → B, a → aα. A
binary relation α = (A,A, Gα) is called a binary relation defined on A.

Relational algebra. The known Boolean operations: intersection −
∩, union − ∪, difference − \, complementarity denoted by ”−”, or {
are defined on binary relations between elements of sets A and B. Also
we say that α ⊆ β if and only if Gα ⊆ Gβ.

Composition of relations α = (A,B, Gα) and β = (C,D, Gβ) is
denoted by α ◦ β and defined by α ◦ β = (A,D,Gα◦β) :

∀a ∈ A,∀d ∈ D, a(α ◦ β)d ⇔ (∃b ∈ B ∩ C, aαb, bβd)

Any mapping ϕ : A → A, a → aϕ is a binary relation ϕ =
(A,A, Gϕ) with the graph Gϕ = {(a, aϕ)|a ∈ A}. Denote by iA the
mapping x → x from A to A, or the binary relation iA = (A,A, GiA)
by GiA = {(x, x)|x ∈ A}.
Equivalences and partitions. An equivalence relation defined on A
is a binary relation θ which is: reflexive (iA ⊆ θ); symmetric (θ ⊆ θ−1);
and transitive (θ ◦ θ ⊆ θ). In this case the image of aθ is called the
equivalence class generated by the element a, or θ− class and is denoted
usually by [a]θ. Two θ classes often coincide or do not intersect. The
set of all equivalence classes of θ is denoted by A/θ and is called the
factor set of θ. The factor set A/θ forms a partition Pθ of the set
A, i.e.: a) [a]θ 6= ∅,∀a ∈ A; b) [a]θ = [b]θ ⇔ aθb, ∀a, b ∈ A;
c)

⋃
a∈A[a]θ = A. If α : A → A is a mapping, then the relation

εα = (A, A,Gεα) Gεα = {(x, y)|xα = yα x, y ∈ A} is an equivalence
relation. The factor set of this equivalence relation is denoted by A/εα

and forms the partition Pεα .

Definition 1. Let α be a mapping and θ be an equivalence relation
defined on A. The mapping α is called compatible with θ (preserve
relation θ), if an only if aθb ⇒ (aα)θ(bα), for ∀a∀b ∈ A.
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3 Preliminary results

Proposition 1.[4] Let σ be a mapping defined on A and θ be an equiv-
alence relation defined on A. Then the following statements are equiv-
alent:
a) aθb ⇒ (aα)θ(bα), for ∀a∀b ∈ A.
b) σ−1 ◦ θ ◦ σ ⊆ θ;
c) if aθ = bθ, then a(σ ◦ θ) = b(σ ◦ θ), for ∀a,∀b ∈ A;
d) the correspondence σ : A/θ → A/θ, (aθ)σ = a(σ ◦ θ) is a mapping
on the set A/θ.

We note that the condition b) transfers calculations in the algebra
of binary relations and the condition c) suggests how to build mappings
compatible with the equivalence relation θ.

4 Main result

We show how to find all mappings that preserve an equivalence relation
and will calculate their number.

The following statements are true.

Proposition 2. For any mapping α and any equivalence relation θ
defined on the set A the equality a(α ◦ θ) = (aα)θ is true for ∀a ∈ A.

Proposition 3. For any equivalence relation θ defined on the set A and
any mapping γ : A/θ → A/θ defined on the set A/θ there is a mapping
σ defined on A and compatible with θ, such that (xθ)γ = (xθ)σ.

Proof. For each element Z ∈ A/θ choose one unic element mz ∈ Z.
Define the mapping σ : A → A, xσ = m(xθ)γ , for all x ∈ A. The
mapping σ is compatible with the equivalence θ. In fact, for x, y ∈ A
and xθy we have xθ = yθ and (xθ)γ = (yθ)γ. This means m(xθ)γ =
m(yθ)γ , so xσθyσ since θ is reflexive. It is easy to see that (xθ)γ =
(m(xθ)γ)θ = (xσ)θ = (xθ)σ. This means that γ = σ.
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So any mapping on the set A/θ can be obtained in the previously
indicated manner, from a mapping on the set A that preserves equiva-
lence θ. If the set A is finite, then we can evaluate the set of all map-
pings defined on A which preserves the equivalence relation θ. Namely,
the following theorem is true.

Theorem 1. Let A be a finite nonempty set, θ an equivalence relation
defined on A and n = |A/θ|, A/θ = {A1, A2, ..., An}. Then the following
equality

|Fθ(A)| =
∑

f∈Fn

( n∏

k=1

(
|Ak|

∑
i∈1,n,f(i)=k

|Ai|))
,

holds, where Fn is the set of all mappings defined on {1, 2, 3, ..., n}, and
Fθ(A) is the set of all mappings defined on A which preserve equiva-
lence θ.

Theorem 2. Mapping φ : Fθ(A) → F (A/θ), σφ = σ, ∀σ ∈ Fθ(A) is a
homomorphism.
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model completeness in the propositional

provability logic

Olga Izbaş, Andrei Rusu

Abstract

In the present paper we consider expressibility of formulas
in the provability logic GL and related to it questions of model
completeness of system of formulas. We prove the absence of
finite approximation relative to model completeness in GL.

Keywords: expressibility of formulas, model completeness,
provabilty logic, diagonalizable algebra.

1 Introduction

Artificial Intelligence (AI) systems simulating human behavior are of-
ten called intelligent agents. These intelligent agents exhibit somehow
human-like intelligence. Intelligent agents typically represent human
cognitive states using underlying beliefs and knowledge modeled in a
knowledge representation language, specifically in the context of deci-
sion making [1]. In the present paper we investigate some functional
properties of the underlying knowledge representation language of in-
telligent agents which are based on the provability logic GL [2].

The notion of expressibility of formulas was proposed in [6, 7]. In
the present paper we prove that the propositional provability logic of
Gödel-Löb (GL) is not finitely approximable relative to model com-
pleteness.

c©2014 by O. Izbaş, A. Rusu
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2 Definitions and notations

Provability logic. We consider the propositional provability logic
GL, the formulas of which are based on propositinal variables p, q, r, . . .
and logical connectives &,∨,⊃,¬, ∆, its axiomes are the classical ones
together with the following ∆-formulas:

∆(p ⊃ q) ⊃ (∆p ⊃ ∆q), ∆(∆p ⊃ p) ⊃ ∆p, ∆p ⊃ ∆∆p,

and the rules of inference are the rules of: 1) substitution; 2) the modus
ponens, and 3) the rule of necessity, which allows to get formula ∆A if
we already get formula A. The normal extensions of the propositional
provability logic GL are defined as usual [2].

Diagonalizable algebras. A diagonalizable algebra [4] is a uni-
versal algebra of the form A =<M ; &,∨,⊃,¬, ∆>, where <M ; &,∨,
⊃,¬ > is a boolean algebra, and the unary operation ∆ satisfies the
relations

∆(∆x ⊃ x) = ∆x, ∆(x&y) = (∆x&∆y), ∆1A = 1A,

where 1A is the unit of A, which is denoted also by 1 in case the
confusion is avoided.

Diagonalizable algebras are known to be algebraic models for prov-
ability logic and its extensions [5]. Obviously we can interpret any
formula of the calculus of GL on any diagonalizable algebra A. As
usual a formula F is said to be valid on A if for any evaluation of vari-
ables of F with elements of A the value of the formula on A is 1A. The
set of all valid formulas on A, denoted by LA, and referred to as the
logic of the algebra A, forms an extension LA of the provability logic
GL [5].

An extension L of GL is called tabular if there is a finite diagonal-
izable algebra A such that L = LA.

Expressibility and model completeness. The formula F (p1,
. . . , pn) is a model for the Boolean function f(x1, . . . , xn) if for
any ordered set (α1, . . . , αn), αi ∈ {0, 1}, i = 1, . . . , n, we have
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F (α1, . . . , αn) = f(α1, . . . , αn), where logical connectors from F are
interpreted in a natural way on the two-valued Boolean algebra [6, 7].

They say the formula F is expressible in the logic L via a system of
formulas Σ if F can be obtained from variables and Σ, applying finitely
many times 2 kinds of rules: a) the rule of weak substitution, b) the
rule of passing to equivalent formula in L [3].

The system of formulas Σ is called model complete in the logic L
if at least a model for every Boolean function is expressible via Σ in
the logic L. System Σ is model pre-complete in L if Σ is not model
complete in L but for any formula F which is not expressible in L via
Σ, the system Σ ∪ {F} is already model complete in L [8].

The logic L is finitely approximable with respect to model com-
pleteness if for any system of formulas Σ which is not model complete
in L there is a tabular extension of L in which Σ is model incomplete
too.

3 Main result

Now we are able to formulate the main result of the present work.

Theorem 1. The propositional provability logic GL is not finitely
approximable with respect to model completeness.

4 Conclusion

Taking into account our previous result [9] together with these new
findings we can conclude that traditional algorithm for determining
model completeness of systems of formulas in GL is impossible to find
out.
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Closure operators in R-Mod: the main

operations and their properties

Alexei Kashu

Abstract

The main operations in the class of all closure operators of
R-Mod are studied.

Keywords: category, module, closure operator.

Let CO be the class of all closure operators of a module category
R-Mod ([1, 2]). The main operations in CO are:

1) the meet
∧

α∈A

Cα, where
( ∧

α∈A

Cα

)
M

(N) =
⋂

α∈A

[(Cα)
M

(N)];

2) the join
∨

α∈A

Cα, where
( ∨

α∈A

Cα

)
M

(N) =
∑

α∈A

[(Cα)
M

(N)];

3) the product C ·D, where (C ·D)M (N) = CM

(
DM (N)

)
;

4) the coproduct C # D , where (C # D)M (N) = CDM (N)(N),

for any operators Cα (α ∈ A), C, D ∈ CO and any submodule N of
M ∈ R-Mod.

The properties of these operations are studied. In particular, the
following relations of distributivity are proved.

Theorem 1. For every family {Cα ∈ CO | α ∈ A} and D ∈ CO
the following relations are true:

( ∧

α∈A

Cα

) ·D =
∧

α∈A

(Cα ·D),
( ∨

α∈A

Cα

) ·D =
∨

α∈A

(Cα ·D);
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( ∧

α∈A

Cα

)
# D =

∧

α∈A

(Cα # D),
( ∨

α∈A

Cα

)
# D =

∨

α∈A

(Cα # D).

Theorem 2. a) If C ∈ CO is hereditary, then C #
( ∧

α∈A

Dα

)
=

=
∧

α∈A

(C # Dα);

b) If C ∈ CO is minimal, then C · ( ∨
α∈A

Dα

)
=

∨
α∈A

(C · Dα), for

every family {Dα | α ∈ A} ⊆ CO.

The other discussed question is the preservation of types of closure
operators when the studied operations in CO are applied.

Theorem 3. a) If Cα(α ∈ A) ⊆ CO are weakly hereditary (max-
imal, minimal, cohereditary), then the operator

∨
α∈A

Cα possesses the

respective property.
b) If C, D ∈ CO are maximal (minimal, cohereditary), then the

operator C ·D possesses the respective property.
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Generic Variational Principles in General

Topological Spaces

Petar Kenderov

Abstract
Consider a bounded from below lower semicontinuous real-

valued function f , defined in a completely regular topological
space X. Let Y be a set of bounded continuous real-valued func-
tions in X endowed with the topology of uniform convergence.
A variational principle for the pair (f, Y ) is any statement of the
type ”the set S(f) := {g ∈ Y : f + g attains its infimum in X} is
dense in Y ”. We give here sufficient conditions for the validity of
different types of variational principles for the case when Y coin-
cides with C∗(X), the space of all bounded continuous functions
on X. The presentation is based on the joint work with M. M.
Choban and J. P. Revalski published in [1].

Keywords: Topology, Variational principles, Optimization,
Topological games.

1 Introduction

The famous Bishop-Phelps theorem [3] seems to be the first variational
principle of this kind: The set of continuous linear functionals in a real
Banach space Z attaining their infimum on a closed bounded convex
set X ⊂ Z is dense in the dual Banach space Z∗. In this case f ≡ 0
and Y = Z∗. Other examples are the Ekeland variational principle [4],
Stegall variational principle [5], the smooth variational principles estab-
lished in [6] (by Borwein and Preiss) and in [7] ( by Deville, Godefroy
and Zizler). Further we restrict our considerations only to the case
when Y coincides with C∗(X), the space of all bounded continuous
functions on X.
c©2014 by P. Kenderov
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2 Variational principle for completely regular
topological spaces.

The topological spaces considered here are assumed to be completely
regular. A denotes the closure of the set A. It is assumed also that the
bounded from below lower semicontinuous function f may take +∞ as
value but the set dom (f) := {x ∈ X : f(x) < +∞} must be nonempty.
In the sequel such functions f will be called proper. The infimum of a
function f over the set A ⊂ X will be denoted by infA f .

The following statement, proved in [2], is in the base of our consid-
erations.

Proposition 1. Let the proper function f , the point x0 ∈ dom (f)
and the number ε > 0 satisfy the inequality f(x0) < infX f + ε. Then,
there exists a continuous function g ∈ C∗(X) such that −ε ≤ g(x) ≤ 0
for every x ∈ X and the function f + g attains its infimum at x0.

Corollary 1. Let f be a proper function. Then the set S(f) =
{g ∈ C∗(X) : f + g attains its infimum on X} is dense in C∗(X) and,
for every x0 ∈ dom (f) there exists g ∈ C∗(X) such that (f + g)(x0) =
infX (f + g) (i.e. x0 is a minimizer for the ”perturbed function” f +g).

Consider the set-valued mapping Mf which puts into correspon-
dence to each function g ∈ C∗(X) the (possibly empty) set of minimiz-
ers in X of the perturbed function f + g:

Mf (g) := {x ∈ X : (f + g)(x) ≤ (f + g)(y) ∀y ∈ X}.
Proposition 2. Let f be a proper function in X. Then:

(a) the graph Gr(Mf ) := {(g, x) ∈ C∗(X)×X : x ∈ Mf (g)} is closed
in the product topology in C∗(X)×X;

(b) for any two open sets U of C∗(X) and V of X such that
Mf (U) ∩ V 6= ∅, there is a nonempty open set U ′ ⊂ U for which
Mf (U ′) ⊂ V ;

(c) if (Un)n≥1 is a base of neighborhoods of g0 ∈ C∗(X), then
Mf (g0) = ∩nM(Un);
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3 Generic and almost generic variational prin-
ciples

We give here sufficient conditions under which the set S(f) contains
a dense Gδ-subset of C∗(X). In such a case the corresponding varia-
tional principle is called Generic variational principle. The variational
principle is called Almost generic, if the set S(f) is of the second Baire
category in every open subset of C∗(X). The sufficient conditions pre-
sented here for the validity of a generic (almost generic) variational
principle are in terms of a two-player topological game G(X) played
in the space X. This game was introduced by E. Michael [8] in the
study of completeness properties of metric spaces. Two players, which
are denoted by Σ and Ω, play a game in the topological space X in the
following way: Σ starts by choosing a nonempty subset A1 of X and
Ω makes his/her first move by choosing a nonempty relatively open
subset B1 of A1, i.e. B1 = A1 ∩W , where W is an open subset of X.
On the n-th stage, n ≥ 2, the player Σ chooses some nonempty set An

contained in the previous choice Bn−1 of Ω and Ω chooses a nonempty
relatively open subset Bn of An. Playing in this way the players gen-
erate an infinite sequence of sets {An, Bn}n≥1 which is called a play.
The player Ω is said to have won this play, if ∩nAn = ∩nBn 6= ∅. Oth-
erwise Σ wins. The notion of winning strategy for either of the players
is defined in the traditional (for the topological games) way.

Theorem 1. Let f be a proper function in X and player Ω has
a winning strategy in the game G(X). Then the set S(f) contains a
dense Gδ-subset of C∗(X).

Theorem 2. Let f be a proper function in X and player Σ does
not have a winning strategy in the game G(X). Then the set S(f) is
of the second Baire category in every open subset of C∗(X).
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Invariants of parastrophic equivalency

Rayisa Koval

Abstract

Some invariants of parastrophic equivalency of quasigroup
functional equations are found. The number of general quadratic
equations in n individual variables up to parastrophic equiva-
lency (namely, two if n = 2, three if n = 3 and eighteen if n = 4)
is established.

Keywords: quasigroup, functional equation, invariants,
parastrophic equivalence.

1 Introduction

Let Q be a set. An operation f is called a quasigroup if each of the
equations f(x; a) = b and f(a; y) = b has a unique solution for all a,
b ∈ Q. σ-parastrophe σf of f is defined by

σf(x1σ; x2σ) = x3σ :⇐⇒ f(x1; x2) = x3.

Two functional equations are called parastrophically equivalent [5] if one
of them can be obtained from the other by applying a finite number
of the renamings of individual or functional variables or parastrophic
transformations (replacement of a functional variable with its paras-
trophe and the corresponding permutation of subterms).

2 Invariants of parastrophic equivalency

An element e is called a left (right, middle) neutral element of an
operation f if the identity f(e; x) = x (correspondingly f(x; e) = x,
f(x;x) = e) is true.

c©2014 by R. Koval
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Proposition 1. Property “to have unilateral neutral element” is
an invariant under parastrophic equivalency.

We say that i-th component of solutions of functional equation
ω = υ has a property of neutrality, if i-th component of each solu-
tion of ω = υ has a left, right or middle neutral element. The number
of components in the solution of ω = υ, which have the property of
neutrality, will be called a characteristic of neutrality of the equation.

Proposition 2. Characteristic of neutrality is an invariant.

We say that i-th component of equation ω = υ has the property of
(commutative) group isotopy, if i-th component of each its solution is
isotopic to a (commutative) group. The number of such components is
a characteristic of (commutative) group isotopy.

Proposition 3. Characteristic of group isotopy is an invariant.

Proposition 4. Characteristic of commutative group isotopy is
an invariant.

Sequence (n1, n2, . . . , np) is called a type of functional equation if
for all s = 1, 2, . . . , p the number ns is equal to the number of minimal
parastrophically self-sufficient sub-terms in s individual variables.

Theorem 1. Type of a functional equation is an invariant.

Two collections (A;⊆) and (B;⊆) of subsets of sets A and B are
called strongly isomorphic, if there is a one-to-one correspondence ϕ
between the sets A and B, such that a correspondence ϕ′ defined by
ϕ′(x) := {ϕ(x) | x ∈ X}, is an isomorphism between ordered collections
(A;⊆) and (B;⊆).

Theorem 2. If two functional equations are parastrophically equiva-
lent, then their collections of parastrophically self-sufficient subsets of
individual variables are strongly isomorphic.

Corollary. The number of (minimal) parastrophically self suffi-
cient subsets of individual variables of a functional equation is invariant
under parastrophic equivalency.
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3 Classification of functional equations

Full classification of all general quadratic equations, which have two
and three individual variables was done in [3], namely, the following
theorems were proved.

Theorem 3. Each general quadratic functional equation in two in-
dividual variables is parastrophically equivalent to exactly one of the
equations F1(x; x) = F2(y; y), F1(x; y) = F2(x; y).

Theorem 4. Each general quadratic functional equation in three
individual variables is parastrophically equivalent to exactly one of the
equations

F1(F2(x; x);F3(y; y)) = F4(z; z),

F1(F2(x; y);F3(x; y)) = F4(z; z); F1(F2(x; y); z) = F3(F4(x; y); z).

Theorem 5. There exist eighteen general quadratic parastrophically
non-equivalent functional equations: two equations are irreducible (me-
diality and pseudo-mediality); four equations are parastrophically re-
ducible, but they have no self-sufficient sub-term and twelve functional
equations which have self-sufficient sub-terms.

A quasigroup functional equation

F1(F2(F3(x; y);F4(z; t));u) = F5(F6(F7(x; z);u);F8(y; t))

is parastrophically irreducible according to Krapez̆ and Z̆ivković’s def-
inition of parastrophical irreducibility [4] and according to Belousov’s
definition, but it is reducible according to Sokhatsky’s definition:
an equation is called reducible, if it has a non-trivial sequence of self-
sufficient sub-terms. Functional equation is called parastrophically re-
ducible, if it is parastrophically equivalent to a reducible equation.

Theorem 6. Each parastrophically irreducible quadratic functional
equation in five individual variables is parastrophically equivalent to
exactly one of the following functional equations

F1(F2(F3(x; y);F4(z; t));u) = F5(F6(F7(x; z);F8(y; u)); t),
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F1(F2(F3(x; y);F4(z; t));u) = F5(F6(F7(x; z); t);F8(y; u)),

F1(F2(F3(x; y);F4(z; t));u) = F5(F6(F7(x; u); z);F8(y; t)).

Acknowledgments. The author would like to expresses her sin-
cere thanks to Dr. Fedir Sokhatsky for suggesting the problem and for
attention to the article.
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About classification of quasigroups according to

symmetry groups

Halyna Krainichuk

Abstract

Necessary and sufficient conditions for a group isotopes to be
totally symmetric, commutative, left symmetric, right symmet-
ric, skew symmetric and asymmetric are defined. An identity
which describes a class of skew symmetric quasigroups is found.
The respective variety is not a subvariety of the variety of totally
symmetric quasigroups.

Keywords: qroup, quasigroup, isotope, totally symmetric,
(left, right, skew) symmetric, asymmetric, commutative, identity.

1 Introduction

A groupoid (Q; ·) is called a quasigroup if for all a, b ∈ Q every of
x · a = b and a · y = b has a unique solution. For every σ ∈ S3

σ-parastrophe (
σ·) is defined by

x1σ
σ· x2σ = x3σ ⇐⇒ x1 · x2 = x3.

A groupoid (Q; ·) is called an isotope of a groupoid (Q; +), if and only
if there exists a triple (α, β, γ) of bijections, called an isotope such that
the relation x ·y := γ−1(αx+βy) holds. An isotope of a group is called
a group isotope.

Many authors consider classification of quasigroups according to
the number of their different parastrophes (see, for example, [2], [1]).
But as it was shown in [3] the number depends on the symmetry

c©2014 by H. Krainichuk
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group Sym(·) of a quasigroup (Q; ·). Since Sym(·) is a subgroup of
the symmetric group S3 := {ι, `, r, s, s`, sr}, where s := (12), ` := (13),
r := (23), then there are six classes of quasigroups according to the
classification:

• totally symmetric, if Sym(·) = S3 it is described by laws xy = yx
and x · xy = y, all parastrophes coincide;

• skew symmetric or semi-symmetric, if Sym(·) ⊇ A3 it is described
by x · yx = y, all parastrophes coincide with (Q; ·) or (Q;

s·);
• commutative, if Sym(·) ⊇ {ι, s} it is described by xy = yx, all

parastrophes coincide with (Q; ·) or (Q;
`·) or (Q;

r·);
• left symmetric, if Sym(·) ⊇ {ι, r} it is described by x · xy = x, all

parastrophes coincide with (Q; ·) or (Q;
`·) or (Q;

s·);
• right symmetric, if Sym(·) ⊇ {ι, `} it is described by xy · y = y,

all parastrophes coincide with (Q; ·) or (Q;
s·) or (Q;

r·);

• asymmetric, if Sym(·) = {ι}, all parastrophes are different.

The following problem is natural:

In every of these classes to describe a subclass of group isotopes.

Partial answer was given in [1].

2 Isotopes of groups

Theorem 1. A group isotope (Q; ·) is totally symmetric if and only
if there exists a commutative group (Q; +) and an element a such that
x · y = −x− y + a.

Theorem 2. A group isotope (Q; ·) is skew symmetric if and only if
there exists a group (Q; +), its anti-automorphism α and an element
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a ∈ Q such that x · y = αx+a+α−1y and α3 = I−1
a J , αa = −a, where

J(x) := −x and Ia(x) := −a + x + a.

Theorem 3. A quasigroup (Q; ·) satisfies the identity xy = (y ·xz)·z if
and only if there exists a group (Q; +) of exponent 2, its automorphism
α and an element a ∈ Q such that x · y = αx + a + α−1y and α3 = ι,
αa = −a.
Corollary. Every quasigroup (Q; ·) which satisfies the identity xy =
(y · xz) · z is skew symmetric.

A variety of quasigroups (Q; ·) satisfying xy = (y · xz) · z is not
a subvariety of the variety of totally symmetric quasigroups because
(Q; ·), which is defined by x ·y := 3x+5y over Z7, satisfies the identity
xy = (y · xz) · z and is not commutative.

Theorem 4. A group isotope (Q; ·) is commutative if and only if there
exists a commutative group (Q; +), a unitary permutation α and an
element a ∈ Q such that x · y = αx + αy + a.

Theorem 5. A group isotope (Q; ·) is left symmetric if and only if
there exists an abelian group (Q; +) and a permutation α such that
x · y = αx− y.

Theorem 6. A group isotope (Q; ·) is right symmetric if and only
if there exists an abelian group (Q; +) and a permutation β such that
x · y = −x + βy.

Theorem 7. A group isotope (Q; ·) is asymmetric if and only if there
exists a group (Q; +), unitary permutations α, β and an element a ∈ Q
such that x ·y = αx+a+βy holds and α 6= β, α 6= β−1, α 6= J , β 6= J ,
where α0 = β0 = 0.

3 Conclusion

In this paper varieties of symmetric, commutative, left symmetric, right
symmetric, skew symmetric and asymmetric group isotopes are de-
scribed. An identity which describes a class of skew symmetric quasi-
groups is found. This variety is not a subvariety of the variety of totally
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symmetric quasigroups. This is a solution of Fedir Sokhatsky’s problem
(see [4]).

Acknowledgments. The author would like to expresses her sin-
cere thanks to Dr. Fedir Sokhatsky for suggesting the problem and for
attention to the work.
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Autotopies and automorphisms of distinguished

loop transversal in a sharply 2-transitive

permutation group

Eugene Kuznetsov

Abstract

The properties of one distinguished loop transversal in a
sharply 2-transitive permutation group are investigated. The
groups of automorphisms and all autotopies of loop transversal
mentioned above are studied.

Keywords: transversal, loop transversal, automorphism, au-
totopy, permutation group.

1 Introduction

Sharply 2-transitive permutation groups on a finite set of symbols were
described by Zassenhaus in [1, 2]. He proved (see [4]), that sharply 2-
transitive permutation group G on a finite set of symbols E is a group
G∗ of linear transformations of some near-field < E,+, • >:

G∗ = {αa,b | αa,b(t) = a · t + b, a 6= 0, a, b, t ∈ E}.
In the case when the set E is infinite, the problem of description of

sharply 2-transitive permutation groups on E is still opened. Some in-
vestigations in this direction were pursued in [5, 6]. The same problem
was formulated by Mazurov in [7], problem 11.52.

In this work the author studies this problem by the help of transver-
sals in groups and their invariant transformations.

c©2014 by E. Kuznetsov

116



Autotopies and automorphisms of distinguished loop transversal ...

2 A partition on cases

Let G be a sharply 2-transitive permutation group on an arbitrary
set E.

Lemma 1. All elements of order 2 from G are in one and the same
class of conjugate elements.

Proof. It was given in [4].

Since G is a sharply 2-transitive permutation group, then only the
identity permutation id fixes more than one symbol from E. So we
obtain the following two cases:

Case 1. Every element of order 2 from G is a fixed-point-free
permutation on E.

Case 2. Every element of order 2 from G has exactly one fixed
point from E.

Lemma 2. Let α and β be distinct elements of order 2 from G. Then
the permutation γ = αβ is a fixed-point-free permutation on E.

Proof. It was given in [4].

Let 0 be some distinguished element from E. Denote H0 = St0(G).

3 A loop transversal in group G and its prop-
erties

Lemma 3. The following properties are true for the group G:

1. In both cases 1 and 2 there exists a left transversal T in G to H0,
which consists from id and fixed-point-free permutations;

2. Transversal T is a normal (invariant) subset in the group G;

3. Set T is a loop transversal in G to H0, and the corresponding
transversal operation < E, ·, 0 > is a loop.
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Proof. It was given in [3].

In this report the following results are shown.

Theorem 1. The following properties are fulfilled on < E, ·, 0 >:

1. The system < E, ·, 0 > is a left G-loop.

2. The system < E, ·, 0 > is a left special loop.

Proof. In the case 1 it was given in [3].

Theorem 2. Automorphism group Aut (< E, ·, 0 >) contains a sharply
transitive subgroup Aut0 such that Aut0 ' H0.

Theorem 3. Group of autotopies Avt (< E, ·, 0 >) contains a sharply
2-transitive subgroup Avt0 such that Avt0 ' G or system < E, ·, 0 > is
a group.
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A loop which can be presented as a semidirect

product of two groups

Eugene Kuznetsov

Abstract

In this work an example of right Bol loop, which can be con-
sidered as a semidirect product of two groups, is given.

Keywords: transversal, loop transversal, semidirect prod-
uct.

1 Introduction

A construction of a semidirect product of two algebraic systems in
general case is a conversion of a construction of factorisation of one al-
gebraic object by its suitable subobject. A construction of a semidirect
product of two algebraic systems is well known as for groups (stan-
dard semidirect product) as for loops and suitable permutation groups
(Sabinin’s product [2]). The result of this product is always a group. So
it would be very interesting to generalize a construction of semidirect
product on a class of loops such that the result of the product would
be a non-associative loop.

Some investigations in this brunch can be found in [3], [4], [5].

2 A transversal in loop to its suitable subloop

A semidirect product of a left loop and suitable permutation group
is a conversion of a construction of left transversal in a group to its

c©2014 by E. Kuznetsov
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subgroup (see [1], [2]). So in order to construct a semidirect product
of a left loop and suitable loop it is necessary to study a construction
of left transversal in a loop to its suitable subloop. It was done by the
author in [6].

In order to define correctly the notion of a left transversal in a loop
to its proper subloop, it is necessary that the following condition be
fulfilled.

Definition 1. (Left Condition A) A product at the left of an arbi-
trary element a of a loop L on an arbitrary left coset Ri of a loop L by
its proper subloop R is a left coset of the loop L by its proper subloop
R too, i.e. for every a, b ∈ L there exists an element c ∈ L such that

a(bR) = cR. (1)

Definition 2. ([1]) Let 〈L, ·, e〉 be a loop, 〈R, ·, e〉 be its subloop and a
left Condition A is fulfilled. Let {Rx}x∈E is a set of all left cosets
in L to R that form a left coset decomposition of the loop L. A set
T = {tx}x∈E ⊂ L is called a left transversal in L to R if T is a
complete set of representatives of the left cosets Rx in L to R, i.e. there
exists a unique element tx ∈ T such that tx ∈ Rx for every x ∈ E (we
assume that t1 = e).

Theorem 1. There exists an example of the right Bol loop L of order
8 such that the following conditions hold:

1. There exists the subgroup R of order 2 in the loop L;

2. A left Condition A is fulfilled for the loop L and its subloop R;

3. There exists the transversal T in L to R such that the transversal
operation 〈E,

(T )· , 1〉 is a group of order 4.

As a construction of left transversal in a loop to its suitable subloop
can be potentially converted by the help of a construction of semidirect
product of a left loop and suitable permutation loop, so the Bol loop
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mentioned above may be represented as a semidirect product of two
groups. So the last theorem may be reformulated by the following way.

Theorem 2. There exist two finite groups: a cyclic group R of order
2 and non-cyclic abelian group T of order 4 such that the following
conditions hold:

1. There exists a loop L of order 8 which contains a subgroup R′

isomorphic to the group R;

2. A left Condition A is fulfilled for the loop L and its subloop R′;

3. There exists the transversal T ′ in L to R′ such that the transversal
operation 〈E,

(T ′)· , 1〉 is a group isomorphic to the group T ;

4. The loop L may be represented as a “semidirect” product of two
groups R and T .
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Weakly prime rings

Volodymyr Kyrychenko

Abstract

The communication contains some results on weakly prime
rings.

Keywords: ideal, weakly prime ring, quiver.

1 Preliminary results

Main definition. A ring A is called weakly prime if the product of
any two nonzero ideals not contained in R is nonzero, where R is the
Jacobson radical of a ring A [1].

Proposition 1. If e is a nonzero idempotent of a weakly prime ring,
then eAe is weakly prime.

2 Main results

Main theorem for weakly prime semiperfect rings. Let 1 =
e1 + . . . + en be a decomposition of the unity of a semiperfect ring A
into a sum of mutually orthogonal local idempotents and Aij = eiAej

(i, j = 1, . . . , n). The ring A is weakly prime if and only if Aij 6= 0 for
(i, j = 1, . . . , n).

Theorem 1. The quiver Q(A) of a weakly prime semiperfect Noethe-
rian ring A is strongly connected.

Theorem 2. Let A be a tiled order, then the quotient ring B = A/πA
is weakly prime Noetherian and semiperfect.

c©2014 by V. Kyrychenko
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Theorem 3. Let Q be an arbitrary simply laced quiver without loops.
There exists a weakly prime semidistributive Artinian ring B such that
Q(B) = Q.

Theorem 3. For any simply laced quiver Q with n vertices and without
loops and for any field k there exists a weakly prime semidistributive
n2-dimensional algebra B over k such that Q(B) = Q.
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Univ. of Techn., Czȩstochowa, 2011.
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On recursive differentiability of binary

quasigroups

Inga Larionova-Cojocaru, Parascovia Syrbu

Abstract

A quasigroup is called recursively n-differentiable if its first
n recursive derivatives are quasigroups. The class of recursively
differential quasigroups is arisen in the theory of MDS codes, in
early 2000. Connections between recursive derivatives of different
order are found in the present work. It is shown that isomorphic
quasigroups have isomorphic recursive derivatives of any order.
Also, it is proved that, if the recursive derivative of order one of
a finite quasigroup (Q, ·) is commutative, then its group of inner
mappings is a subgrup of the group of inner mappings of (Q, ·),
of the same index as their corresponding multiplication groups.

Keywords: recursively differential quasigroup, recursive
derivative, the group of inner mappings.

If (Q, ·) is a binary quasigroup, then the operations (
i·), defined as

follows:
x

0· y = x · y, x
1· y = y · (x 0· y), x

2· y = (x
0· y) · (x 1· y), . . . ,

x
n· y = (x

n−2· y) · (x n−1· y),
∀n ≥ 2, and ∀x, y ∈ Q, are called the recursive derivatives of the op-
eration (·), or of the quasigroup (Q, ·). A quasigroup (Q, ·) is called
recursively n-differentiable if its first n recursive derivatives are quasi-
group operations. The notions of recursive derivative and recursively
differentiable quasigroup arose in the theory of recursive MDS (maxi-
mum distance separable) codes [2]. The recursive derivatives of a quasi-
group are not always quasigroups. A necessary and sufficient condition
when a finite abelian group is recursively s-differentiable is given in [3],

c©2014 by I. Larionova-Cojocaru, P. Syrbu
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for an arbitrary positive integer s. It is known that there exist recur-
sively 1-differentiable finite quasigroups of order q, for every integer q,
excepting q = 6 and possibly q 6= 14, 18, 26 (see [2,3]). Connections be-
tween recursive derivatives of different order are found in the present
work. We show that isomorphic quasigroups have isomorphic recur-
sive derivatives of any order and that the group of automorphisms of
a quasigroup is a subgroup of the group of automorphisms of all its
recursive derivatives. Also, it is proved that, if the recursive deriva-
tive (Q, ◦) of order one of a finite quasigroup (Q, ·) is commutative,
then its group of inner mappings is a subgroup of the group of in-
ner mappings of (Q, ·) (with respect to the same element h ∈ Q) and
|M(Q, ·) : M(Q, ◦)| = |I(·)

h : I
(◦)
h |.

Proposition 1. Let (Q, ·) be a binary groupoid and n ≥ 2 be a
fixed positive integer. Then, for ∀j = 1, . . . , n − 1 and for ∀x, y ∈ Q,
the following equality holds:

x
n· y = (x

j−1· y)
n−j−1· (x

j· y). (1)

Proof. We will use the mathematical induction. If n = 2, then j = 1
and: x

2· y = (x
0· y)

0· (x
1· y), ∀x, y ∈ Q. Suppose that (1) is true

for all natural numbers 2 ≤ n ≤ k. Then, for n = k + 1, we get:

x
k+1· y = (x

k−1· y)
0· (x k· y) =

[(x
j−1· y)

(k−1)−(j+1)· (x
j· y)]

0· [(x j−1· y)
k−(j+1)· (x

j· y)] =

(x
j−1· y)

(k+1)−(j+1)· (x
j· y). 2

Proposition 2. Let (Q, ·) be a binary groupoid. Then, for every
positive integer n and ∀x, y ∈ Q, the following equality holds:

x
n· y = y

n−1· (x
0· y) (2)

Proof. We will use the mathematical induction. If n = 1, then x
1· y =

y
0· (x 0· y). Suppose that the equality (2) is true for all positive integers

n ≤ k. Then, for n = k + 1, we get:
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x
k+1· y = (x

k−1· y)
0· (x k· y) =

= [y
k−2· (x

0· y)]
0· [y k−1· (x

0· y)] = y
k· (x 0· y),

for every x, y ∈ Q. 2

Proposition 3. If two binary quasigroups (Q, ·) and (Q1, ◦) are
isomorphic, then their recursive derivatives (Q,

n·) and (Q1,
n◦) are iso-

morphic, for every natural n.
Proof. If ϕ is an isomorphism from (Q, ·) to (Q1, ◦), then ϕ(x

1· y) =

ϕ[y · (x · y)] = ϕ(y) ◦ (ϕ(x) ◦ ϕ(y)) = ϕ(x)
1◦ ϕ(y), ϕ(x

2· y) = ϕ[(x · y) ·
(x

1· y)] = [(ϕ(x) · ϕ(y)) · (ϕ(x)
1· ϕ(y))] = ϕ(x)

2◦ ϕ(y), ..., ϕ(x
n· y) =

ϕ[(x
n−2· y) · (x n−1· y)] = (ϕ(x)

n−2◦ ϕ(y)) ◦ (ϕ(x)
n−1◦ ϕ(y)) = ϕ(x)

n◦ϕ(y),
∀x, y ∈ Q, i.e. ϕ is an isomorphism from (Q,

n·) to (Q1,
n◦). 2

Proposition 4. If (Q, ·) is a quasigroup, then Aut(Q, ·) is a sub-
group of Aut(Q,

n·), for every natural n.

Proof. Let ϕ ∈ Aut(Q, ·). Then ϕ(x
1· y) = ϕ(y · (x · y)) = ϕ(y) ·

(ϕ(x) · ϕ(y)) = ϕ(x)
1· ϕ(y). So Aut(Q, ·) ≤ Aut(Q,

1·). Now, suppose

that Aut(Q, ·) ≤ Aut(Q,
i·), ∀i = 0, 1, ..., n− 1. Then,

ϕ(x
n· y) = ϕ((x

n−2· y) · (x n−1· y)) = ϕ(x
n−2· y) · ϕ(x

n−1· y) =

(ϕ(x)
n−2· ϕ(y)) · (ϕ(x)

n−1· ϕ(y)) = ϕ(x)
n· ϕ(y),

hence Aut(Q, ·) ≤ Aut(Q,
n·), for every natural number n. 2

Let (Q, ·) be a quasigroup and let M(Q, ·) be its multiplication
group. Following [1], we will denote the group of inner mappings of
(Q, ·), with respect to an element h ∈ Q, by I

(·)
h .

Proposition 5. If (Q, ·) is a quasigroup with a commutative re-
cursive derivative (Q, ◦) of order one, then I

(·)
h is a subgroup of I

(◦)
h .

Proof. So as R
(◦)
x (y) = y ◦ x = x · (y · x) = L

(·)
x R

(·)
x (y), ∀x, y ∈ Q,

we get that RM(Q, ◦) ⊆ M(Q, ·). If the recursive derivative (Q, ◦)
is commutative, then M(Q, ◦) = RM(Q, ◦) ⊆ M(Q, ·). So I

(◦)
h =

M(Q, ◦)h ≤ M(Q, ·)h = I
(·)
h , where M(Q, ◦)h (resp. M(Q, ·)h) is the

centralizer of h in M(Q, ◦) (resp., in M(Q, ·)). 2
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Corollary. If (Q, ·) is a finite quasigroup with a commutative
recursive derivative (Q, ◦) of order one, then

|M(Q, ·) : M(Q, ◦)| = |I(·)
h : I

(◦)
h |.

Proof. According to the previous proposition, if the recursive deriva-
tive (Q, ◦) of order one is commutative, then I

(◦)
h is a subgroup of

I
(·)
h and M(Q, ◦) is a subgroup of M(Q, ·). Now, using the equality
|M(Q, ·)| = |Q| · |I(·)

h |, we have:

|Q| = |M(Q,·)|
|I(·)

h | = |M(Q,◦)|
|I(◦)

h | ⇒ |M(Q,·)|
|M(Q,·)| = |I(◦)

h |
|I(◦)

h | ,

which implies |M(Q, ·) : M(Q, ◦)| = |I(·)
h : I

(◦)
h |. 2
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The minor groups of 6̄-symmetry, generated by

tablet groups

Alexandru Lungu

Abstract

In this paper all possible minor groups of 6̄-symmetry which
are generated by the discrete tablet groups are drawn and are
described.

Keywords: generalized symmetries, groups, right quasi-
homomorphisms.

1 Introduction

The theory of symmetry of the real crystals gives rise to new general-
izations of classical symmetry: the Shubnikov’s antisymmetry, the mul-
tiple antisymmetry, the Belov’s colour symmetry, the magnetic sym-
metry, the Zamorzaev’s P -symetry [1], the cryptosymmetry, e.t.c. We
shall discuss briefly the essence of the P -symmetry [2-4].

2 General theory

Let P be a finite, transitive group of permutations on the set N =
{1, 2, ...,m} and let G be the discrete symmetry group of a geometrical
figure F . The ”indexes” r of the set N have a non-geometrical nature.
Ascribe to each point M of the FG-domain Fi (to each fixed i) at least
one ”index” r from the set N . We obtain an ”indexed” geometrical
figure F (N). Let the ”indexes” r from the set N be homogeny oriented
magnitudes (vectors, tensors) and they are rigidly connected with the
points.

c©2014 by A. Lungu
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The transformation of P -symmetry is an isometric mapping g(p) =
pg of F (N) onto itself in which the geometrical component g operates
both on points and on ”indexes” by the given rule, which does not
depend on the points, but the permutation p is only a supplementary
permutation of ”indexes” which maps F (N) onto itself and p ∈ P .
The components p and g of the transformation g(p), in general, do not
commute: pg 6= gp, that is why p 6= gpg−1.

The set G(P ) of transformations of P -symmetry of any ”indexed”
figure F (N) forms a group with the operation g

(pi)
i ∗ g

(pj)
j = g

(pk)
k ,

where gk = gigj , pk = pigipjg
−1
i . The groups G(P ) of P -symmetry

are subgroups, which verify certain conditions, of the right semi-direct
products of the defining group P with the generating group G, accom-
panied by a homomorphism ϕ : G → AutP , where Kerϕ = H and
G/H ∼= Φ ≤ AutP . The set P ′ = {p|g(p) ∈ G(P )} is a subset of the
group P . Moreover, e ⊆ P ′ ⊆ P .

Let us have two groups G and P and a homomorphism ϕ : G →
AutP . The mapping ψ of the group G onto the subset P ′ of the group
P , defined by the rule ψ(g) = p, is called a right quasi-homomorphism
if, for any gi and gj from G,

ψ(gigj) = ψ(gi)
⇀
ϕgi [ψ(gj)] = pi

⇀
ϕgi (pj) = pk, (1)

where pi, pj , pk ∈ P ′,
⇀
ϕgi= ϕ(gi) and

⇀
ϕgi (pj) = gipjg

−1
i . The mapping

ϕ is called the accompanying homomorphism of right conjugation.
If ψ is a right quasi-homomorphism, in general, the image of G

ψ(G) = P ′ ⊂ P is not a group, but P ′ always contains the unit of
the group P . The kernel H of the right quasi-homomorphism ψ of the
group G into the group P is a subgroup in G; the index of this subgroup
coincides with the order of ψ(G) = P ′.

Let G(P ) be a group of P -symmetry with the defining group P ,
generating group G, the subset P ′ = {p|g(p) ∈ G(P )}, the kernel H of
accompanying homomorphism ϕ : G → AutP , the symmetry subgroup
H ′ (H ′=G(P )

⋂
G) and the subgroup Q of P -identical transformations

(Q=G(P )
⋂

P ′= G(P )
⋂

P ). Then: 1) the mapping ϕ of the group
G(P ) onto the generating group G, defined by the rule ϕ[g(p)] = g, is a
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homomorphism with the kernel Q; 2) the group G(P ) contains, as its
subgroup, a group H(P ) of P -symmetry (which is determined by initial
defining group P of permutations) with the symmetry subgroup H

′′
=

H
⋂

H
′
and with the same subgroup Q of P -identical transformations.

Moreover, if P is a finite group of permutations, then
⇀
ϕg (Q) =

p−1Qp, where g and p are components of the transformation g(p) from
G(P ).

3 A method of deducing minor groups

A group G(P ) of P−symmetry is called a minor group if it satisfies the
following conditions: e = Q < P ′ = P .

The minor groups of P−symmetry are derived from the groups P
and G, when the kernel H of accompanying homomorphism ϕ is known,
by the following steps: 1) we find in G all proper subgroups H ′ with
the index equal to the order of P and for which there is an isomorphism
χ of the quotient-group H/H ′′ to P ′′ (χ : H/H ′′ → P ′′ defined by the
rule χ(hH ′′) = p), where e ≤ P ′′ ≤ P and H ′′ = H ′ ∩ H; 2) we
construct a right quasi-homomorphism ψ of the group G onto P by the
rule ψ(gH ′) = p, and which preserves the correspondence between the
elements of H and P ′′, defined by the isomorphism χ; 3) we combine
pairwise each g′ of gH ′ with p = ψ(g′); 4) we introduce on the set of
all these pairs the operation pigi∗pjgj = pkgk, where gk = gigj , pk = pi
⇀
ϕgi (pj),

⇀
ϕgi= ϕ(gi) and

⇀
ϕgi (pj)=gipjg

−1
i .

For the minor groups of P -symmetry the polynomial symbols
are elaborated. These symbols describe their structure. Namely:
G|H ′[(P, Pi)|P ′′; H/H ′′′/H ′′], where G is the generating group of clas-
sical symmetry, H ′ is the subgroup of symmetry, (P, Pi) is the symbol
of the defining group P with the stationary subgroup Pi (we use the
symbols of Schonflies for the crystallographic point groups isomorphic
to them), the set P ′′ = {p|g(p) ∈ H(P )} is a subgroup of the group
P , H/H ′′′/H ′′ is the trinomial symbol of the subgroup H(P ) of P -
symmetry. Remark that H/H ′′ ∼= P ′′ and H ′′′/H ′′ ∼= P

′
i (= Pi ∩ P ′′).
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4 Conclusion

From the 31 crystallographic tablet generating groups G we obtained
118 different minor groups of 6̄-symmetry (P ∼= C6), only 21 of which
are nonequivalent groups.
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Provably Sender-Deniable Encryption Scheme

N.A. Moldovyan, A.A. Moldovyan, V.A. Shcherbacov

Abstract

The use of the well known provably secure public-key cryp-
toscheme by Rabin is extended for the case of the deniable en-
cryption. In the proposed new sender-deniable encryption scheme
the cryptogram is computed as coefficients of the quadratic con-
gruence, roots of which are two simultaneously encrypted texts.
One of the texts is a fake message and the other one is the cipher-
text produced by the public-key encryption of the secret message.
The proposed deniable encryption method produces the cipher-
text that is computationally indistinguishable from the ciphertext
produced by some probabilistic public-key encryption algorithm
applied to the fake message.

Keywords: cryptography, ciphering, deniable encryption,
public key, public encryption, probabilistic encryption

1 Introduction

The article [1] introduces the notion of public-key deniable encryption
as cryptographic primitive that resist the attacks performed by the co-
ercive adversary that intercepts the ciphertext and has power to force
sender, receiver, or the both parties to open the ciphertext and disclose
the encryption key and the random values used while encrypting the
plaintext. There are considered sender-deniable [2], receiver-deniable
[3], and sender- and- receive-deniable (bi-deniable) [4] schemes in which
coercive adversary attacks the party sending message, the party re-
ceiving message, and the both parties, respectively. The encryption
is deniable if the sender or/and receiver have possibility not to open
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the secret message, i.e. to lie, and the coercer is not able to disclose
their lie. In particular the public-key encryption protocol (algorithm)
is called sender-deniable, if the sender is able to disclose the fake plain-
text and the fake random value that defines transformation of the fake
plaintext into the cipher text intercepted by the adversary with using
the receiver’s public key. One of important problems relating to the
deniable encryption schemes is justifying their deniability [5].

The present paper proposes a new sender-deniable encryption
scheme that has provable deniability. The scheme is based on using
the computational indistinguishability between the deniable encryption
procedure and the probabilistic ciphering of the fake message.

2 A new method for public-key encryption

In the proposed public-key encryption method it is used computational
difficulty of finding square roots modulo composite number n = pq,
where p and q are two strong primes composing the private key, like
in the Rabin public-key cryptoscheme [6]. The value n represents the
public key. If the values x1 and x2 are roots of the quadratic congruence
x2 − Ax + B ≡ 0 modulo n, then this polynomial can be written as
(x − x1)(x − x2), i.e. x2 − Ax + B ≡ (x − x1)(x − x2) ≡ x2 − (x1 +
x2)x + x1x2 mod n, A ≡ (x1 + x2) mod n and B ≡ x1x2 mod n.

Thus, if it is required that two messages R and Z to be roots of
some quadratic congruence, the coefficients should be given as follows
A = (R + Z) mod n and B = RZ mod n.

The last two formulas define an encryption procedure of simultane-
ous encryption of the messages R and Z, which output the cryptogram
in the form of the pair of numbers (A,B). Decryption of the cryp-
togram C = (A,B) can be performed as solving the following quadratic
congruence

x2 −Ax + B ≡ 0 mod n. (1)

Congruence (1) can be solved using the secret key (p, q) in the following
way. The following two congruences are solved: x2−Ax+B ≡ 0 mod p
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and x2 − Ax + B ≡ 0 mod q, each of which has two roots. The roots
of the first congruence are the following two values:

xp1 = A
2 +

√
A2

4 −B mod p and xp2 = A
2 −

√
A2

4 −B mod p.

The roots of the second congruence have the following two values:

xq1 = A
2 +

√
A2

4 −B mod q and xq2 = A
2 −

√
A2

4 −B mod q.

Four roots X1, X2, X3, and X4 of the congruence (1) are computed as
solutions of the following four systems of linear congruences:

{
X1 ≡ xp1 mod p
X1 ≡ xq1 mod q,

{
X2 ≡ xp1 mod p
X2 ≡ xq2 mod q,

{
X3 ≡ xp2 mod p
X3 ≡ xq1 mod q,

{
X4 ≡ xp2 mod p
X4 ≡ xq2 mod q.

In accordance with the Chinese remainder theorem these systems
have the following four solutions, respectively:

X1 = (xp1q(q−1 mod p) + xq1p(p−1 mod q)) mod n,

X2 = (xp1q(q−1 mod p) + xq2p(p−1 mod q)) mod n,

X3 = (xp2q(q−1 mod p) + xq1p(p−1 mod q)) mod n,

X4 = (xp2q(q−1 mod p) + xq2p(p−1 mod q)) mod n.

Evidently, two of the four roots X1, X2, X3, and X4 are equal to
values Z and R. Two other roots represent random values that are to
be discarded.

3 Deniable encryption and associated proba-
bilistic ciphering

The encryption scheme described in the previous section can be used
as deniable encryption method. For this purpose the sender of the
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secret message T is previously to generate a fake message (the message
planned for presenting to the coercive attacker) and then, using the
public key n of the receiver, to compute the pseudorandom value R =
T 2 mod n and to encrypt simultaneously the values M and R. In such
encryption method it is supposed that only the receiver has possibility
to compute the value T from the value R using his private key (p, q).
It is so if the secret message T is sufficiently large, for example n
mod 2128 < T < n. In the case of short secret messages, for example
n1/2 < T < 220n1/2 finding T from R without knowing the secret key
(p, q) takes about 240 multiplication operations. To provide possibility
to encrypt short secret messages one can propose the following modified
formula for computing the value R from the value T : R = (n − T )2

mod n. In its turn to provide more secure encryption of the message
M it is defined the second root of the considered quadratic congruence
in the form Z = (R−M) mod n.

Thus, we have come to the following deniable encryption protocol
with using receiver’s public key n which includes the following steps:

1. It is computed the pseudorandom value R = (n− T )2 mod n.
2. It is formed the fake message M .
3. It is computed the value A = (2R−M) mod n.
4. It is computed the value B = R(R−M) mod n.
5. The ciphertext C = (A,B) is sent to the receiver via a public

communication channel.
The receiver performs the decryption procedure as follows:
1. The receiver using his private key (p, q) computes four roots

X1, X2, X3, and X4 of the congruence x2 −Ax + B ≡ 0 mod n.
2. He computes the values M1,M2,M3, and M4 using the formula

Mi = (2Xi −A) mod n(i = 1, 2, 3, 4).
3. He rejects three random messages from the set {M1,M2,M3,M4}.

Let the fourth (sensible) message to represent the message M .
4. Then the receiver using his private key (p, q) computes the value

R = (M + A)/2 mod n and four quadratic roots S1, S2, S3, and S4

from R modulo n.
5. He discloses the secret message computing the values Ti = (n−
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Si) mod n, where i = 1, 2, 3, 4, and selecting the sensible message T
from the set {T1, T2, T3, T4}.

Distinguishing the pseudorandom value R from a random choice
is computationally infeasible without knowing the private key of the
receiver of the message. Therefore the sender, while being coerced, can
reasonably invoke to the use of the following probabilistic public-key
encryption algorithm for enciphering the fake message M :

1. Generate random value Rφ < n.
2. Compute the value A = (2Rφ −M) mod n.
3. Compute the value B = Rφ(Rφ −M) mod n.
The last algorithm (that can be called the associated probabilistic

public-key encryption algorithm) outputs the same ciphertext C =
(A,B) as the described above deniable encryption algorithm, if Rφ = R
is send to the receiver via a public communication channel.

4 Discussion and conclusion

Since the value R is computed as squaring the value n−T modulo n, it
looks like a random choice. Therefore the sender of the cryptogram C =
(A,B) can claim that the cryptogram is the result of the probabilistic
public-key encryption of the message M while using the public key n
and the random value R. When being coerced the sender provides to
the attacker the message M and value R. The coercer encrypts the
message M using receiver’s public key and value R as random choice.
The encryption procedure produces the cryptogram C that has been
intercepted previously by the coercer. To argue that the value R is
not a random choice, the coercive attacker has to compute at least
one quadratic root (modulo n) from the value R. The last problem
is computationally infeasible since finding quadratic roots modulo n
is as difficult as factoring the value n [6]. Thus, the attacker has no
possibility to detect that the value R is not random, and to disclose
the lie of the sender is as difficult as factoring problem. The proposed
sender-deniable encryption protocol is provably deniable.

One can consider the proposed protocol and the associated public-
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key encryption algorithm as some extensions of the Rabin public-key
encryption system [6] in which the public key represents the pair of in-
tegers n and b < n. The private key is the pair of primes p and q such
that n = pq. Using the public key (n, b) the message M < n can be
encrypted by some sender as computing the cryptogram C = M(M +b)
mod n. Using the private key (p, q) decryption of the cryptogram C
is performed by the receiver (owner of the public key) as solving the
quadratic congruence x2 + bx− C ≡ 0 mod n. From four solutions
the receiver selects the sensible one as message M . In paper [6] it is
proven that the Rabin encryption algorithm is as secure as factoring
the composite value n. In the Rabin public-key encryption system the
cryptogram represents one of coefficients of the quadratic congruence
(the second coefficient is equal to number b that is a part of the public
key) whereas in the public encryption described in Section 2 the cryp-
togram represents two coefficients and the public key is the number
n.

In paper [7] there is described a class of provably secure public-key
cryptosystems in one of which the public-key encryption of the message
M is performed as computing the cryptogam C = M3 mod n, where
n = pq and private primes p and q are such that number 3 divides p and
does not dived q. Decryption of the cryptogram C in that cryptoscheme
consists in finding three cubic roots modulo n from C and selecting one
of them as message M . Using the results of paper [7] one can assume
possibility of designing a provably secure method for simultaneous en-
cryption of three independent messages interpreting them as roots of
cubic congruence modulo n. In this case the cryptogram will represent
three coefficients of some cubic congruence selected from the following
eight variants: x3 ± Ax2 ± Bx ± D ≡ 0 mod n. Existence of the al-
gebraic formulas for computing roots of the cubic equations provides
potential possibility of implementing the procedure for decryption of
the cryptogram C = (A,B, D).

Detailed consideration of constructing the deniable encryption
scheme based on computing cubic roots represents an individual re-
search topic as well as extension to the case of simultaineous encryption
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of four messages interpreted as roots of the fourth-degree congruence.
The public-key encryption method described in Section 2 can be

also implemented using any of the following four variants of the
quadratic congruences: x2 ±Ax±B ≡ 0 mod n.

As a topic directly connected with the proposed deniable encryption
method, one can indicate development of the receiver-deniable and bi-
deniable encryption protocols based on the algorithm of simultaneous
public-key encryption of two messages.
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Properties of figures and properties of spaces

Alexandru Popa

Abstract

Right triangle equations as well as sine and cosine laws
in elliptic, Euclidean and hyperbolic geometries have similar
form. This paper analyzes what is exact meaning of “similarity”.
Namely, what properties of figures are common among different
geometries and what properties are geometry–specific.

This research has impact on volume theory in non–linear
spaces.

Keywords: space invariant equations, space as parameter.

1 Notations and definitions

Let k ∈ {−1, 0, 1}. Define functions:

C(x) = C(x, k) =
∞∑

n=0

(−k)n x2n

(2n)!
=





cosx, k = 1,

1, k = 0,

coshx, k = −1;

(1)

S(x) = S(x, k) =
∞∑

n=0

(−k)n x2n+1

(2n + 1)!
=





sinx, k = 1,

x, k = 0,

sinhx, k = −1;

(2)

T (x) = T (x, k) =
S(x, k)
C(x, k)

=





tanx, k = 1,

x, k = 0,

tanhx, k = −1.

(3)

Parameter k is named [3] characteristic. It depends on space geometry
and is the property of geometrical meaning of argument.

c©2014 by A. Popa
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2 Universal form of triangle equations

In these notations, all equations of right triangle, sine and cosine laws
have universal form among different geometries.

Table 1. Universal form of right triangle equations

Elliptic (k = 1) Euclidean (k = 0) Hyperbolic (k = −1) Universal
tan b = tan c cos α b = c cos α tanh b = tanh c cos α T (b) = T (c) cos α
tan a = tan c cos β a = c cos β tanh a = tanh c cos β T (a) = T (c) cos β
sin a = sin c sin α a = c sin α sinh a = sinh c sin α S(a) = S(c) sin α
sin b = sin c sin β b = c sin β sinh b = sinh c sin β S(b) = S(c) sin β
tan a = sin b tan α a = b tan α tanh a = sinh b tan α T (a) = S(b) tan α
tan b = sin a tan β b = a tan β tanh b = sinh a tan β T (b) = S(a) tan β
cos α = cos a sin β cos α = 1 · sin β cos α = cosh a sin β cos α = C(a) sin β
cos β = cos b sin α cosβ = 1 · sin α cos β = cosh b sin α cos β = C(b) sin α
cos c tan α tan β = 1 1 · tan α tan β = 1 cosh c tan α tan β = 1 C(c) tan α tan β = 1
tan2 c = tan2 a tanh2 c = tanh2 a T 2(c) = T 2(a)

+ tan2 b c2 = a2 + b2 + tanh2 b + T 2(b)
+ tan2 a tan2 b − tanh2 a tanh2 b + kT 2(a)T 2(b)

Table 2. Universal form of sine and cosine laws (for one side and angle)

S(a)
sinα

=
S(b)
sinβ

=
S(c)
sin γ

T 2(c) =
T 2(a) + T 2(b)− 2T (a)T (b) cos γ + kT 2(a)T 2(b) sin2 γ

(1 + kT (a)T (b) cos γ)2

cos γ = − cosα cosβ + sin α sinβC(c)

Remark. Presented in Tables 1 and 2 equations are particular form
of even more general equations for homogeneous spaces [1], that be-
side length parameter k1 use also angular parameter k2. For elliptic,
Euclidean and hyperbolic planes the angular parameter k2 = 1.
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3 Distinction between properties of figures and
properties of spaces

Theorem 1 [3]. For any right–lined figure Ω in homogeneous space,
if there exists equation:

F (p1, ..., pn) = 0

that relates elements p1, ..., pn of this figure, then it is possible to find
its form:

H(Tr(p1), ..., T r(pn)) = 0

which consists of:

• function H that is algebraic and space invariant;

• function Tr is any one from these three: C(pi),
√

kiS(pi),√
kiT (pi), which depends on characteristic ki of its argument pi.

Function H describes properties of figure Ω regardless of space. Func-
tions Tr describe properties of space that are not figure–specific.

4 Application in non–linear volume theory

Although Teorem 1 is proven for length and angle parameters p1, ..., pn,
it is also true for areas. Area s of right triangle with catheti a, b may
be presented as:

T (s) =
S(a)S(b)

C(a) + C(b)
(4)

where characteristics of area ks and of catheti ka, kb is related as:

ks = kakb. (5)

The Lobachevsky function Λ(θ) has important role in volume theory
of hyperbolic space [2]. It is not known to be expressed in terms of
elementary functions:

Λ(θ) = −
∫ θ

0
log|2 sin t|dt. (6)
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The volume v of hyperbolic simplex with all vertices in absolute can be
obtained from dihedral angles α, β, γ (the opposite angles are equal):

v = Λ(α) + Λ(β) + Λ(γ). (7)

If Theorem 1 is true also for volume parameter v, then there exists
the following form of equation (7):

H(Tr(v), T r(α), T r(β), T r(γ)) = 0 (8)

that can be solved with respect to v as:

Tr(v) = h(Tr(α), T r(β), T r(γ)),

v = Tr−1(h(Tr(α), T r(β), T r(γ))),

where h is solution of algebraic equation (8) with respect to Tr(v). In
this case, volume can be expressed as elementary function of angles.
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On locally compact rings of

continuous endomorphisms of LCA groups

Valeriu Popa

Abstract

We characterise certain types of LCA groups with the pro-
perty that their rings of continuous endomorphisms are locally
compact in the compact-open topology.

Keywords: LCA groups, rings of continuous endomor-
phisms, compact-open topology.

Let L be the class of locally compact abelian groups. For X ∈ L,
let c(X), d(X), k(X), m(X), X∗, and E(X) denote respectively the
connected component of X, the maximal divisible subgroup of X, the
subgroup of compact elements of X, the smallest closed subgroup K
of X such that the quotient group X/K is torsion-free, the character
group of X, and the ring of continuous endomorphisms of X taken
with the compact-open topology. If X is totally disconnected, then Xp

stands for the topological p-primary component of X corresponding to
the prime p, and S(X) = {p | Xp is non-zero}. We also use the group of
rationals Q, the quasi-cyclic groups Z(p∞), the groups of p-adic integers
Zp, and the cyclic groups Z(pn), where p is a prime and n is a positive
integer.

M. Levin in [1], O. Mel’nikov in [2], and P. Plaumann in [3] have
investigated various types of LCA groups with the property that their
group of topological automorphisms is locally compact in the Birkhoff
topology. By analogy, one may ask for a description of groups X ∈ L
with the property that the ring E(X) is locally compact. We present
here some results answering this question.

c©2014 by V. Popa
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Definition 1 ([1]). Let X ∈ L. A subgroup L of X is called a
lattice in X if L is discrete and X/L is compact. If there exists such a
subgroup L in X, then X is said to contain a lattice. If X decomposes
as a topological direct sum of a discrete subgroup and a compact one,
then it is said to contain a lattice trivially. If X contains a lattice but
cannot be decomposed as a topological direct sum of a discrete group
and a compact one, it is said to contain a lattice non-trivially.

Theorem 1. Let X be a group in L containing a lattice non-trivially.
The ring E(X) is locally compact if and only if the following conditions
hold:

(i) c(X) has finite dimension.

(ii) For each prime number p,
(
k(X)/c(X) ∩ k(X)

)
p

has finite rank.

(iii) X/k(X) has finite rank.

Theorem 2. If X contains a lattice trivially, say X = L⊕K with L
discrete and K compact, then E(X) is locally compact if and only if
E(L) and E(K) are both locally compact.

Since E(K) and E(K∗) are topologically anti-isomorphic, this re-
duces the problem of the local compactness of E(X) in the case when
X contains a lattice trivially to the case when X is discrete.

Theorem 3. Let X be a discrete group in L. If E(X) is locally com-
pact, then either

(i) X/k(X) has finite rank and for each prime number p, Xp has
finite rank, or else

(ii) X/k(X) has infinite rank and for each prime number p, Xp is
finite.

Moreover, case (i) is conclusive: if X satisfies (i), then E(X) is
locally compact. However, case (ii) is inconclusive: for some discrete
groups X ∈ L satisfying (ii) E(X) is locally compact and for some it
is not.
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Theorem 4. Let X ∈ L be discrete and non-reduced. The ring E(X)
is locally compact if and only if the following conditions hold:

(i) d(X) ∼= Qr0 ×⊕
p∈S(X) Z(p∞)rp , where r0 ∈ N and the rp’s are

positive integers.

(ii) There exists a finitely generated subgroup G of X such that
X/G is torsion and, for each prime p, either (X/G)p is di-
visible or (X/d(X))p

∼= ∏l(p)
i=0 Z(pni(p)), where l(p) ∈ N and

n0(p), . . . , nl(p)(p) are positive integers.

Theorem 5. Let X be a compact group in L with m(X) 6= X. The ring
E(X) is locally compact if and only if the following conditions hold:

(i) X/m(X) ∼= (Q∗)r0 ×∏
p∈S(X) Z

rp
p , where r0 ∈ N and the rp’s are

positive integers.

(ii) There exists a closed totally disconnected subgroup Γ of X such
that X/Γ is elementary and, for each prime p, either Γp is
torsion-free or (X/c(X))p

∼= ∏l(p)
i=0 Z(pni(p)), where l(p) ∈ N and

n0(p), . . . , nl(p)(p) are positive integers.

Theorem 6. Let X ∈ L be either discrete and torsion or compact and
totally disconnected. The following statements are equivalent:

(i) E(X) is compact.

(ii) E(X) is locally compact.

(iii) X is topologically isomorphic either with the discrete group⊕
p∈S(X)

(
Z(p∞)rp ×∏l(p)

i=0 Z(pni(p))
)

or with the compact group
∏

p∈S(X)

(
Zrp

p ×
∏l(p)

i=0 Z(pni(p))
)
, where l(p) ∈ N and rp, n0(p), . . . ,

nl(p)(p) are positive integers.

Theorem 7. Let X ∈ L be either discrete and torsion-free or compact
and connected. The ring E(X) is locally compact if and only if it is
discrete.

148



On locally compact rings of continuous endomorphisms . . .

Theorem 8. Let X be a discrete torsion-free group in L containing
a subgroup A such that A =

⊕
i∈I Ai, where the Ai’s are subgroups of

finite rank of X and X/A is of bounded order. The following statements
are equivalent:

(i) E(X) is locally compact.

(ii) I is finite, i.e. A is of finite rank.

Theorem 9. Let X be a compact and connected group in L containing
a closed subgroup of bounded order B such that X/B =

∏
i∈I Ci, where

the Ci’s are groups of finite dimension. The following statements are
equivalent:

(i) E(X) is locally compact.

(ii) I is finite, i.e. X/B has finite dimension.
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On near-totally conjugate orthogonal

quasigroups

Tatiana Popovich

Abstract

In the article the near-totally conjugate orthogonal quasi-
groups (near-totCO-quasigroups), i.e., quasigroups for which
there exist five (but there are no six) pairwise orthogonal conju-
gates, are studied. We proved that for any integer n ≥ 7 that is
relatively prime to 2, 3 and 5 there exist near-totCO-quasigroups
of order n, and characterized graphs of conjugate orthogonality,
connected with these quasigroups.

Keywords: quasigroup, T -quasigroup, conjugate orthogonal
quasigroup, Latin square, graph of conjugate orthogonality.

1 Introduction

A quasigroup is an ordered pair (Q,A), where Q is a set and A is
a binary operation, defined on Q, such that each of the equations
A(a, y) = b and A(x, a) = b is uniquely solvable for any pair of ele-
ments a, b in Q. It is known that the multiplication table of a fi-
nite quasigroup defines a Latin square and six (not necessarily dis-
tinct) conjugates (or parastrophes) are associated with each quasi-
group (Q, A) (Latin square): A = 1A, rA, lA, rlA, lrA, sA, where
rA(x, y) = z ⇔ A(x, z) = y, lA(x, y) = z ⇔ A(z, y) = x and
sA(x, y) = A(y, x) which are quasigroups (rlA =r (lA)).

Two quasigroups (Q, A) and (Q,B) are orthogonal (A⊥B) if the
system of equations {A(x, y) = a, B(x, y) = b} is uniquely solvable for
all a, b ∈ Q.

c©2014 by T. Popovich
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A set Σ = {A1, A2, ..., An} of quasigroups, defined on the same set,
is orthogonal if any two quasigroups of it are orthogonal.

The notion of orthogonality plays the important role in the theory of
Latin squares, also in quasigroup theory and in distinct applications, in
particular, in coding theory and cryptography. In addition, quasigroups
that are orthogonal to some of their conjugates or two conjugates of
that are orthogonal (known as conjugate orthogonal or parastrophic-
orthogonal quasigroups) have the significant interest.

Many articles were devoted to the investigation of various aspects
of conjugate orthogonal quasigroups.

In [1], the quasigroups all six conjugates of which form an ortho-
gonal set were investigated. In this paper we study the quasigroups for
that there exist five (but there are no six) pairwise orthogonal conju-
gates. We call such quasigroups by near-totally conjugate orthogonal
quasigroups (shortly, near-totCO-quasigroups) and give an information
about the spectrum of these quasigroups and characterize the graphs,
connected with them.

2 Totally and near-totally conjugate-orthogo-
nal quasigroups

It is known that the number of distinct conjugates of a quasigroup can
be 1,2,3 or 6 [2].

A quasigroup (Q, A) is called a totally conjugate-orthogonal or
totCO-quasigroup if all six its conjugates are pairwise orthogonal [1].
In this case the system of six conjugates is an orthogonal set of
quasigroups. Any conjugate of a totCO-quasigroup is also a totCO-
quasigroup.

A quasigroup (Q,A) is called a T -quasigroup if there exists an
abelian group (Q,+), its automorphisms ϕ , ψ and an element a ∈ Q
such that A(x, y) = ϕx + ψy + a.

In [1], the following criterion for a totCO-T -quasigroup was estab-
lished.
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Theorem 1 [1]. A T -quasigroup (Q,A): A(x, y) = ϕx + ψy + a is a
totCO-quasigroup if and only if all the following mappings ϕ+ε, ϕ−ε,
ψ + ε, ψ − ε, ϕ2 + ψ, ψ2 + ϕ, ϕ− ψ, ϕ + ψ, ψϕ− ε are permutations.

In [3], it was proved that there exist infinite totCO-quasigroups.
For finite quasigroups it is valid the following:

Theorem 2 [1]. For any n = pk1
1 pk2

2 ...pks
s , where pi, i = 1, 2, ..., s,

are prime numbers not equal to 2, 3, 5, 7, ki ≥ 1, there exists a totCO-
quasigroup of order n.

We consider quasigroups, that are no totCO-quasigroups, five con-
jugates of which form an orthogonal set and study the spectrum of
these quasigroups.

Definition 1. A quasigroup (Q,A) is called near-totally conjugate
orthogonal (a near-totCO-quasigroup) if it is not a totCO-quasigroup
and there exist five its pairwise orthogonal conjugates.

Theorem 3. A T−quasigroup (Q, A) , A(x, y) = ϕx + ψy + a is a
near-totCO−quasigroup if and only if from all mappings of Theorem 1
only the single mapping ϕ− ε (ψ − ε or ϕ + ψ) is not permutation.

Theorem 4. For any integer n ≥ 7 that is prime with 2, 3 5, there
exists a near-totCO-quasigroup of order n.

Let (Q,A) be a quasigroup with six distinct conjugates, then there
are six different subsets of the conjugate set:

Σ1 = {l, r, rl, lr, s}, Σs = {1, l, r, lr, rl} Σl = {1, r, rl, lr, s},
Σlr = {1, l, r, rl, s} Σr = {1, l, rl, lr, s}, Σrl = {1, l, r, lr, s}.

Say that a near-totCO-quasigroup (Q,A) has the type Σ1(Σs,
Σl, Σlr, Σr, Σrl), if the corresponding set of conjugates is orthogonal.

Proposition 1. A near-totCO-quasigroup of the type Σ1 is a near-
totCO-quasigroup of the type Σs.

A near-totCO-quasigroup of the type Σl is a near-totCO-quasigroup
of the type Σlr.

A near-totCO-quasigroup of the type Σr is a near-totCO-quasigroup
of the type Σrl.
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In the article [4], it was considered a graph of conjugate orthogo-
nality of a Latin square (a finite quasigroup), i. e., the graph the vertices
of which are six conjugates of a Latin square and two vertices are con-
nected if and only if the corresponding pair of conjugates is orthogonal.
It is evident that the complete graph K6 of conjugate orthogonality
corresponds to a totCO-quasigroup.

We call the graph of conjugate orthogonality of a quasigroup near-
complete if its complement (with respect to the complete graph K6)
contains a single edge. Such graph includes exactly 14 edges.
Theorem 5. A near-totCO-quasigroup of the type Σ1 (Σs) corresponds
to the near-complete graph of conjugate orthogonality without the edge
(1, s).

A near-totCO-quasigroup of the type Σl (Σlr) corresponds to the
near-complete graph of conjugate orthogonality without the edge (l, lr).

A near-totCO-quasigroup of the type Σr (Σrl) corresponds to the
near-complete graph of conjugate orthogonality without the edge (r, rl).
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Associativity
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Abstract

We study groupoids that are close to quasigroups with the
following Schröder identity (x · y) · (y · (z · x)) = z of generalised
associativity. It is proved that if a left cancellation (left division)
groupoid (Q, ·, \) satisfies this identity and the identity x\x =
y\y, then (Q, ·) is a group of exponent two. The similar results
are proved for the right case.

Keywords: groupoid, left (right) division groupoid, left
(right) cancellative groupoid, Schröder identity, quasigroup,
abelian group

1 Introduction

In this paper we continue the study of left (right) division (cancellation)
groupoids with various identities of generalized associativity [4].

Ernst Schröder (a German mathematician mainly known for his
work on algebraic logic) introduced and studied the following identity
of generalized associativity [5, 2, 3] on a quasigroup (Q, ·, \, /):

(x · y)\z = y · zx. (1)

It is easy to see that in the quasigroup case the identity (1) is equivalent
with the following identity

(x · y) · (y · zx) = z. (2)

c©2014 by D.I. Pushkashu
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Often various variants of associative identity, which are true in a
quasigroup, guarantee that this quasigroup is a loop. The following
example demonstrates that this is not so in the case with identity (2).

∗ 0 1 2 3 4 5 6 7
0 1 4 7 0 6 5 2 3
1 5 2 3 6 0 1 4 7
2 0 7 4 1 5 6 3 2
3 6 3 2 5 1 0 7 4
4 4 1 0 7 3 2 5 6
5 3 6 5 2 4 7 0 1
6 7 0 1 4 2 3 6 5
7 2 5 6 3 7 4 1 0

Definition 1. A groupoid (Q, ·) is called:
a left cancellation groupoid, if ax = ay =⇒ x = y ∀ a, x, y ∈ Q,
a right cancellation groupoid, if xa = ya =⇒ x = y ∀ a, x, y ∈ Q,
a left division groupoid if the mapping La : a → ax is surjective for
every a ∈ Q,
a right division groupoid if the mapping Ra : a → ax is surjective for
every a ∈ Q.

T. Evans [1] defined a binary quasigroup as an algebra (Q, ·, /, \)
with three binary operations satisfying the following four identities:

x · (x\y) = y, (3)

(y/x) · x = y, (4)

x\(x · y) = y, (5)

(y · x)/x = y. (6)

We shall use the following
Theorem 1. A groupoid (Q, ·) is:

1) a left cancellation groupoid if and only if there exists a left division
groupoid (Q, \) such that the algebra (Q, ·, \) satisfies (5);
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2) a left division groupoid if and only if there exists a left cancellation
groupoid (Q, \) such that the algebra (Q, ·, \) satisfies (3);

3) a right cancellation groupoid if and only if there exists a right
division groupoid (Q, /) such that the algebra (Q, ·, /) satisfies
(6);

4) a right division groupoid if and only if there exists a right cancel-
lation groupoid (Q, /) such that the algebra (Q, ·, /) satisfies (4)
[6, 7].

2 Left (right) cancellation (division) groupoids

We study left cancellation and left division e-groupoids (i.e. equational
groupoids) (Q, ·, /) with the following identity:

x\x = y\y. (7)

Recall, if in a primitive quasigroup (Q, ·, /, \) the identity (7) is true,
then this quasigroup has the right identity element. The following
theorems are proved.

Theorem 2. If a left cancellation groupoid (Q, ·, \) satisfies iden-
tities (2) and (7), then (Q, ·) is a group of exponent two.

If a left division groupoid (Q, ·, \) satisfies identities (2) and (7),
then (Q, ·) is a group of exponent two.

We study right cancellation and right division e-groupoids with the
following additional identity:

x/x = y/y. (8)

Theorem 3. If a right cancellation groupoid (Q, ·, /) satisfies iden-
tities (2) and (8), then (Q, ·) is an abelian group of exponent two.

If a right division groupoid (Q, ·, /) satisfies identities (2) and (8),
then (Q, ·) is a group of exponent two.
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About one cryptoalgorithm

V.A. Shcherbacov, N.A. Moldovyan

Abstract

We give a generalization of one well known cryptoalgorithm
which is based on a finite binary quasigroup.

Keywords: cryptology, algorithm, quasigroup, translation

1 Introduction

In [3, 4] it is proposed to use quasigroups for secure encoding. A
quasigroup (Q, ·) and its (23)-parastrophe (Q, \) satisfy the following
identities x\(x · y) = y, x · (x\y) = y. It is proposed to use this
quasigroup property to construct the following stream cipher.

Algorithm 1. Let A be a non-empty alphabet, k be a natural
number, ui, vi ∈ A, i ∈ {1, ..., k}. Define a quasigroup (A, ·). It is clear
that the quasigroup (A, \) is defined in a unique way. Take a fixed
element l (l ∈ A), which is called a leader.

Let u1u2...uk be a k-tuple of letters from A. The authors propose
the following ciphering procedure v1 = l · u1, vi = vi−1 · ui, i = 2, ..., k.
Therefore we obtain the following cipher-text v1v2 . . . vk. The enci-
phering algorithm is constructed in the following way: u1 = l\v1, ui =
vi−1\vi, i = 2, ..., k [3, 4].

It is easy to see that in Algorithm 1 n-ary quasigroups and their
parastrophes [1] can be used. This fact is mentioned in [7, 8]. Ternary
and quaternary generalisations of Algorithm 1 are described in [5].
The weakness of Algorithm 1 and its ternary analogue relatively some
cryptographical attacks is pointed out in [10, 2].

Here we present further generalizations of Algorithm 1. See [2, 9].

c©2014 by V.A. Shcherbacov, N.A. Moldovyan
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2 Binary generalization of Algorithm 1

We start with rewriting Algorithm 1 in slightly other form.
Algorithm 1∗. Let Q be a non-empty finite alphabet. Define a

quasigroup (Q, ·). It is clear that the quasigroup (Q,
(23)· ) is defined in

a unique way. Take a fixed element l (l ∈ Q), which is called a leader.
Let u1u2...uk be a k-tuple of letters from Q.

It is proposed the following ciphering procedure
v1 = l · u1 = Llu1,
v2 = v1 · u2 = Lv1u2,
vi = vi−1 · ui = Lvi−1ui, i = 3, ..., k.
Therefore we obtain the following cipher-text v1v2 . . . vk.
The deciphering algorithm is constructed in the following way. We

have the following cipher-text: v1v2 . . . vk. Recall L
(23)·
a = (L·a)−1 for any

a ∈ Q [6]. Below we shall denote translation L
(23)·
a as L∗a, translation

L·a as La for any a ∈ Q. Then

u1 = l
(23)· v1 = L∗l (v1) = L∗l (Llu1) = L−1

l (Llu1) = u1;

ui = vi−1
(23)· vi = L∗vi−1

(vi) = L∗vi−1

(
Lvi−1ui

)
= L−1

vi−1

(
Lvi−1ui

)
= ui

for all i ∈ 2, k.
From this form of Algorithm 1∗ we can obtain the following gener-

alization. Instead of translations Lx, x ∈ Q, we propose to use in the
enciphering part of this algorithm powers of these translations, i.e., to
use permutations of the form Lk

x, k ∈ Z, instead of permutations of the
form Lx.

The proposed modification forces us to use permutations of the
form Lk

x, k ∈ Z, also in the decryption procedure.
Algorithm 2. Let Q be a non-empty finite alphabet. Define a

quasigroup (Q, ·). It is clear that the quasigroup (Q,
(23)· ) is defined in

a unique way.
Take a fixed element l (l ∈ Q), which is called a leader. Let

u1u2...uk be a k-tuple of letters from Q.
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It is proposed the following ciphering procedure

v1 = La
l u1, a ∈ Z,

v2 = Lb
v1

u2, b ∈ Z,

vi = Lc
vi−1

ui, i ∈ 3, k, c ∈ Z.

(1)

Therefore we obtain the following cipher-text v1v2 . . . vk. The decipher-
ing algorithm is constructed in the following way. We use notations of
Algorithm 1∗. Recall (L∗x)a = L−a

x for all x ∈ Q. Then

(L∗l )
a (v1) = (L∗l )

a (La
l u1) = u1,

(L∗v1
)b (v2) = (L∗v1

)b
(
Lb

v1
u2

)
= u2,

(L∗vi−1
)c (vi) = (L∗vi−1

)c(Lc
vi−1

ui) = ui, i ∈ 3, k.

Notice, the elements a, b, c in equalities (1) should vary from step
to step in order to protect this algorithm against chosen plain-text
and chosen cipher-text attack. It is clear that the right and middle
translations [6] can also be used in Algorithm 2 instead of the left
translations. Information about n-ary generalization of Algorithm 2 is
given in [9].
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Abstract

An n-ary quasigroup is an asymmetric top-quasigroup, if all
its parastrophes are pairwise different and n-wise orthogonal. Let
p be the least prime factor of its order. An n-ary asymmetric top-
quasigroup, which is linear on a cyclic group, exists if and only
if n = 2, p > 7 or n = 3, p > 19.

Keywords: parastrophes, Latin cubes, Latin hyper cubes,
quasigroup, top-quasigroup.

1 Introduction

Quasigroups and its combinatorial analogue Latin squares, cubes and
hyper-cubes have wide application in many areas of sciences: design
of experiments, coding theory, geometry, automata theory and others.
The main mathematical problem, which is under consideration, is to
find methods for constructing orthogonal quasigroup operations.

Some parastrophes of the same quasigroup operation can coincide,
but all different parastrophes can be n-wise orthogonal. In this case, it
is called a top-quasigroup. Here, we investigate linear top-quasigroups.

2 Top-quasigroups

Let Q be a set. An n-ary operation f defined on Q is called a quasi-
group, if each of the equations

f(a1, . . . , ai−1, x, ai+1, . . . , an) = ai, i = 1, . . . , n

c©2014 by F.M. Sokhatsky, I. Pirus
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has a unique solution for all elements a1, . . . , an ∈ Q. The relationships

σf(x1σ, . . . , xnσ) = x(n+1)σ ⇔ f(x1, . . . , xn) = xn+1, σ ∈ Sn+1

define (n + 1)! quasigroup operations σf , which are called parastrophes
of f . A quasigroup is said to be totally parastrophically orthogonal
(top-quasigroup), if all its different parastrophes are orthogonal.

General problem: Describe all finite top-quasigroups up to
parastrophy-isomorphy relation.

The notion of top-quasigroup has four main parameters: an arity
of the quasigroup, its order, a number of its different parastrophes and
a type of orthogonality.

There are many types of orthogonality for multiary quasigroups.
Here, n-ary operations f1, . . . , fn are called orthogonal, if every system
{fi(x1, . . . , xn) = ai|n1 has a unique solution for arbitrary element a1,
. . . , an from its carrier Q.

A mapping (σ; f) 7→ σf is an action of the symmetric group Sn+1

on the set of all n-ary quasigroup operations defined on Q. A stabilizer
Sym(f) := {σ | σf = f} of the action is called a symmetry group of f .
Symmetry groups of parastrophes are conjugate, namely Sym(σf) =
σSym(f)σ−1. The number of all different parastrophes of f is equal to
(n+1)!/|Sym(f)|. In particular, all parastrophes of f are different if and
only if its symmetry group is trivial, i.e., the quasigroup is asymmetric.

A quasigroup (Q; f) is called linear over a group (Q; +) if there
exist automorphisms ϕ1, ϕ2, . . . , ϕn of (Q; +) such that

f(x1, x2, . . . , xn) = ϕ1x1 + ϕ2x2 + · · ·+ ϕnxn + a.

Subproblem: Describe all finite linear top-quasigroups up to para-
strophy-isomorphy relation.

Theorem 1. Linear n-ary top-quasigroups do not exist if n > 3.

In binary case the number of pairwise unconjugated subgroups of the
symmetric group S3 is 4. There exist four parastrophically closed cla-
sses of top-quasigroups: asymmetric, i.e., their symmetry groups are
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trivial and such a quasigroup has six different parastrophes; one-side
symmetric, i.e., their symmetry groups contain two elements and such a
quasigroup has three different parastrophes; skew symmetric, i.e., their
symmetry groups contain three elements and such a quasigroup has two
different parastrophes; and totally symmetric quasigroups, their sym-
metry groups is S3 and all parastrophes of each quasigroup coincide.
So, binary top-quasigroups can be divided into three parastrophically
closed classes: asymmetric, one-side symmetric and skew symmetric.

Theorem 3. [1] A binary linear asymmetric top-quasigroup over an
m-order cyclic group exists if and only if the least prime factor of m is
greater than 7.

Ternary case. The group S4 has 30 subgroups, which are divided into
11 conjugated classes. Pairwise unconjugated subgroups are:

E := {ι}, S2 := {ι, (12)}, S22 := {ι, (12)(34)}, A3 := {ι, (123), (132)},
Z4 := {ι, (12)(34), (1423), (1324)}, K4 := {ι, (12)(34), (13)(24), (14)(23)},
C4 := {ι, (12), (34), (12)(34)}, S3 := {ι, (12), (13), (23), (123), (132)},
D8 := {ι, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}, S4,

A4 := {ι, (123), (132), (134)(143), (124), (142), (234), (243),
(13)(24), (12)(34), (14)(23)}.

The numbers of different parastrophes of f are given in

Symf E S2 S22 A3 Z4 K4 C4 S3 D8 A4 S4

number of
different
parastrophes

24 12 12 8 6 6 6 4 3 2 1

Since we consider triple-wise orthogonality, there exist nine classes of
the top-quasigroups. Here, we give results only for asymmetric quasi-
groups. Each of them has 24 triple-wise orthogonal parastrophes.
Theorem 4. If the least prime factor of m is greater than 107, then
(Zm; f), where f(x; y; z) := 2x + 8y + 11z, is an asymmetric top-
quasigroup of the order m.
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Lemma 5. If 23 6 p 6 107, then (Zp; g) defined by g(x; y; z) :=
αx + βy + γz is an asymmetric top-quasigroup of the order p, where p
and {α, β, γ} are taken from

p {α, β, γ} p {α, β, γ}
23, 103 {12, 14, 21} 41, 67 {7, 14, 21}
29, 83, 97 {6, 8, 16} 43, 53, 107 {21, 31, 35}
31 {3, 4, 25} 47 {2, 5, 41}
37, 61 {2, 7, 29} 59, 61, 71, 79, 89, 101 {2, 8, 11}

Theorem 6. A ternary linear asymmetric top-quasigroup over an m-
order cyclic group exists if and only if the least prime factor of m is
greater than 19.

3 Conclusion

If n > 3, then linear n-ary asymmetric top-quasigroups do not exist.
An n-ary asymmetric top-quasigroup, being linear on a cyclic m-order
group, exists if and only if the least prime factor of m is greater then: 7,
if n = 2 and 19, if n = 3. A binary asymmetric top-quasigroup has six
pair-wise orthogonal parastrophes, but a ternary one has 24 triple-wise
orthogonal parastrophes.
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About one special inversion matrix of 3-ary

and 4-ary IP -loops

Leonid A. Ursu

Abstract

It is known that an n-IP -quasigroup can have more than one
inversion matrix. We prove that one of these matrices for a 3-ary
IP -loop and for a 4-ary IP -loop is the matrix of permutations
every of which fixes identity of a loop and has order two. It is a
good matrix allowing to investigate n-IP -loops in more detail.

Keywords: 3-IP -loop, 4-IP -loop, inversion system, inver-
sion matrix

1 Introduction

The definitions of an n-IP -quasigroup (an n-IP -loop), n ≥ 2, and
of its inversion matrix one can find in [1]. It is known that an n-
IP -quasigroup can have more than one inversion matrix and one of
these matrices for an n-IP -loop with an identity e can be a matrix
of the special form [Iij ]e which facilitates the study of n-IP -loops.
V.D.Belousov has assumed that every n-IP -loop has the matrix [Iij ]e
as an inversion matrix.

In [2], the example of a 3-IP -loop for which one of inversion matri-
ces is the matrix [Iij ]e was given. Later in [3], it was proved that the
matrix [Iij ]e exists for any n-IP -group with an identity e, for any sym-
metric n-IP -loop and for any n-IP -loop with one inversion parameter.
The existence of the matrix [Iij ]e for any nonsymmetric n-IP -loops at
present is not proved.

c©2014 by L.A. Ursu
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In this article we establish that the matrix [Iij ]e exists for any non-
symmetric 3-ary IP -loop and for any nonsymmetric 4-ary IP -loop with
an identity e.

2 Preliminaries

A ternary operation Q( ), defined on a set Q, is called a 3-ary quasi-
group with the invertible property (shortly, a 3-IP -quasigroup) if on Q
there exist permutations υij , i = 1, 2, 3 (or i ∈ 1, 3), j ∈ 1, 4, where
υii = υi4 = ε (ε is the identity permutation) such that the following
equalities hold: ((x3

1), υ12x2, υ13x3) = x1, (υ21x1, (x3
1), υ23x3) = x2,

(υ31x1, υ32x2, (x3
1)) = x3 for any x3

1 ∈ Q3.
The matrix

[
υij

]
=




ε υ12 υ13 ε
υ21 ε υ23 ε
υ31 υ32 ε ε




is called an inversion matrix for a 3-IP -quasigroup, the permutations
υi,j are called inversion permutations. Any row of an inversion matrix
is called an inversion system for a 3-IP -quasigroup.

All these definitions are analogous for any n-IP -quasigroups.
An n-IP -quasigroup is called symmetric or an n-TS-quasigroup if

υij = ε for all i, j ∈ 1, n.
The least common multiple of the orders of all permutations of the

i-th inversion system is called the order of the i-th inversion system.
The least common multiple of the orders of all inversion systems is

called the order of an inversion matrix.
An element e ∈ Q is called an identity for an n-quasigroup Q( )

if (x, e, e) = (e, x, e) = (e, e, x) = x for any x ∈ Q. An n-loop is an
n-quasigroup with an identity.

The permutations Iij on a set Q for an n-IP -loop with an identity

e are defined as follows: (
i−1
e , x,

j−i−1
e , Iijx,

n−j
e ) = e for any x ∈ Q and
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any i, j ∈ 1, n [1]. The matrix [Iij ]e for a 3-IP -loop has the form:

[
Iij

]
=




ε I12 I13 ε
I21 ε I23 ε
I31 I32 ε ε


 .

If (ε, υi2, υi3, ε) is the i-th inversion system of a 3-IP -loop,
i ∈ 1, 3, then (ε, υ2n−1

i2 , υ2n−1
i3 , ε) is also the i-th inversion system of

some inversion matrix of this 3-IP -loop, and (ε, υ2n
i2 , υ2n

i3 , ε) is an au-
totopy of this 3-IP -loop [2]. The main definitions and results for a
3-IP -loop are true for a 4-IP -loop as well.

3 Permutations of inversion systems and ma-
trices of 3-IP -loops

The obtained results relative to nonsymmetric 3-IP -loops (to non-3-
TS-loops).

Proposition 1. If Q( ) is a 3-IP-loop with an inversion matrix [υij ],
i ∈ 1, 3, j ∈ 1, 4 and with an identity e, then any non-identity inversion
permutation in even power of any inversion system does not leave fixed
the identity e.

Corollary 1. If Q( ) is a 3-IP -loop with an inversion matrix [υij ],
i ∈ 1, 3, j ∈ 1, 4, and with an identity e, then any non-identity inversion
permutation of any inversion system only in odd power leaves fixed the
identity e.

It means that for any non-identity inversion permutation υij , i, j ∈
1, 3, of an inversion matrix of a 3-IP -loop there exists odd number
2n + 1, n ∈ N , such that υ2n+1

ij e = e, i.e., the identity of a loop is in a
cycle of odd length in this inversion permutation.

Theorem 1. The matrix [Iij ]e is an inversion matrix for any 3-IP -
loop with an identity e.
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4 Permutations of inversion systems and ma-
trices of 4-IP -loops

The obtained results relative to 4-IP -loops that are not 4-TS-loops
and, in contrast to the ternary case. Another approach is required for
the proof of analogous results.
Proposition 2. If Q( ) is a 4-IP -loop with an inversion matrix [υij ],
i ∈ 1, 4, j ∈ 1, 5 and with an identity e, then any non-identity inversion
permutation in even power of any inversion system does not leave fixed
the identity e.
Corollary 2. If Q( ) is a 4-IP -loop with an inversion matrix υij,
i ∈ 1, 4, j ∈ 1, 5, and with an identity e, then any non-identity inversion
permutation of any inversion system only in odd power leaves fixed the
identity e.

These results are used in the proof of the following
Theorem 2. The matrix [Iij ]e is an inversion matrix for any 4-IP -
loop with an identity e.

The question about existence of the matrix [Iij ]e for any n-IP -loop,
n > 4, is still opened.

References

[1] V. D. Belousov. n-Ary quasigroups Ştiinţa, Chişinău, 1972 (Rus-
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On isohedral tilings by 12-gons for hyperbolic

group of genus two
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Abstract

For hyperbolic translation group of genus 2 isohedral tilings
of the hyperbolic plane with 12-gons are obtained.

Keywords: isohedral tilings, hyperbolic plane, group of
translations, genus two.

On the Euclidean plane the group of translations p1 is one of 17
crystallographic plane groups. As it is well known there are 2 types
(and 2 Delone classes) of isohedral tilings of the Euclidean plane with
disks for the group p1, those disks being parallelograms and center-
symmetric hexagons, respectively. The orbifold symbol by Conway of
this group is ◦ (a circle). The analog of this group on the hyperbolic
plane, i. e. a discrete group of translations with a compact (bounded)
fundamental domain, is characterized with its genus, which is the genus
of the quotient of the hyperbolic plane by the group action. The orb-
ifold symbol by Conway of such a group is ◦ ◦ · · · ◦ with the number
of circles being equal to its genus. The smallest genus of a hyperbolic
translation group is 2, so the hyperbolic group of genus 2 is the simplest
hyperbolic group of translations. Thus I investigate isohedral tilings for
the hyperbolic group of genus two.

Definition 1. Let W be a tiling of the hyperbolic plane with disks,
G be a discrete isometry group of the hyperbolic plane with a bounded
fundamental domain. The tiling W is called isohedral with respect to
the group G if the group G acts transitively on the set of all disks of
the tiling.

c©2014 by E. Zamorzaeva
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Definition 2. Consider all possible pairs (W,G) where W is a
tiling of the hyperbolic plane with disks which is isohedral with respect
to a discrete isometry group G of the hyperbolic plane with a bounded
fundamental domain. Two pairs (W,G) and (W ′, G′) are said to belong
to the same Delone class if there exists a homeomorphic transformation
ϕ of the plane which maps the tiling W onto the tiling W ′ and the
relation G = ϕ−1G′ϕ holds.

The classification of isohedral tilings of the hyperbolic plane is done
using Delone classes.

A translation group contains no non-trivial isometry with invariant
points, so it admits only fundamental Delone classes of tilings, i. e.
tilings of the plane with fundamental domains. I am going to find these
tilings similarly as the adjacency symbols were applied by B. Delone
[1, 2] to obtain all the fundamental isohedral tilings of the Euclidean
plane (see also [3]).

First we work out an equation that relates the number k of edges
and the valencies α1, α2, . . . , αk of any tile in the tiling and write:

1
α1

+
1
α2

+ · · ·+ 1
αk

=
k

2
− 3. (1)

From the inequality αj ≥ 3 and the equation (1) we derive the inequal-
ity k ≤ 18. As all the isometries of the group are translations, the
number k is even. Because the group orbifold has no singular points,
any vertex valency αj occurs a multiple of αj times.

Using the above conditions we solve this Diophantine equation in
integers. The obtained solutions are k = 8, 10, 12, 14, 16, 18. In the
present communication I investigate the case k = 12, i. e. tilings with
12-gons. So for k = 12 we obtain sets of numbers which correspond to
possible vertex valencies.

To the obtained ordered sets of valencies (we call them cycles) we
apply the adjacency symbols method. All the edges of a tile are la-
belled consecutively with the letters a, b, . . . . In a symbol the first
position is occupied by the letter that labels the first chosen edge, the
second position is occupied by the letter that labels the edge adjacent
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to the first edge, then the lower index is the vertex valency of the first
edge, after that we pass to the second consecutive edge, and so on. We
generate possible adjacency symbols. For each candidate in adjacency
symbol we check if the condition of transition around a vertex is sat-
isfied (for every vertex equivalence class). Using adjacency diagrams
we determine whether two adjacency symbols correspond to the same
Delone class.

The solutions of the equation for k = 12 are three sets of numbers.
For the set containing six ’3’ and six ’6’ there are several Delone classes
of isohedral tilings of the hyperbolic plane. One of them, with the
adjacency symbol

(aj3be6cl3dg6eb3fi6gd3hk6if3ja6kh3lc6),

as the quotient gives rise to the second richest Riemann surface of genus
two with the automorphism group G∗

24 (see Fig. 1, b in [4] or [5]). For
the set containing twelve ’4’ there are several Delone classes of isohedral
tilings of the hyperbolic plane, too. One of Delone classes is given by
the adjacency symbol

(ac4be4ca4df4eb4fd4gi4hk4ig4jl4kh4lj4).

And the most ’exotic’ isohedral tilings of the hyperbolic plane corre-
spond to the set containing three ’3’, four ’4’ and five ’5’. Among them
one of Delone classes is given by the adjacency symbol

(ad3be4cf3da4eb3fc4gl5hj5ik5jh5ki5lg4).

Remark that the known method of cutting orbifold by Z. Lučić
and E. Molnár permits to find fundamental isohedral tilings of the
hyperbolic plane if the isometry group is given. That method gives
quite satisfactory results if applied to some isometry groups with rota-
tions and reflections. For a hyperbolic translation group Z. Lučić and
E. Molnár propose to use the known canonical cutting of handles of
the manifold combined with adding some new vertices. However some
of the new isohedral tilings of the hyperbolic plane cannot be obtained
by the method of cutting orbifold.
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for the cubic differential systems with

degenerate infinity

Iurie Calin, Valeriu Baltag

Abstract

In this paper the GL(2,R)-invariant center conditions for the
origin of the coordinates of the phase plane of the cubic differen-
tial systems with degenerate infinity were established.

Keywords: differential system, center, GL(2,R)-invariant,
transvectant.

Let us consider the cubic system of differential equations

dx

dt
= P1(x, y) + P2(x, y) + P3(x, y) = P (x, y),

dy

dt
= Q1(x, y) + Q2(x, y) + Q3(x, y) = Q(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degree i in
x and y with real coefficients. The GL(2,R)-comitants [1] of the first
degree with respect to the coefficients of system (1) have the form

Ri = Pi(x, y)y−Qi(x, y)x, Si =
1
i

(
∂Pi(x, y)

∂x
+

∂Qi(x, y)
∂y

)
, i = 1, 2, 3.

From the classical invariant theory [2] the definition of the transvec-
tant of two polynomials is well known.

Definition 1. Let f(x, y) and ϕ(x, y) be homogeneous polynomials
in x and y with real coefficients of the degrees ρ ∈ N∗ and θ ∈ N∗,
respectively, and k ∈ N∗. The polynomial

c©2014 by I. Calin, V. Baltag
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(f, ϕ)(k) =
(ρ− k)!(θ − k)!

ρ!θ!

k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kϕ

∂xh∂yk−h

is called the transvectant of the index k of polynomials f and ϕ.

Remark 1. If the polynomials f and ϕ are GL(2,R)-comitants of
the degrees ρ ∈ N∗ and θ ∈ N∗, respectively, for the system (1), then
the transvectant of the index k ≤ min(ρ, θ) is a GL(2,R)-comitant
of the degree ρ + θ − 2k for the system (1). If k > min(ρ, θ), then
(f, ϕ)(k) = 0.

In repeated using of the transvectants a set of the parenthesis of
the type ((. . . ( will be replaced by a single parenthesis of the form
[[. By using the transvectants, the following GL(2,R)-invariants were
constructed for the system (1):

H1 = 3(R2, R1)(2), K1 = 3(R2, S3)(2), I1 = S1,

I2 = (R1, R1)(2), I3 = [[R2, R1)(2), S2)(1), I4 = [[R1, S2)(1), S2)(1),

I5 = [[R2, R2)(2), R1)(2), I6 = [[R2, R1)(2), R1)(1), S2)(1),

I7 = [[R2, R2)(2), S2)(1), S2)(1), I8 = [[R2, R2)(2), R2)(1), R2)(3),

I9 = [[R2, S2)(1), S2)(1), S2)(1), I10 = [[R2, R1)(2), R1)(1),H1)(1),

I11 = [[R2, R2)(2), R2)(1), R1)(2), S2)(1),

I12 = [[R2, R2)(2), R1)(1), S2)(1), S2)(1),

I13 = [[R2, R1)(1), S2)(1), S2)(1), S2)(1),

I14 = [[R2, R2)(2), R2)(1), R1)(2), R1)(1), S2)(1),

J1 = (R1, S3)(2), J2 = (S3, S3)(2), J3 = [[R2, R2)(2), S3)(2),

J4 = [[R2, S3)(2), S2)(1), J5 = [[S3, S2)(1), S2)(1),

J6 = [[R2, R2)(2), R1)(1), S3)(2), J7 = [[R2, R1)(2), S3)(1), S2)(1),

J8 = [[R2, S3)(2), R1)(1), S2)(1), J9 = [[R1, S3)(1), S2)(1), S2)(1),

J10 = [[R2, S3)(2), S3)(1), S2)(1), J11 = [[R2, R1)(2), R1)(1), K1)(1),

J14 = [[R2, R1)(2), R1)(1), S3)(1), S2)(1),
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J19 = [[R2, R1)(2), R1)(1), S3)(1),H1)(1),

J20 = [[R2, R1)(1), S3)(2), S3)(1), H1)(1),

L1 = 12I12 + 8I13 + 3(12I3 + I4)J1 − 2I2(9J3 + 6J4 − 2J5) + 36J14,

L2 = (165I3 − 914I4 − 1755I5)I10+

6I2
2 (93I7 − 270I8 + 4I9 + 81J6 + 288J7 + 126J8 − 135J9)−

3I2(489I2
3 − 40I3I4 + 507I3I5 + 268I4I5 − 1458I14 + 243J19),

L3 = 2I2(48I3 − 16I4 − 9I5) + 45I10,

G1 = 4I6 + 3I2J1,

G2 = 4L1 − 180I11 + 120I12 − 45(I3 − 6I5)J1+
5I2(9J3 + 24J4 + 4J5) + 90J11,

G3 = − 2L1(2I2I3 + 9I2I5 − 7I10)− 18I2
2 (58I3 − 61I4 − 24I5)J3−

6I2
2 (23I3 − 60I4 − 48I5)J4 + 4I2

2 (43I3 + 16I4 + 48I5)J5−
3I2

2J1(186I7 + 88I9 − 378J7 + 207J8 + 6J9)−
27I2

2 (3I2J1J2 − 8I2J10 + 8J20),

G4 = L1(16(105I3 − 286I4 − 945I5)I10 + 9I2
2 (−16I7 − 945I8−

64I9 + 27I2J2 + 396J6 + 1296J7 + 720J8 − 624J9)−
3I2(1776I2

3 − 512I3I4 + 8268I3I5 − 1696I4I5 − 4725I2
5−

6552I14 + 1602J19)),
G5 = L1L2L3.

By using the comitants Ri and Si (i = 1, 2, 3) the system (1) can
be written in the form

dx

dt
=

1
2

∂R1

∂y
+

1
2
S1x+

1
3

∂R2

∂y
+

2
3
S2x+

1
4

∂R3

∂y
+

3
4
S3x,

dy

dt
=−1

2
∂R1

∂x
+

1
2
S1y− 1

3
∂R2

∂x
+

2
3
S2y− 1

4
∂R3

∂x
+

3
4
S3y.

In [3] for the cubic systems (1) with I1 = 0, I2 > 0, R3 ≡ 0 the
conditions for the singular point (0, 0) to be a center were constructed
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in the terms of the coefficients of the normal form of the system. In this
paper the GL(2,R)-invariant conditions for the singular point (0, 0) to
be a center for the cubic differential systems (1) with I1 = 0, I2 > 0,
R3 ≡ 0 were constructed.

Theorem 1. A system (1) with the conditions I1 = 0, I2 > 0,
R3 ≡ 0 has the center in the origin of the coordinates if and only if the
following conditions are fulfilled:

G1 = G2 = G3 = G4 = G5 = 0.
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Abstract

In this paper minimal rational bases of GL(2,R)-comitants
and a rational basis of GL(2,R)-invariants for the bidimensional
system of differential equations with nonlinearities of the fourth
degree are presented.

Keywords: differential system, comitant, invariant, rational
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Let us consider the system of differential equations with nonlinea-
rities of the fourth degree

dx

dt
= P1(x, y) + P4(x, y),

dy

dt
= Q1(x, y) + Q4(x, y), (1)

where Pi(x, y), Qi(x, y) are homogeneous polynomials of degrees i in x
and y with real coefficients. We denote by A the 14-dimensional coef-
ficient space of the system (1), by q ∈ Q ⊆ Aff(2,R) a nondegenerate
linear transformation of the phase plane of (1) and by rq(a) its linear
representation in the space A.

Definition 1. [1] A polynomial K(a, x) in the coefficients of the
system (1) and the coordinates of the vector x = (x, y) ∈ R2 is called a
comitant of the system (1) with respect to the group Q if there exists
a function λ : Q → R such that

K(rq(a), q · x) ≡ λ(q)K(a, x)

c©2014 by I. Calin, S. Ciubotaru
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for every q ∈ Q, a ∈ A and x ∈ R2.

If Q is the group GL(2,R), then the comitant is called GL(2,R)-
comitant or centroaffine comitant.

If a comitant does not depend on the coordinates of the vector x,
then it is called invariant

Definition 2. The set S of the comitants (invariants) is called a
rational basis on M ⊆ A of the comitants (invariants) for the system (1)
with respect to the group Q if any comitant (invariant) of the system
(1) with respect to the group Q can be expressed as a rational function
of elements of the set S.

Definition 3. A rational basis on M ⊆ A of the comitants (invari-
ants) for the system ((1)) with respect to the group Q is called minimal
if by the removal from it of any comitant (invariant) it ceases to be a
rational basis.

Definition 4. [2] Let f and ϕ be the polynomials in the coordinates
of the vector (x, y) ∈ R2 of the degrees r and ρ, respectively. The
polynomial

(f, ϕ)(k) =
(r − k)!(ρ− k)!

r!ρ!

k∑

h=0

(−1)h

(
k

h

)
∂kf

∂(x)k−h∂(y)h

∂kϕ

∂(x)h∂(y)k−h

is called the transvectant of index k of polynomials f and ϕ.

If the polynomials f and ϕ are GL(2,R)-comitants of the system
(1), then the transvectant of the index k ≤ min(r, ρ) is also a GL(2,R)-
comitant of the system (1) [3].

The GL(2,R)-comitants [1] of the first degree with respect to the
coefficients of the system (1) have the form

Ri = Pi(x, y)y −Qi(x, y)x, Si =
1
i

(
∂Pi(x, y)

∂x
+

∂Qi(x, y)
∂y

)
, i = 1, 4.

In repeated using of the transvectants a set of the parenthesis of
the type ((. . . ( will be replaced by a single parenthesis of the form
[[. By using the comitants Ri and Si (i = 1, 4), and the notion of
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transvectant the following GL-comitants and invariants of the system
(1) were constructed:

K1 = R4, K2 = S4, K3 = (R4, R4)(4), K4 = (R4, R4)(2),

K5 = (R4, S4)(3), K6 = (R4, S4)(2), K7 = (R4, S4)(1),

K8 = (S4, S4)(2), K10 = [[R4, R4)(4), R4)(1),

K13 = [[R4, R4)(2), R4)(1), K17 = [[R4, S4)(3), S4)(2),

K18 = [[R4, S4)(3), S4)(1), K21 = [[S4, S4)(2), S4)(1), Q1 = R1,

Q2 = S1, Q3 = (R4, R1)(2), Q4 = (R4, R1)(1), Q5 = (S4, R1)(2),

Q6 = (S4, R1)(1), Q10 = [[R4, R1)(2), R1)(2),

H1 = (Q10, Q5)(1), H2 = [[R1, Q5)(1), Q5)(1),

H3 = [[R1, Q5)(1), Q10)(1), H4 = [[R1, Q10)(1), Q10)(1),

H5 = [[R4, Q5)(1), Q5)(1), Q5)(1), Q5)(1), Q5)(1),

H6 = [[R4, Q5)(1), Q5)(1), Q5)(1), Q5)(1), Q10)(1),

H7 = [[S4, Q5)(1), Q5)(1), Q5)(1),

H8 = [[R4, Q5)(1), Q5)(1), Q5)(1), Q10)(1), Q10)(1),

H9 = [[S4, Q5)(1), Q5)(1), Q10)(1),

H10 = [[R4, Q5)(1), Q5)(1), Q10)(1), Q10)(1), Q10)(1),

H11 = [[S4, Q5)(1), Q10)(1), Q10)(1),

H12 = [[R4, Q5)(1), Q10)(1), Q10)(1), Q10)(1), Q10)(1),

H13 = [[S4, Q10)(1), Q10)(1), Q10)(1),

H14 = [[R4, Q10)(1), Q10)(1), Q10)(1), Q10)(1), Q10)(1).

Theorem 1. The set of GL(2,R)-comitants

{K1, K2, K3, K4, K5, K6, K7, K10, K13, Q1, Q2, Q3, Q4}
is a minimal rational basis of the GL(2,R)-comitants for the system
(1) of differential equations with nonlinearities of the fourth degree on
M = {a ∈ A | K1 6≡ 0} .
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Theorem 2. The set of GL(2,R)-comitants

{K1, K2, K5, K6, K7, K8, K17, K18, K21, Q1, Q2, Q5, Q6}

is a minimal rational basis of the GL(2,R)-comitants for the system
(1) of differential equations with nonlinearities of the fourth degree on
M = {a ∈ A | K2 6≡ 0} .

Theorem 3. The set of GL(2,R)-invariatns

{Q2, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14}

is a rational basis of the GL(2,R)-invariants for the system (1) of dif-
ferential equations with nonlinearities of the fourth degree on M =
{a ∈ A | H1 6≡ 0} .
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Bifurcation diagrams and quotient topological

spaces under the action of the affine group on a

subclass of quadratic vector fields

Oxana Diaconescu, Dana Schlomiuk, Nicolae Vulpe

Abstract

In this article we consider the class QSLpc+qc+r,∞
4 of all real

quadratic differential systems
dx

dt
= p(x, y),

dy

dt
= q(x, y) with

gcd(p, q) = 1, having invariant lines of total multiplicity four and
one real and two complex infinite singularities. We construct
compactified canonical forms for this class and bifurcation dia-
grams for these compactified canonical forms. These diagrams
contain many repetitions of phase portraits due to symmetries
under the action of the group of affine transformations and time
homotheties. We construct the orbit spaces under this action
and the corresponding bifurcation diagrams in these orbit spaces.
These diagrams retain only the essence of the dynamics and thus
make transparent their content.

Keywords: Quadratic differential system, topological equiv-
alence, group action, phase portrait, bifurcation diagram.

1 Introduction

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R, their
associated vector fields D̃ = p(x, y) ∂

∂x + q(x, y) ∂
∂y and differential
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equations q(x, y)dx − p(x, y)dy = 0. We call degree of a system (1)
(or of a vector field (1) or of a differential equation (1)) the integer
n = deg(S) = max(deg p, deg q). In particular we call quadratic a
differential system (1) with n = 2.

A system (1) is said to be integrable on an open set U of R2 if there
exists a C1 function F (x, y) defined on U which is a first integral of the
system, i.e. such that D̃F (x, y) = 0 on U and which is nonconstant on
any open subset of U . The cases of integrable systems are rare but as
Arnold said in [1, p. 405] ”...these integrable cases allow us to collect
a large amount of information about the motion in more important
systems...”.

In [2] Darboux gave a method of integration of planar polyno-
mial differential equations in terms of invariant algebraic curves. Dar-
boux showed that if an equation (1) (or a system (1) or a vector field
(1)) possesses a sufficient number of such invariant algebraic solutions
fi(x, y) = 0, fi ∈ C[x, y], i = 1, 2, . . . , s then the equation has a first
integral of the form F = f1(x, y)λ1 · · · fs(x, y)λs , λi ∈ C.

The simplest class of integrable quadratic systems due to the pres-
ence of invariant algebraic curves is the class of integrable quadratic
systems due to the presence of invariant lines. The study of this class
was initiated in articles [3–7].

An important tool in the classification of quadratic systems possess-
ing invariant lines is the notion of configuration of invariant lines of a
polynomial differential system. This concept splits the class we study
in disjoint subsets according to their distinct configurations making the
respective classification more easily accessible.

Definition 1.1. [3] We call configuration of invariant lines of a sys-
tem (1), the set of all its (complex) invariant lines, each endowed with
its own multiplicity and together with all the real singular points of this
system located on these lines, each one endowed with its own multiplic-
ity.

In classifying planar differential systems the topological equivalence
plays an important role. In this work we say that two planar differential
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systems (S1) and (S2) are topologically equivalent if and only if there
exists an homeomorphism of the plane carrying orbits to orbits and
preserving or reversing globally their orientation. A finer equivalence
relation is the following: two systems are equivalent if they are in the
same orbit under the action of the group G = Aff(2, R)×R∗ of affine
transformations and time homotheties. This finer equivalence relation
allows us to choose convenient normal forms depending on fewer than
the twelve parameters, the coefficients of a general quadratic system.

2 Description of main results

Whenever in mathematics we encounter an equivalence relation R on
a structured object A it is customary to construct its quotient object
A/R, i.e. the set of equivalence classes of A and to inquire about its
structure.

The equivalence relation on QS induced by the group G action
yields a quotient object QS/G, i.e. the set of all orbits of the group
action, which is a five-dimensional topological space. In this work
– we construct compactified canonical forms and compactified bifurca-
tion diagrams for the class QSLpc+qc+r,∞

4 ;
– we show that the class QSLpc+qc+r,∞

4 splits into a finite set of orbits,
a finite set of families of orbits each with parameter space R and a set
of families of orbits each with parameter space R2;
– we show that there are distinct systems in the bifurcation diagrams
lying on the same orbit of the group G action.
– we construct quotient spaces with respect to the action of the group
G and the induced bifurcation diagram on these quotient spaces.

The resulting diagrams are much simpler, retaining only a unique
representatives for each orbit, capturing the essence of the dynamics
when parameters vary and also when we allow the group to act.
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185



O. Diaconescu, D. Schlomiuk, N. Vulpe

References
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On Admissible Limits of Holomorphic Functions

of Several Complex Variables

Peter V. Dovbush

Abstract

The aim of the present article is to establish the connection
between the existence of the limit along the normal and the ad-
missible limit at a fixed boundary point for holomorphic functions
of several complex variables.

Keywords: holomorphic function, boundary behavior, ad-
missible limit.

1 Introduction and Main Result

The connection between the existence of a radial limit and an angular
limit for a holomorphic function defined on the unit disc is described
by Lehto and Virtanen [3, Theorem 5] in terms of the growth of the
spherical derivative.

Let D be a bounded domain in Cn, n > 1, with C2-smooth
boundary ∂D, then at each ξ ∈ ∂D the tangent space T c

ξ (∂D) and
the unit outward normal vector νξ are well-defined. We denote by
T c

ξ (∂D) and N c
ξ (∂D) the complex tangent space and the complex nor-

mal space, respectively. The complex tangent space at ξ is defined
as the (n − 1) dimensional complex subspace of Tξ(∂D) and given by
T c

ξ (∂D) = {z ∈ Cn : (z, w) = 0, ∀w ∈ N c
ξ (∂D)}, where (·, ·) denotes

canonical Hermitian product of Cn. Let p(z, Tξ(∂D)) is the Euclidean
distance from z to the real tangent plane Tξ(∂D).

c©2014 by P. Dovbush
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An admissible domain Aα(ξ) with vertex ξ ∈ ∂D and aperture
α > 0 is defined as follows [5]:

Aα(ξ) = { z ∈ D : |(z − ξ, νξ)| < (1 + α)rξ(z), |z − ξ|2 < αrξ(z) },

where rξ(z) = min{r(z), p(z, Tξ(∂D))}.
The existence of admissible limits (in Fatou’s theorem in the space

Cn, n > 1) was discovered by Koranyi [1] and Stein [2]; the com-
plex geometrical nature of this phenomenon has been investigated by
Chirka [3].

The function f defined in a domain D in Cn has a limit L, L ∈ C,
along the normal νξ to ∂D at the point ξ iff limt→0 f(ξ − tνξ) = L; f
has an admissible limit L, at ξ ∈ ∂D iff

lim
Aα(ξ)3z→ξ

f(z) = L

for every α > 0; f is admissible bounded at ξ if supz∈Aα(ξ) |f(z)| < ∞
for every α > 0.

We call ∣∣∣∑n
j=1

∂f
∂zj

(z)vj

∣∣∣
1 + |f(z)|2

the spherical derivative of f(z) in the direction of the vector v ∈ Cn.
We say that the vector v ∈ Cn has normal (resp. complex tangen-

tial) direction if v ∈ z + N c
ξ (∂D) (resp. v ∈ z + T c

ξ (∂D)).
We can now state our main result:
Theorem 1. Let D be a domain in Cn, n > 1, with C2-smooth

boundary. If f ∈ O(D) has a limit L along the normal to ∂D at the
point ξ, then at the point ξ ∈ ∂D the function f has an admissible limit
L if and only if in every admissible domain with vertex ξ the spherical
derivative of f in the normal and complex tangent directions increases
like o(1/rξ(z)) and o(1/

√
rξ(z)), respectively.
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2 An extension of the Lindelöf principle

The following refinement of Lindelöf’s principle holds.
Theorem 2. Let D be a domain in Cn, n > 1, with C2-smooth

boundary. If a function f in D has a limit L, L ∈ C, along the normal
νξ at a point ξ ∈ ∂D, and in every admissible domain with vertex ξ
the function f is holomorphic, L is his omitted value and the spherical
derivative of f in the normal and complex tangent directions grows no
faster than K/d(z) and K/

√
d(z), respectively, then f has an admissi-

ble limit L at ξ.

Also we have the following theorem.
Theorem 3. Let D be a domain in Cn, n > 1, with C2-smooth

boundary. Let in every admissible domain with vertex ξ the function f
be holomorphic and its spherical derivative in the normal and complex
tangent directions grows no faster than K/d(z) and K/

√
d(z), respec-

tively. If
lim

Aβ(ξ)3z→ξ
f(z) = L for some β > 0,

then f has an admissible limit at ξ.

For bounded holomorphic functions this theorem appears in Chirka’s
paper [1], with the proof sketched there relying on certain estimates on
harmonic measures. A proof based on a different method was given by
Ramey [4, Theorem 2].
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The Monge equation and topology of solutions

of the second order ODE’s

Valerii Dryuma

Abstract

Properties of the Monge equation Φ
(
x, y, z, dy

dx , dz
dx

)
= 0 as-

sociated with the partial differential of equation Fxẋ + Fy ẏ = 0
to the first integral F (x, y) = C of the system ODE ẋ =
P (x, y), ẏ = Q(x, y) are studied. Examples of solutions of the
equation Pµx+Qµy+(Px+Qy)µ = 0 to the integrating multiplier
µ = µ(x, y) of the first order ODE Qdx−Pdy = 0, where Q(x, y)
and P (x, y) are the polynomial on x, y, are constructed. Topo-
logical properties of the relations F (x, y, a, b) = 0 which generate
dual second order ODE’s y′′ = f(x, y, y′) and b′′ = φ(a, b, b′) are
considered.

Keywords: The Monge equation, integrating multiplier, du-
ality, ODE.

1 Introduction

Finding integrating multiplier µ(x, y) for the equation y′ = f(x, y) =
Q(x,y)
P (x,y leads to the search for solutions of linear p.d.e. Pµx+Qµy+(Px+
Qy)µ = 0, which is a problem equivalent to solution of the equation y′ =
f(x, y). In this paper we study general properties of the equation for the
integrating multiplier using associated equations of Monge. Another
problem considered here is the study of the properties of the relations
F (x, y, a, b) = 0 which generate the second order ODE y′′ = h(x, y, y′)
and the equation b′′ = φ(a, b, b′) dual to it.
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2 The Monge equation

Monge equation for the first order p.d.e. H(x, y, z, zx, zy) = 0 or
H(x, y, z, p, q) = 0 is a result of an exclusion of the variables p = zx

and q = zy from the system of equations H(x, y, z, p, q) = 0, dx
Hp

=
dy
Hq

= dz
pHp+qHq

. To construct the Monge equation for the p.d.e.
P2Fx + Q2Fy = 0, which determines the first integral F (x, y) = C
of the system ẋ = P (x, y), ẏ = Q(x, y) we transform it into the form
a0 ωx+a1 xωx+a2 ωtωx+a11 x2ωx+a12 xωtωx+a22 ω2

t ωx−b0 t−xb1 t−
ωtb2 t−x2b11 t−ωtxb12 t−ω2

t b22 t = 0, with the help of change of the
variables F (x, y) = u(x, t), y = v(x, t), Fx = ux − ut

vt
vx, Fy = ut

vt
,

where u(x, t) = tωt − ω, v(x, t) = ωt, ω = ω(x, t) and t is the
parameter. To obtain Monge equation associated with this equa-
tion we restrict ourselves to the special case when the parameters
are a0 = 0, a1 = 0, a2 = 1, a11 = 0, a12 = 1, a22 = 0. Re-
mark that full quadratic system of equations is reduced to the form
(1 + xy)y′ = Q2(x, y) by means of linear change of variables.

Theorem 1. The Monge equation for the p.d.e. which is associated
with ODE of the form (1 + xy)dy −Q2(x, y)dx = 0 is

x2 (zx)2 +
(
4 yb22 + 2 xyx − 2 b12 x2y − 2 b2 yx

)
zx+

+(yx)2+
(−4x2b1 y − 4x3b11 y + 2 b2 y − 4 b0 yx + 2 b12 xy

)
yx+

+x2y2b12
2−4 b0 y2b22 − 4xb1 y2b22 − 4x2b11 y2b22 + 2 xy2b2 b12+

+y2b2
2 = 0, (1)

where z = z(x) and y = y(x).
Integral curves of the Monge equation envelope characteristic curves

of the p.d.e. and so they can be useful to study properties of solutions of
corresponding ODE. Properties of solutions of equation (1) as function
on parameters can be studied geometrically after their consideration as
quadratic integral of geodesics of 3-dimensional space with the Riemann
metric ds2 = x2dz 2+

(
2 dy x +

(−2 b12 x2y − 2 b2 yx + 4 yb22

)
dx

)
dz +

dy2 +
(−4x2b1 y − 4x3b11 y + 2 b2 y − 4 b0 yx + 2 b12 xy

)
dx dy +

+ y2
(−4x2b11 b22 +x2b12

2+2 xb2 b12−4xb1 b22 +b2
2−4 b0 b22

)
dx 2.
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2.1 Integrating multiplier

The first order of p.d.e. for integrating multiplier µ(x, y) = exp(h(x, y)
for the equation P2dy − Q2dx = 0 has the form Q2hy + P2hx +
P2x + Q2y = 0. To obtain the equation of Monge associated with
this equation we transform it into another form with the help of
Ampere transformation x = ξ, y = ρη, z = ηρη − ρ(ξ, η), hx =
−ρξ, hy = η. In result we get the equation (η b22 − a22 ρξ) (ρη)

2 +
(a12 + 2 b22 + (−a2 − ξ a12 ) ρξ + η b2 + η b12 ξ) ρη +
+

(−a11 ξ2 − a0 − ξ a1

)
ρξ + b2 + 2 a11 ξ + b12 ξ + η b11 ξ2 +

+ a1 + η b1 ξ + η b0 = 0, from which in particular case a0 = 1, a1 =
0, a2 = 0, a11 = 0, a12 = 1, a22 = 0 follows the Monge equation

− (zx)2 x2 +
(
2 yb12 x2 − 2 yxx + 2 yxb2 + 2x− 4 b22 y + 4 xb22

)
zx−

− (yx)2 + 2
(
y(−b12 x+2b0 x+2b1 x2− b2

)
yx+

+2
(−2 b22 +2 b12 x2− 1+2xb2 +2 yb11 x3

)
yx+

+4 y2b0 b22 − 1− y2b2
2 − y2b12

2x2 − 4 b22 − 2 y2b12 b2 x+

+4 y2b22 b11 x2 + 4 y2b22 b1 x− 4 b22
2 − 2 yb12 x− 2 b2 y = 0.

3 On topology of General Integral

Definition. The equations y′′ = f(x, y, y′) and b′′ = φ(a, b, b′) form
a dual pair if each of them is obtained by excluding variables (a, b)
or (x, y) from the relation F (x, y(x), a, b(a)) = 0, after its double dif-
ferentiation on the corresponding variable x or a [2]. The relation
F (x, y, a, b) = 0 in this case is a common General Integral for both
equations and it can have nontrivial topological properties.

Theorem 1. Differentiating twice the relation F (x, y, a, b) = y(x)2b +
x3 + axb2 + nb3 = 0 with respect to x and excluding the variables (b, a)
from the obtained equalities, we get the differential equation

2x2 (y(x))3
(
y′′

)3 +
(
6x2

(
y′

)2
y(x)2 + 3 y(x)4 − 6 xy(x)3y′

) (
y′′

)2 +
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+
(
6 y(x)3(y′)2 + 6 x2(y′)4y(x)− 12xy(x)2(y′)3

)
y′′ + 3 y(x)2(y′)4+

+27nx2 + 2 x2(y′)6 − 6xy(x)(y′)5 = 0.

By analogy the dual equation is obtained

b(a)6(b′′)3 +
(−9 b(a)5(b′)2 − 3 (b(a)4a(b′)3

)
(b′′)2+

+
(
12 b(a)3(b′)5a + 24 b(a)4(b′)4

)
b′′ + 12 b(a)(b′)8a2 − 108 (b′)9n2+

+4 a3(b′)9 − 16 b(a)3(b′)6 = 0

Corollary 1 The relation F (x, y, a, b) = y2b + x3 + axb2 + nb3 = 0 in
variables (x, y) is a family of cubic curves of genus g = 1 dependent on
parameters (a, b) and arbitrary n = n(a). But this relation, considered
as family of algebraic curves in the variables (a, b), can have arbitrary
genus g = N,N = 0, 1, 2, 3..., for example, (g = 0 if n = a3, and g = 2
when n = a4). Appropriate classes of dual equations differ and this
property can be used in the theory of H(x, y, y′, y′′) = 0, as well as the
first order theory of ODE h(x, y, y′) = 0.
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A Bifurcation Scenario of Chaos Transition

for the Classical Lorenz System

Valery Gaiko

Abstract

Developing a bifurcational geometric approach to the quali-
tative analysis of polynomial dynamical systems and using some
numerical results, we present a new bifurcation scenario of chaos
transition for the classical Lorenz system.

Keywords: Lorenz system, bifurcation, chaos, limit cycle.

1 Introduction

Consider a three-dimensional polynomial dynamical system

ẋ = σ(y − x), ẏ = x(r − z)− y, ż = xy − bz (1)

known as the Lorenz system. Historically, (1) was the first dynamical
system for which the existence of an irregular attractor (chaos) was
proved for σ = 10, b = 8/3, and 24,06 < r < 28. For many years, the
Lorenz system has been the subject of study by numerous authors (see,
[3]–[7]). However, until now the structure of the Lorenz attractor is
not yet completely clear, and the most important question at present
is to understand the bifurcation scenario of chaos transition in the
system (1), which is related to Smale’s Fourteenth Problem [6]. In
this paper, we present a new bifurcation scenario for system (1), where
σ = 10, b = 8/3, and r > 0, using numerical results of [4] and a
bifurcational geometric approach to the global qualitative analysis of
three-dimensional dynamical systems, which was applied earlier in the
two-dimensional case [1, 2].

c©2014 by V. Gaiko
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2 A bifurcation scenario of chaos transition

1. The Lorenz system (1) is dissipative and symmetric with respect
to the z-axis. The origin O(0, 0, 0) is a singular point of system (1)
for any σ, b, and r. It is a stable node for r < 1. For r = 1, the
origin becomes a triple singular point, and then, for r > 1, there
are two more singular points in the system: O1(

√
b(r − 1),

√
b(r − 1),

r − 1) and O2(−
√

b(r − 1),−
√

b(r − 1), r − 1), which are stable up to
the parameter value ra = σ(σ + b + 3)/(σ − b − 1) (ra ≈ 24,74 for
σ = 10 and b = 8/3). For all r > 1, the point O is a saddle-node. It has
a two-dimensional stable manifold W s and a one-dimensional unstable
manifold W u. If 1 < r < rl ≈ 13,9, then the separatrices Γ1 and Γ2

issuing from the point O along its one-dimensional unstable manifold
W u are attracted by their nearest stable points O1 and O2, respectively.

2. If r = rl, then each of the separatrices Γ1 and Γ2 becomes a
closed homoclinic loop. In this case, two unstable homoclinic loops,
C+

0 and C−
0 , are formed around the points O1 and O2, respectively.

They are tangent to each other and the z-axis at the point O, and
form together a homoclinic butterfly.

3. If rl < r < ra ≈ 24,74, then, unfortunately, neither the classical
scenario (see, e. g., [7]) nor the scenario of [4] can be realized. The
reason is that, in both cases, trajectories of system (1) should intersect
the two-dimensional stable manifold W s of the point O. Since this is
impossible, the only way to overcome the contradiction is to suppose
that a cascade of period-doubling bifurcations [4] will begin immedi-
ately in each of the half-spaces with respect to the manifold W s, when
r > rl. In this case, each of the homoclinic loops C+

0 and C−
0 generates

an unstable limit cycle of period 2 and a stable limit cycle of period 1
lying between the coils of the cycle of period 2 in the corresponding
half-spaces containing the points O1 and O2, respectively. With further
growth of r, each of the cycles of period 2 generates an unstable limit
cycle of period 4 with a stable limit cycle of period 3 inside of it and
each of the cycles of period 1 generates a stable limit cycle of period 2
with an unstable limit cycle of period 1 inside of it. Then, after next
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doubling, we will have in each of the half-spaces an unstable limit cycle
of period 8 with an inserted stable limit cycle of period 7 and a stable
limit cycle of period 6 with an inserted unstable limit cycle of period 5,
and a stable limit cycle of period 4 with an inserted unstable limit cycle
of period 3, and an unstable limit cycle of period 2 with an inserted
stable limit cycle of period 1. Continuing this process further, we will
obtain limit cycles of all periods from one to infinity, and the space
between these cycles will be filled by spirals issuing from unstable limit
cycles and tending to stable limit cycles as t → +∞. These cycles are
inserted into each other, they make various combinations of rotation
around the points O1 and O2 in the corresponding half-spaces contain-
ing these points and form geometric constructions (limit periodic sets),
which look globally like very flat truncated cones described in the chaos
transition scenario of [4].

4. For r = ra, the biggest unstable limit cycles of infinite period
disappear through the Andronov–Shilnikov bifurcation [3, 5] in each of
the half-spaces containing the points O1 and O2 (the cone vertices are at
these points), and these points become unstable saddle-foci generating
two small stable limit cycles lying on two-dimensional focus manifolds
of O1 and O2.

5. If ra < r < +∞, then a cascade of period-halving bifurcations [4]
occurs in each of the half-spaces with respect to the manifold W s. We
have got again two symmetric with respect to the z-axis limit periodic
sets consisting of limit cycles of all periods, which are inserted into each
other and make various combinations of rotation around the points O1

and O2 in the corresponding half-spaces containing these points, and
the space between the cycles is filled by spirals issuing from unstable
limit cycles and tending to stable limit cycles as t → +∞. With further
growth of r, the period-halving process makes the limit periodic sets
more and more flat. The obtained geometric constructions are the only
stable limit sets of system (1). The spirals of the unstable saddle-foci
O1 and O2 and the trajectories issuing from infinity tend to these limit
periodic sets (more precisely, to their stable limit cycles) as t → +∞.
Just these stable limit periodic sets form two symmetric parts of the
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so-called Lorenz attractor, and this really looks very chaotic.
6. If r → +∞ (numerically, when r > 313), then the period-halving

process will be finishing and system (1) will have two stable limit cycles
lying on the two-dimensional focus manifolds of the unstable saddle-foci
O1 and O2 in two phase half-spaces of (1) containing these points. This
completes our scenario of chaos transition in the Lorenz system (1).
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On compact viable sets in affine IFS with

coherent hyperbolic structure

Vasile Glavan, Valeriu Guţu

Abstract
Viable sets in multi-valued dynamics, generated by finite fam-

ilies of mappings, are considered. In the case of affine Iterated
Function Systems with coherent hyperbolic structure the exis-
tence of compact viable sets is stated, and some topological char-
acteristics of these sets are given.

Keywords: Set-valued dynamics, iterated function systems,
viable set, cone condition.

1 Introduction

Contractive Iterated Function Systems (IFS) are very well studied,
many classical fractals are their attractors and various algorithms for
constructing these fractals are elaborated (see, e.g., [1]). Generaliza-
tions for (weakly) contracting relations have been purposed in [4], [5],
where existence of the attractors has been stated and the dynamics of
relations near these attractors have been studied. The attractor is (for-
wardly) invariant and the dynamics on it characterizes the dynamics on
the whole phase space. If the IFS is not contractive the dynamic itself
is much more complex and proper invariant subsets may not exist. In
control theory a weaker notion is considered – viability. In our paper
we are concerned with viable compact sets in affine IFS. We adapt the
well known concept of cone condition from ordinary dynamics to the
set-valued case and give necessary and sufficient conditions for a com-
pact viable set to exist. We also prove that under these conditions the
compact viable set is the closure of periodic chains (trajectories).

c©2014 by V. Glavan, V. Guţu
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2 Viable sets in IFS

In this section we introduce the notion of viable set under an IFS, and
characterize it as a surjective subset for a relation in terms of E. Akin
(see [2]). We also give some topological properties of viable subsets.

Given the complete metric space (X, d), consider the Iterated Func-
tion System F = {X; f1, f2, . . . , fm}, consisting of pairwise distinct
continuous functions fj : X → X (1 ≤ j ≤ m). Let T = Z or
T = Z+ = {n ∈ Z |n ≥ 0}, or T = Z− = {n ∈ Z |n ≤ 0}.

Let α, β ∈ Z ∪ {−∞} ∪ {+∞}, α < β, and S = (α, β). A sequence
(xn)n∈S in X is called a chain on S of the IFS F if for every n ∈ S there
exists jn ∈ {1, 2, . . . , m} such that xn+1 = fjn(xn), provided (n+1) ∈ S
as well.

Given α ∈ Z− ∪ {−∞} and β ∈ Z+ ∪ {+∞}, α < β, the nonempty
subset A ⊆ X is called viable on S = (α, β) if for every a ∈ A there
exists at least one chain (xn)n∈S such that x0 = a and xn ∈ A for all
n ∈ S.

Obviously, every (completely) invariant set is viable on (Z) Z+, as
well as each fixed point or periodic chain does.

Given the IFS {X; f1, . . . , fm} denote by F∗ : P(X) → P(X) the
corresponding Nadler-Hutchinson operator defined as follows: F∗(C) =
m⋃

j=1
fj [C], where fj [C] =

⋃
x∈C

fj(x). (Here P(X) denotes the space of all

nonempty compact subsets of X endowed with the Pompeiu-Hausdorff
metric.)

Let XF be the set of all chains (xn)n∈Z in X endowed with compact-
open topology (see [2]).

Denote by π0 : XF → XF , π0 : (xn)n∈Z 7→ x0, the projection on
zero-coordinate.

Lemma [2].
⋂
i∈Z

F i∗(X) = π0(XF ).

Recall that a subset A is said to be completely invariant, if
F−1∗ (A) = A = F∗(A). The following theorem gives a similar char-
acteristic for viable sets.
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Theorem 1. A set A is viable on Z if and only if A ⊂ F∗(A)∩F−1∗ (A).

Theorem 2. Let F = {X; f1, f2, . . . , fm} be an IFS, consisting of
homeomorphisms. If the set A is viable on S ⊂ Z, then its closure Ā
is also viable on S.

3 Families of invariant cones

In what follows we are concerned with a class of expanding affine IFS’
with ”coherent hyperbolic structure”.

Following [3], let Rn = Rk ⊕Rn−k and let x = (u, v) ∈ Rn. Given a
real positive number γ, we call standard horizontal γ-cone at the origin
of coordinates the subset

Hγ = {(u, v) ∈ Rn : ‖v‖ ≤ γ‖u‖}.

The corresponding standard vertical cone is defined analogously.
We say that a family of cones is definite on the metric space Y ,

provided that to any point y ∈ Y a cone is attributed; the inward
condition A(H) b (H ′) means that the (closed) cone H is mapped by
A into the interior of the cone H ′.

Theorem 3. Let H,V ⊂ Σm × Rk be two families of cones such that:

1. For any t = (. . . , t−1, t0, t1, . . . ) ∈ Σm one has At0Ht b Hσ(t) and
A−1

t Vt b Vσ−1(t);

2. There exists µ > 1 such that ‖At0ξ‖ ≥ µ‖ξ‖ for any ξ ∈ Ht,
t ∈ Σm, and ‖A−1

t0
η‖ ≥ µ‖η‖ for any η ∈ Vt, t ∈ Σm.

Then there exist two families of linear subspaces Es
t ⊂ Ht and Eu

t ⊂
Vt such that

Es
t ⊕Eu

t = Rk,

At0(E
s
t ) = Es

σ(t), At0(E
u
t ) = Eu

σ(t), A−1
t0

(Eu
σ(t)) = Eu

t ,

‖At0ξ‖ ≤
1
µ
‖ξ‖ (ξ ∈ Es

t ), ‖A−1
t0

η‖ ≤ 1
µ
‖η‖ (η ∈ Eu

σ(t)).
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Moreover, the vectorial sets Es
t and Eu

t depend continuously on t.

Theorem 4. Assume that the linear part of the affine IFS F satisfies
the generalized cone conditions 1 and 2 from Theorem 3. Let Λ denote
the subset of points x ∈ Rn, for which there exists at least one bounded
chain (xn)n∈Z with x0 = x. Then:

a) The subset Λ is nonempty compact and viable on Z. Moreover,
Λ is the maximal closed subset with these properties.

b) The set Λ is the smallest closed and viable on Z subset containing
Per(F ), thus Λ = Per(F ).
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Limits of solutions to the singularly perturbed

abstract hyperbolic-parabolic systems

Andrei Perjan, Galina Rusu

Abstract

We study the behavior of solutions to the problem
{

εu′′ε (t) + u′ε(t) + A(t)uε(t) = fε(t), t ∈ (0, T ),
uε(0) = u0ε, u′ε(0) = u1ε,

in the Hilbert space H as ε → 0, where A(t), t ∈ (0,∞), is a
family of linear self-adjoint operators.
Keywords: singular perturbation, abstract second order Cauchy
problem, boundary layer function, a priori estimate.

Let H be a real Hilbert space endowed with the scalar product (·, ·)
and the norm |·|, V be a real Hilbert space endowed with the norm ||·||.
Let A(t) : V ⊂ H → H, t ∈ [0,∞), be a family of linear self-adjoint
operators. Consider the following Cauchy problem:

{
εu′′ε(t) + u′ε(t) + A(t)uε(t) = fε(t), t ∈ (0, T ),
uε(0) = u0ε, u′ε(0) = u1ε,

(Pε)

where ε > 0 is a small parameter(ε ¿ 1), uε, fε : [0, T ) → H.
We investigate the behavior of solutions uε to the problems (Pε)

when u0ε → u0, fε → f as ε → 0. We establish a relationship between
solutions to the problems (Pε) and the corresponding solution to the
following unperturbed problem:

{
v′(t) + A(t)v(t) = f(t), t ∈ (0, T ),
v(0) = u0.

(P0)

c©2014 by A. Perjan, G. Rusu
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The framework of our studying is determined by the following con-
ditions:
(H1) V is separable and V ⊂ H continuously and densely i.e.

|u|2 ≤ γ||u||2, ∀u ∈ V ;

(H2) For each u, v ∈ V the function t 7→ (A(t)u, v) is continuously
differentiable on (0,∞) and

∣∣(A′(t)u, v)
∣∣ ≤ a0|u||v|, ∀u, v ∈ V, ∀t ∈ [0,∞);

(H3) The operators A(t) : V ⊂ H → H, t ∈ [0,∞) are linear, self-
adjoint and positive definite, i.e. there exists ω > 0 such that

(A(t)u, u) ≥ ω ||u||2, ∀u ∈ V, ∀t ∈ [0,∞);

(H4) For each u, v ∈ V the function t 7→ (A(t)u, v) is twice continu-
ously differentiable on (0,∞) and

∣∣(A′′(t)u, v)
∣∣ ≤ a1|u||v|, ∀u, v ∈ V, ∀t ∈ [0,∞).

In [1] the existence and uniqueness of solutions to the problems (Pε)
and (P0) is proved.

If conditions (H1)-(H3) are fulfilled, u0ε ∈ V , u1ε ∈ H and
fε ∈ L2(0, T ;H), then there exists the unique function
uε ∈ W 2,2(0, T ;H)

⋂
L2(0, T ; V ), A(·)uε ∈ L2(0, T ; H) (strong solu-

tion), which satisfies the equation a. e. on (0, T ) and the initial
conditions from (Pε). If, in addition, u1ε ∈ V , fε(0) − A(0)u0ε ∈ V,
fε ∈ W 2,1(0, T ; H), then A(·)uε ∈ W 1,2(0, T ; H) and
uε ∈ W 3,2(0, T ; H)

⋂
W 1,2(0, T ; H).

If conditions (H1)-(H3) are fulfilled, u0ε ∈ H, and fε ∈ L2(0, T ; H),
then there exists the unique function uε ∈ W 2,2(0, T ; H)

⋂
L2(0, T ; V ),

which satisfies the equation a. e. on (0, T ) and the initial conditions
from (P0).

Theorem 1. Let T > 0. Let us assume that conditions (H1) - (H3)
are fulfilled. If u0, u0ε u1ε ∈ V and f, fε ∈ W 1,2(0, T ; H), then there
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exist constants C = C(T, γ, a0, ω) > 0, ε0 = ε0(γ, a0, ω), ε0 ∈ (0, 1),
such that

||uε − v||C([0,T ];H)

≤ C
(
M ε1/4 + |u0ε − u0|+ ||fε − f ||L2(0,T ;H)

)
,∀ε ∈ (0, ε0),

where uε and v are strong solutions to problems (Pε) and (P0), respec-
tively,

M = M(T, u0ε, u1ε, fε) = |A(0)u0ε|+ |A1/2(0)u1ε|+ ||fε||W 1,2(0,T ;H).

Theorem 2. Let T > 0. Let us assume that conditions (H1) -

(H4) are fulfilled. If u0, u0ε, A(0)u0ε u1ε, fε(0) ∈ V and f, fε ∈
W 2,2(0, T ;H), then there exist constants C = C(T, ω, γ, a0, a1) > 0,
ε0 = ε0(ω, γ, a0, a1), ε0 ∈ (0, 1), such that

||u′ε − v′ + hεe
−t/ε||C([0, T ] ;H) ≤ C

(
M1, ε

1/4 + Dε

)
,∀ε ∈ (0, ε0),

where uε and v are strong solutions to problems (Pε) and (P0) respec-
tively, hε = fε(0)− u1ε −A(0)u0ε,

M1(T, u0ε, u1ε, fε) = |A1/2(0)fε(0)|+ |A3/2(0)u0ε|
+|A1/2(0)u1ε|+ ||A(t)hε||L2(0,∞;H) + ||fε||W 2,2(0,∞;H),

Dε = ||fε − f ||W 1, 2(0, T ; H) + |A0(u0ε − u0)|.
Sketch of proof: Our approach is based on two key points. The first

one is the relationship between solutions to the problems (Pε) and (P0).
This relationship was established in the work [2].

The second key point based on a priori estimates of solutions to
the unperturbed problem, which are uniform with respect to small
parameter ε. Namely, if conditions (H1)-(H3) are fulfilled, u0ε ∈
V , u1ε ∈ H and fε ∈ L2(0,∞; H), then there exist constants C =
C(γ, a0, ω) > 0 such that for every solution uε to the problem (Pε) the
estimate

||uε||C([0,t];H) + ||A1/2(·)uε||L2([0,t];H) ≤ CM0ε,∀ε ∈ (0, ε0),∀t ≥ 0,
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is valid, where

M0ε = |A1/2(0)u0ε|+ ε|u1ε|+ ||fε||L2(0,∞;H), ε0 = min
{

1,
ω

2γ a0

}
.

If, in addition, u1ε ∈ V and fε ∈ W 1,2(0,∞; H), then

||u′ε||C([0, t];H) + ||A1/2(·)u′ε||L2([0, t];H) ≤ C Mε, ∀ε ∈ (0, ε0), ∀t ≥ 0,

Mε = |A(0)u0ε|+ |A1/2(0)u1ε|+ ||fε||W 1,2(0,∞;H).

Let uε be the strong solution to the problem (Pε) and let us denote

zε(t) = u′ε(t) + hεe
−t/ε, hε = fε(0)− u1ε −A(0)u0ε. (1)

If conditions (H1)-(H4) are fulfilled, fε(0)−A(0)u0ε, u1ε,∈ V and
fε ∈ W 1,2(0,∞;H), then there exist constants C = C(γ, ω, a0, a1) > 0
and ε0 = ε0(γ, ω, a0, a1) ∈ (0; 1) such that for zε, defined by (1), the
estimate

∣∣∣∣A1/2(·)zε

∣∣∣∣
C(0, t; H)

+
∣∣∣∣z′ε

∣∣∣∣
L2(0, t; H)

≤ C M1ε,∀ε ∈ (0, ε0),∀t ≥ 0,

is valid, where M1ε = |A1/2(0)
(
fε(0) − A(0)u0ε

)| +|A1/2(0)u1ε| +
||A(t)hε||L2(0,∞;H) + ||fε||W 2,2(0,∞;H).
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Complete normal forms for germs of vector
field with quadratic leading part

Ewa Stróżyna

We consider the complex plane vector field with zero linear part

ẋ = ax2 + bxy + cy2 + . . . , ẏ = dx2 + exy + fy2 + . . .

We divide the family of such differential equations into a few cases
depending on the number of invariant lines of the system. As the first
case we investigate the case with the polynomial first integral. We find
the non-orbital normal form as the product of the orbital normal form
and the orbital factor. We apply the generalization of the method used
to solve completely the problem of formal classification of the vector
fields with Bogdanov–Takens singularity.

The general situation is such that we have a vector field V (which is
polynomial and ‘good’) and a perturbation W (which is of high order).
We want to reduce W in V + W to some normal form by application
of a diffeomorphism expZ, i.e. the time 1 flow generated by a vector
field Z (also of high order). Recall that linear in Z part of the action of
expZ on V equals the commutator [Z, V ] = −adV Z (the homological
operator).

We ‘divide’ the perturbations W into two parts: transversal to V
and tangential to V ; also the vector fields Z are subject to such division.
Following our previous paper (where the formal orbital normal forms
for initial vector fields are obtained) we measure the ‘transversal’ to V
part by the bivector fields V ∧W = h(x, y) ·∂x∧∂y, i.e. by one function
h. The tangential to V part is of the form g(x, y)V, hence it is also
measured by one function g.

c©2014 by E. Stróżyna
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There exist homological operators, analogues to adV , which act on
the transversal and tangential parts:

f 7−→ C(V )f := V (f) (tangential),
f 7−→ D(V )f := V (f)− divV · f (transversal).

The kernel of the operator C(V ) consists of first integrals of V and the
kernel of D(V ) consists of so-called inverse integrating factors for V .
Note that we have not fixed the vector field V ; it is fixed at given step
of the reduction to normal form.

At the first step we take V = V0 as quadratic homogeneous. It
is easy to find kerC(V0) and kerD(V0). Moreover, using so-called
Schwarz–Christoffel integrals one can find complementary subspaces to
ImC(V0) and to ImD(V0).

In the second step one takes V = V0+V1, where V1 is the ‘first’ non-
trivial term from the first order normal form. Here the operator C(V )
(respectively D(V )) acts on functions of the form H + f (respectively
M + f), where H ∈ kerC(V0) (respectively M ∈ kerD(V0)).

The third (and the last) step appears when the vector field V =
V0+V1 (used in the second step) has a homogeneous inverse integrating
multiplier M or homogeneous first integral H. Then those functions
M , H are used in homological operators associated with vector field
V = V0 + V1 + V2.

Let us pass to more precise description of our method (with details
given in [2]). The quadratic part of the initial system defines a homoge-
neous vector field which, after transforming an invariant line to x = 0,
takes the following form:

V0 = (Ax2 + Bxy)∂x + (Cx2 + Dxy + Ey2)∂y.

After the change of coordinates (x, u) = (x, y/x), one gets a simple
system which has first integrals of the form

F (x, u) =
{

x exp
∫

A + Bu

βu2 + γu + δ
du

}τ

, τ ∈ C,
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for some constants β, γ, δ. We consider the case when the first integral
for V0 is of the form Hσ

0 , where

H0 = xpyq(y − x)r

is a polynomial with gcd(p, q, r) = 1. We say that V0 is of type Qp,q,r.
Let

Fd = {f ∈ C[x, y] : deg f = d} ,
F≥d = {f ∈ C[[x, y]] : deg f ≥ d} ,
Zd = {Z ∈ Z : deg Z = d} ,
Z≥d = {Z ∈ Z : deg Z ≥ d}

denote spaces of homogeneous polynomials, of formal power series, of
homogeneous vector fields and of formal vector fields respectively. For
V = V0 + . . . as above we introduce the operators

A(V )f = f · V,
B(V )Z = V ∧ Z/∂x ∧ ∂y,
C(V )f = V (f) = ∂f/∂V,
D(V )f = V (f)− div(V ) · f.

In the second equation we encounter so-called bivector fields; they mea-
sure the part of the vector field Z transversal to V . The operators C(V ),
adV and D(V ) are called the homological operators. It turns out that
the kernel of C(V ) (respectively of D(V )) consists of first integrals (re-
spectively of inverse integrating multipliers) of the vector field V.

Consider the following diagram, whose rows form the so-called
Koszul complexes:

0 −→ F≥d−1
A(V )−→ Z≥d

B(V )−→ F≥d+3 −→ 0
↓ C(V ) ↓ adV ↓ D(V )

0 −→ F≥d
A(V )−→ Z≥d+1

B(V )−→ F≥d+4 −→ 0.

In the first level analysis we assume that V = V0 and consider the
following operators

Cd(V0) : Fd 7−→ Fd+1,
Dd(V0) : Fd 7−→ Fd+1,
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i.e. restrictions of C(V ) and D(V ) to corresponding subspaces. We have
Fd ≈ Cd+1 and therefore the operators Cd(V0) and Dd(V0) act between
spaces of dimensions d + 1 and d + 2. In the below propositions we
describe the kernels and cokernels to these two operators.

Proposition 1 For the vector field V0 of type Qp,q,r we have:
(i) kerCd(V0) = C ·H l

0, if d = ls = l(p + q + r), and kerCd(V0) = 0
otherwise.

(ii) kerCd(V0) = C ·H l
0xy(y − x), if d = ls + 3, and kerCd(V0) = 0

otherwise.
Proposition 2 For the vector field V0 of type Qp,q,r we have:
(i) A subspace complementary to ImCd(V0) can be chosen in the

form NC = {C · xd+1 + C · yd+1}, if d = ls, and NC = {C · xd+1}
otherwise;

(ii) A subspace complementary to ImDd(V0) can be chosen in the
form NC = {C · xd−1y(y − x) + C · xyd−1(y − x)}, if d = ls + 3, and
NC = {C · xd−1y(y − x)} otherwise. This corresponds, via the operator
B(V0), to the vector fields const·xd−2E+const·yd−2E and const·xd−2E
respectively, where E = x∂x + y∂y is homogeneous Euler vector field.

In the second level we study the homological operators adV , C(V )
and D(V ) associated with vector fields of the form V = V0 + V1, where
V1 is a homogeneous vector field which was not reduced in the first
order analysis. We have to consider several cases. In the third level
we repeat the procedure of reducing the normal form obtained on the
previous level.

We obtained the following result which is proved in [1].
Theorem 3 The first order formal non-orbital form is the following

{V0 + [ϕ1(x) + ϕ2(y)] · E} · {1 + ψ1(x) + ψ2(y)},

where
ϕ1(x) =

∑
j∈Z+

a
(1)
j xj , ϕ2(y) =

∑
j∈I2

a
(2)
j yj

ψ1(x) =
∑

j∈Z+
b
(1)
j xj , ψ2(y) =

∑
j∈I−1

b
(2)
j yj

are formal power series and Il = {j ∈ Z+ : j + l = 0(mod s)}.
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For the second level normal form in the case with V1 of the type
a

(1)
0 xR · E is as above, but with

ϕ1(x) = xR


a

(1)
0 +

∑

Z+\I0\I−1

a
(1)
j xj




or

ϕ1(x) = xR


a

(1)
0 +

∑

Z+\I0\I−1∪{k0s}
a

(1)
j xj


 ,

where R = k0s + 1 for some k0 ∈ N and

ψ1(x) =
∑

j∈Z+\I0
b
(1)
j xj .
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The double eventual periodicity of the

asynchronous flows

Serban E. Vlad

Abstract

Let Φ : {0, 1}n → {0, 1}n be a function whose coordinates
Φi, i ∈ {1, ..., n} are iterated independently on each other, in dis-
crete time or real time. The resulted flows, called asynchronous,
model the asynchronous circuits from the digital electrical cir-
cuits. The concept of double eventual periodicity refers to two
eventually periodic simultaneous phenomena, one of the function
(so called computation function) indicating when and how Φ is
iterated and the other one of the flow itself. The paper intro-
duces the double eventual periodicity of the asynchronous flows
and gives two important results on them.

Keywords: computation function, asynchronous flows, cir-
cuits.

1 Preliminaries

We denote with B = {0, 1} the binary Boole algebra, together with the
usual laws ’ ’, ’ ·’, ’ ∪’, ’ ⊕’. These laws induce laws that are denoted
with the same symbols on Bn, n ≥ 1. Both sets B and Bn are organized
as topological spaces by the discrete topology. N = N ∪ {−1} is the
notation of the discrete time set. χA : R → B is the notation of the
characteristic function of the set A ⊂ R :

∀t ∈ R, χA(t) =
{

1, if t ∈ A,
0, otherwise

.

We denote with Seq the set of the real, strictly increasing sequences
(tk) which are unbounded from above.

c©2014 by S.E. Vlad
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Definition 1.The discrete time signals are by definition the func-
tions x̂ : N → Bn. Their set is denoted with Ŝ(n). The continuous
time signals are the functions x : R → Bn of the form ∀t ∈ R,
x(t) = µ · χ(−∞,t0)(t) ⊕ x(t0) · χ[t0,t1)(t) ⊕ ... ⊕ x(tk) · χ[tk,tk+1)(t) ⊕ ...

where µ ∈ Bn and (tk) ∈ Seq. We denote their set with S(n).

Remark. The signals are the ’nice functions’ that model the electrical
signals from the digital electrical engineering.
Definition 2. The discrete time computation functions are by
definition the sequences α : N → Bn. Their set is denoted by Π̂′n. In
general, we write αk instead of α(k), k ∈ N. The real time compu-
tation functions ρ : R → Bn are by definition the functions of the
form ρ(t) = α0 · χ{t0}(t) ⊕ α1 · χ{t1}(t) ⊕ ... ⊕ αk · χ{tk}(t) ⊕ ..., where
α ∈ Π̂′n and (tk) ∈ Seq. Their set is denoted with Π′n.

Definition 3. The discrete time computation function α ∈ Π̂′n is called
progressive if ∀i ∈ {1, ..., n},the set {k|k ∈ N, αk

i = 1} is infinite. The
set of the discrete time progressive computation functions is denoted by
Π̂n. The real time computation function ρ ∈ Π′n is called progressive
if ∀i ∈ {1, ..., n},the set {t|t ∈ R, ρi(t) = 1} is infinite. The set of the
real time progressive computation functions is denoted by Πn.

Definition 4. Let x̂ ∈ Ŝ(n), α ∈ Π̂n. For p ≥ 1, p′ ≥ 1 and k′ ∈ N ,
k′′ ∈ N, if ∀k ≥ k′, x̂(k) = x̂(k + p), ∀k ≥ k′′, αk = αk+p′, we say
that x̂, α are eventually periodic with the periods p, p′ and the limits
of periodicity k′, k′′. We consider x ∈ S(n), ρ ∈ Πn, T > 0, T ′ > 0,
t′ ∈ R,t′′∈ R. If ∀t ≥ t′, x(t) = x(t+T ), ∀t ≥ t′′, ρ(t) = ρ(t+T ′), we
use to say that x, ρ are eventually periodic with the periods T, T ′

and the limits of periodicity t′, t′′.
Definition 5. For the function Φ : Bn → Bn and λ ∈ Bn, we define
Φλ : Bn → Bn by ∀µ ∈ Bn,Φλ(µ) = (λ1 · µ1 ⊕ λ1 · Φ1(µ), ..., λn · µn ⊕
λn · Φn(µ)).
Definition 6. Let α0, ..., αk, αk+1 ∈ Bn, k ≥ 0. We define iteratively
the function Φα0...αkαk+1

: Bn → Bn by ∀µ ∈ Bn,Φα0...αkαk+1
(µ) =

Φαk+1
(Φα0...αk

(µ)).
Definition 7. The function Bn×N × Π̂n 3 (µ, k, α) 7−→ Φ̂α(µ, k) ∈
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Bn defined by ∀k ∈ N , Φ̂α(µ, k) =
{

µ, if k = −1,

Φα0...αk
(µ), if k ≥ 0

is called

(discrete time) evolution function. We define the function Bn ×
R×Πn 3 (µ, t, ρ) 7−→ Φρ(µ, t) ∈ Bn in the following way. Let ∀t ∈ R,
ρ(t) = α0 ·χ{t0}(t)⊕α1 ·χ{t1}(t)⊕ ...⊕αk ·χ{tk}(t)⊕ ..., where α ∈ Π̂n

and (tk) ∈ Seq. Then Φρ(µ, t) = Φ̂α(µ,−1) · χ(−∞,t0)(t) ⊕ Φ̂α(µ, 0) ·
χ[t0,t1)(t)⊕...⊕Φ̂α(µ, k)·χ[tk,tk+1)(t)⊕... is called (real time) evolution
function.

Definition 8. We fix in the argument of the discrete time evolution
function µ ∈ Bn and α ∈ Π̂n. The signal Φ̂α(µ, ·) ∈ Ŝ(n) is called
(discrete time) flow (through µ, under α). We fix in the argument
of the real time evolution function µ ∈ Bn and ρ ∈ Πn. The signal
Φρ(µ, ·) ∈ S(n) is called (real time) flow (through µ, under ρ).

Remark. The function Φ applied to the argument µ is computed on
all its coordinates: Φ(µ) = (Φ1(µ),Φ2(µ), ...,Φn(µ)). The function Φλ

applied to µ computes those coordinates Φi of Φ for which λi = 1
and it does not compute those coordinates Φi for which λi = 0 : ∀i ∈
{1, 2, ..., n}, Φλ

i (µ) =
{

Φi(µ), λi = 1,
µi, λi = 0

. Unlike the usual computations

from the dynamical systems theory that take place synchronously on
all the coordinates: Φ(µ), (Φ ◦ Φ)(µ), (Φ ◦ Φ ◦ Φ)(µ), ... here things
happen on some coordinates only. The asynchronous flows represent a
generalization of the computations from the dynamical systems theory,
since the constant sequence αk = (1, ..., 1) ∈ Bn, k ∈ N belongs to Π̂n,
and it gives for any µ ∈ Bn that Φα0

(µ) = Φ(µ), Φα0α1
(µ) = (Φ◦Φ)(µ),

Φα0α1α2
(µ) = (Φ ◦Φ ◦Φ)(µ), ... So, the functions α ∈ Π̂n, ρ ∈ Πn show

when and how the coordinates Φi, i = 1, n are computed.

Remark. The progressiveness of α, ρ means that Φ̂α(µ, ·), Φρ(µ, ·)
compute each coordinate Φi, i = 1, n infinitely many times as k →
∞, t → ∞. In electrical engineering, this corresponds to the so called
unbounded delay model of computation of the Boolean functions,
stating basically that each coordinate i of Φ is computed independently
on the other coordinates, in finite time.
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2 Double eventual periodicity

Definition 9. Let µ ∈ Bn, α ∈ Π̂n and ρ ∈ Πn. If p ≥ 1, p′ ≥ 1 and
k′ ∈ N exist such that

(1) ∀k ≥ k′, αk = αk+p and (2) ∀k ≥ k′, Φ̂α(µ, k) = Φ̂α(µ, k+p′)
are true, then Φ̂α(µ, ·) is called double eventually periodic. And if
T > 0, T ′ > 0, t′ ∈ R exist with

(3) ∀t ≥ t′, ρ(t) = ρ(t+T ) and (4) ∀t ≥ t′,Φρ(µ, t) = Φρ(µ, t+T ′)
fulfilled, then Φρ(µ, ·) is called double eventually periodic.
Theorem 10. Let α ∈ Π̂n. We ask that t0 ∈ R and h > 0 exist such
that

(5) ρ(t) = α0 · χ{t0}(t)⊕ α1 · χ{t0+h}(t)⊕ ...⊕ αk · χ{t0+kh}(t)⊕ ...
Then the equivalence ((1) and (2))⇐⇒ ((3) and (4)) is true.
Theorem 11. Let µ ∈ Bn. a) If α ∈ Π̂n is eventually periodic,
then Φ̂α(µ, ·) is double eventually periodic. b) If ρ ∈ Πn is eventually
periodic, then Φρ(µ, ·) is double eventually periodic.
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Construction of a Pfaff System of Fuchs Type

with the Reducible Residue Matrices

V.V. Amel’kin, M.N. Vasilevich

Abstract

We construct a multidimensional Pfaff system of Fuchs type
of a second-order in the case of the reducible residue matrices.

Keywords: reducible residue matrices, Pfaff system of Fuchs
type, pencil of surfaces, complete integrability of system.

First of all we recall that a set of the square matrices Uj , j = 1, n,
is called reducible one if all matrices Uj can be simultaneously reduced
by a nonsingular transformation to an upper-triangular form. Now let

Mj = {x ∈ CPn | Pj(x) = 0} , j = 1, n, x = (x1, x2, ..., xn+1),

where x1, x2, ..., xn+1 are the homogeneous coordinates in CPn, be ir-
reducible nonsingular algebraic varieties of codimension 1 on CPn. On

the open set M = CPn\M, where M =
4⋃

j=1
Mj , we consider the com-

pletely integrable linear Pfaff system of Fuchs type

dY = ω(x)Y, (1)

where Y is a second-order square matrix and ω(x) is a differential
1-form,

ω(x) =
4∑

j=1

Uj
dPj(x)
Pj(x)

.

In the last formula the reducible residue Uj are constant square
(2x2) matrices.

c©2014 by FV.V. Amel’kin, M.N. Vasilevich
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We consider the case when the algebraic surfaces Mj , j = 1, n, form
a pencil, and there exist homogeneous polynomials R(x) and Q(x) of
equal degree in x ∈ CPn such that Pj(x) = αjR(x) + βjQ(x), where
αj , βj ∈ C are not equal to zero.

The change of variables z = Q(x)/R(x) reduces the Pfaff system
(1) to the linear differential equation with Fuchs singularities on CPn

dY =




4∑

j=1

Uj

z − aj


Y dz, (2)

where aj = −αj/βj and the matrices Uj are considered as the matrices
with a condition

∑4
j=1 Uj = 0.

Theorem 1. The change of variables

τ = (αz + β)/(γz + δ), αδ − γβ 6= 0, (3)

where α = a2−a3, β = a1(a3−a2), γ = a3 +a2−2a1, δ = a1(a2 +a3)−
2a2a3, reduces the system (2) to the system

dY =
(

U1

τ
+

U2

τ − 1
+

U3

τ + 1
+

U4

τ − a

)
Y dτ, (4)

where
a =

(a2 − a3)(a4 − a1)
(a2 + a3)(a1 + a4)− 2(a2a3 + a1a4)

.

Proof. It follows from relation (3), that

z = (−δτ + β)/(γτ − α) (5)

and, consequently,

dz =
αδ − γβ

(γτ − α)2
dτ,

Ujdz

z − aj
=

Ujdτ

τ − bj
, (6)

where

bj =
β + αaj

δ + γaj
=

a1(a3 − a2) + (a2 − a3)aj

a1(a2 + a3)− 2a2a3 + (a3 + a2 − 2a)aj
. (7)
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Assuming aj = a1 in (7) we obtain b1 = 0. We have b2 = 1 if
aj = a2 and b3 = −1 if aj = a3. Finally, when aj = a4 we obtain
b4 = a. A reference to relations (5), (6) and values of the bj , j = 1, 4,
completes the proof of the theorem.

Returning to the solution of the posed problem we construct the
residue matrices Uj , j = 1, 3, of system (1) ((4)), without loss of gen-
erality, in the form of

Uj =
(

θj (ξj − θj)/h
hθj ξj − θj

)
,

where h 6= 0 is a real or complex constant, θj are the unknown param-
eters and ξj , 0 are the eigenvalues such that ξ1 + ξ2 + ξ3 = −1.

The system (1) is completely integrable if and only if dω = ω ∧ ω.
The last relation means [1, p. 182] that

dU1 = [U4, U1]d ln(−a), dU2 = [U4, U2]d ln(1− a),

dU3 = [U4, U3]d ln(−1− a),

dU4 = [U1, U4]d ln a + [U2, U4]d ln(a− 1) + [U3, U4]d ln(1 + a), (8)

where

[Uj , Uk] = UjUk − UkUj = (ξjθk − ξkθj)
(

1 −1/h
h −1

)
. (9)

In accordance with (9) we can rewrite system (8) in the scalar form

dθ1 = (ξ4θ1 − ξ1θ4)d ln(−a), dθ2 = (ξ4θ2 − ξ2θ4)d ln(1− a),

dθ3 = (ξ4θ3 − ξ3θ4)d ln(−1− a), dθ4 = (ξ1θ4 − ξ4θ1)d ln a+

+(ξ2θ4 − ξ4θ2)d ln(a− 1) + (ξ3θ4 − ξ4θ3)d ln(1 + a). (10)

Theorem 2. The parameters θj , j = 1, 4, such that θ1 = −2a, θ2 =
a− 1, θ3 = a + 1, θ4 = 0, define the solution of the system (10).
Thus

U1 =
( −2a (ξ1 + 2a)/h
−2ha ξ1 + 2a

)
, U2 =

(
a− 1 (ξ2 − a + 1)/h

h(a− 1) ξ2 − a + 1

)
,

219



V.V. Amel’kin, M.N. Vasilevich

U3 =
(

a + 1 (ξ3 − a− 1)/h
h(a + 1) ξ3 − a− 1

)
, U4 =

(
0 1/h
0 1

)
.

By [2], the fundamental matrix Φx0(x) of system (1) can be repre-
sented by the uniformly convergent series

Φx0(x) = E +
∞∑

ν=1

(1,2,3,4)∑

j1,...,jν

Jj1...jν (α)Uj1 ...Ujν .

The coefficients are iterated integrals Jj1...jν (α) =
∫
α

ωj1 ...ωjν over

the smooth path α : [0, 1] → M joining the point x0 with x, where
ωj = dPj(x)

Pj(x) , j = 1, 4, and J1(α) =
∫
α

ω1(α(t), α̇(t))dt is the curvilinear

integral over the path α, and Jj1...jν is the iterated integral over the
path α defined recursively as follows:

J12...τ =
∫

α

ω1...ωτ =

1∫

0

∫

αt

(ω1...ωτ−1)ωτ (α(t), α̇(t))dt,

where αt is the restriction of α to the closed interval [0, t].
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Global configurations of singularities for

quadratic differential systems with total finite

multiplicity three and at most two real

singularities

Joan Carles Artés, Jaume Llibre,
Dana Schlomiuk, Nicolae Vulpe

Abstract

In this work we consider the problem of classifying all con-
figurations of singularities, both finite and infinite of quadratic
differential systems, with respect to the geometric equivalence
relation defined in [2]. This relation is finer than the topological
equivalence relation which does not distinguish between a focus
and a node or between a strong and a weak focus or between
foci of different orders. In this article we continue the work initi-
ated in [3] and obtain the geometric classification of singularities,
finite and infinite, for the subclass of quadratic differential sys-
tems possessing finite singularities of total multiplicity three and
at most two real singularities.

Keywords: quadratic vector fields, infinite and finite singu-
larities, configuration of singularities, geometric equivalence re-
lation.

1 Introduction

We consider here real planar differential systems of the form

dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

c©2014 by J.C. Artés, J. Llibre, D. Schlomiuk, N. Vulpe
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where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call
degree of a system (1) the integer n = max(deg p, deg q). In particular
we call quadratic a differential system (1) with n = 2. We denote here
by QS the whole class of real quadratic differential systems.

The study of the class QS has proved to be quite a challenge since
hard problems formulated more than a century ago, are still open for
this class. It is expected that we have a finite number of phase por-
traits in QS. We have phase portraits for several subclasses of QS
but the complete list of phase portraits of this class is not known and
attempting to topologically classify these systems, which occur rather
often in applications, is a very complex task. This is partly due to
the elusive nature of limit cycles and partly to the rather large num-
ber of parameters involved. This family of systems depends on twelve
parameters but due to the group action of real affine transformations
and time homotheties, the class ultimately depends on five parameters
which is still a rather large number of parameters. For the moment
only subclasses depending on at most three parameters were studied
globally, including global bifurcation diagrams (for example [1])

The geometric equivalence relation for finite or infinite singularities
introduced in [2] and used in [3], [4] and [5] is finer than the topological
equivalence relation. This last relation does not distinguish:
(i) between a focus and a node; (ii) between a strong focus and a weak
focus; (iii) among foci (or saddles) of different orders; (iv) among ele-
mentary nodes with different number of characteristic directions (one,
two or infinite number); (v) among singular points having the same
topological phase portraits but different multiplicities. The geometric
equivalence relation does detect all these properties.

2 Description of main results

We consider here all geometric configurations of singularities, finite and
infinite, of quadratic vector fields having finite singularities of total mul-
tiplicity three among which there are at most two real singularities. In
other words we examine here the following three subclasses of quadratic
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differential systems: (i) systems with one real and two complex finite
singularities; (ii) systems with one double and one simple real finite
singularities and (iii) systems with one triple real finite singularity.

(A) We prove that:

• quadratic systems with one real and two complex finite singular-
ities possess 74 geometrically distinct configurations of singular-
ities;

• quadratic systems with one double and one simple real finite sin-
gularities possess 62 geometrically distinct configurations of sin-
gularities;

• quadratic systems with one triple real finite singularity possess
19 geometrically distinct configurations of singularities.

(B) Necessary and sufficient conditions for each one of the 155
different geometric equivalence classes are determined in terms of in-
variant polynomials with respect to the action of the affine group and
time rescaling.

(C) We construct the respective diagrams which actually contain
the global bifurcation diagram in the 12-dimensional space of param-
eters, of the global geometric configurations of singularities, finite and
infinite, of this family of quadratic differential systems and provides
an algorithm for deciding for any given system which is its respective
configuration.
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2Département de Mathématiques et de Statistiques,
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Averaging of a Multifrequency Boundary-value

Problem with Delay

Yaroslav Bihun

Abstract

In the work we substantiate the method of averaging for the
initial and boundary-value problem with linearly transformed ar-
gument and the frequency vector depending on slow variable.
The obtained results are used for the investigation of the exis-
tence of the method of averaging for some boundary-value prob-
lems.

Keywords: method of averaging, boundary value problems,
delay, multifrequency systems, resonances.

1 Introduction

Multifrequency systems of ordinary differential equations with the ini-
tial, multipoint and integral boundary condition has been thoroughly
investigated by averaging methods in the paper [1]. The main prob-
lem arising in the study of properties of solutions of the system is the
problem of resonance relations between the components of the variable
frequency vector. In the works [2], [3] we substantiate the method of
averaging for the initial-value problem with linearly transformed argu-
ment. For similar systems with constant delay, whose frequency vector
depends on slow variables, the method of averaging is substantiated in
the work [4].

c©2014 by Y. Bihun
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2 Substantiation of Averaging Method
for Initial Problem

Suppose that D is a domain in Rn, G = [0, L]×D×D×Rm×Rm×[0, ε0];
λ, θ and σ are certain numbers from (0, 1) , xλ(τ) = x(λτ), xσ(τ) =
x(στ), ϕθ(τ) = ϕ(θτ). Consider a system of equations with n slow
variables x and m (m ≥ 1) fast variables ϕ of the form

dx

dτ
= A(τ, x, xλ, ϕ, ϕθ) + εX(τ, x, xλ, ϕ, ϕθ, ε),

dϕ

dτ
=

ω(τ, x, xσ)
ε

+ Y (τ, x, xλ, ϕ, ϕθ, ε), (1)

where the vector-functions A,X and Y are 2π-periodic in the variables
ϕυ, ϕθν , ν = 1, ...,m.

Now we construct the averaged system of the first approximation
for slow variables:

dx

dτ
= A0(τ, x, xλ), τ ∈ [0, L], (2)

where

A0(τ, x, xλ) =
1

(2π)2m

2π∫

0

. . .

2π∫

0

A(τ, x, xλ, ϕ, ϕθ)dϕdϕθ.

Suppose that there exists a solution x = x(τ, y) of the system
(2) such that x(0, y) = y, lying in D together with a certain ρ-
neighborhood Dρ(x). Let us show that, in this case, there exists a
solution of the system (1) such that x(0, y, ψ, ε) = y, ϕ(0, y, ψ, ε) = ψ,
and the following inequality:

‖x(τ, y, ψ, ε)− x(τ, y)‖ ≤ c1ε
1−3β

2 (3)

holds for all τ ∈ [0, L], ε ∈ (0, ε∗], where ε∗ ≤ ε0, c1 > 0 is independent
of ε, and β ∈ [0, 1/3).
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3 Boundary-Value Problem

Consider a multifrequency boundary-value problem of the form
dx

dτ
= A(τ, x, xλ, ϕ, ϕθ, ε),

dϕ

dτ
=

ω(τ, x, xσ)
ε

+ X(τ, x, xλ, ϕ, ϕθ, ε), (4)

F (x|τ=τ0 , . . . , x|τ=τN , ε)+

L∫

0

Φ(τ, x, xλ, ϕ, ϕθ, ε)dτ = 0, ϕ|τ=0 = ψ, (5)

where F and Φ are n-dimensional vector functions defined in DN+1 ×
(0, ε0] and G, respectively, the function Φ is 2π-periodic in the variables
ϕν , and ϕθν ; 0 ≤ τ0 < · · · < τN ≤ L, and ψ ∈ Rm.

The averaged system corresponding to (4) and (5) takes the form

dx

dτ
= A0(τ, x, xλ, ε),

dϕ

dτ
=

ω(τ, x, xσ)
ε

+ Y0(τ, x, xλ, ε),

F (x|τ=τ0 , . . . , x|τ=τN , ε) +

L∫

0

Φ0(τ, x, xλ, ε)dτ = 0, ϕ|τ=0 = ψ. (6)

Then one can find ε ∈ (0, ε0] and constants c2 > 0 and c3 > 0 such
that, for any ε ∈ (0, ε] there exists a solution of the boundary-value
problem (4), (5), and the following inequality is satisfied:

‖x(τ, y + µ, ψ, ε)− x(τ, y, ε)‖ ≤ c2ε
α1 ,

where ‖µ‖ ≤ c3ε
α1 , α1 = α0 − χ, α0 = (1− 3β)/2, χ ∈ [0, (1− 3β)/4).

4 Problem with Constant Delay and Linearly
Transformed Argument

The conditions for existence of solution of the system with slow and
fast variables are represented in the form of

dx

dτ
= A(τ, x∆, xΘ, ϕ∆, ϕΘ),
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dϕ

dτ
=

ω(τ)
ε

+ B(τ, x∆, xΘ, ϕ∆, ϕΘ),

where τ ∈ [0, L], ε ∈ (0, ε0], ε0 ¿ 1, x ∈ D ⊂ Rm, ϕ ∈ Rm;
x∆ = (xδ1 , . . . , xδr), 0 ≤ δ1 < · · · < δr, xδν (τ) = x(τ − εδν),
xΘ = (xθ1 , . . . , xθq), 0 < θ1 < · · · < θq ≤ 1, xθν (τ) = x(θντ).

We constructed the averaged system on fast variables in the form:

dx

dτ
= A(τ, xΘ),

dϕ

dτ
=

ω(τ)
ε

+ B(τ, xΘ).

We propose and justify the averaging for systems with delay with
multipoint or integral boundary conditions. The average is also applied
to integral boundary conditions. For slow and fast variables the aver-
aging method was constructed on the interval [0, L] and the estimate
of error O(εα), α ∈ (0, (mq)−1] was obtained.
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Cubic systems with two distinct infinite

singularities and 8 invariant lines

Cristina Bujac

Abstract

In this article we consider real planar cubic systems which
possess eight invariant straight lines, including the line at infinity
and including their multiplicities, and in addition they possess
two distinct infinite singularities. We prove that these systems
could have only 23 distinct configurations of invariant straight
lines.

Keywords: cubic differential system, Poincaré compactifi-
cation, invariant straight line, configuration of invariant straight
lines, multiplicity of an invariant straight line.

1 Introduction

It is known that the maximum number of the invariant straight lines
(including the line at infinity Z = 0) for cubic systems is 9. Cubic
systems with maximum number of invariant lines are considered in [2]
and some families of cubic systems with seven affine invariant lines are
investigated in [3,4]. In the articles [5,6] the authors consider cubic sys-
tems with exactly six or seven invariant affine straight lines considered
with their ”parallel” multiplicity.

The goal of this paper is to classify the family of cubic systems
with two distinct infinite singularities (real or complex), which possess
invariant straight lines of total multiplicity 8, including the line at
infinity and taking into account their multiplicities.

Definition 1 [1]. Consider a planar cubic system. We call config-
uration of invariant straight lines of this system, the set of (complex)

c©2014 by C. Bujac
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invariant straight lines (which may have real coefficients) of the sys-
tem, each endowed with its own multiplicity and together with all the
real singular points of this system located on these invariant straight
lines, each one endowed with its own multiplicity.

It is well known that the infinite singularities (real and/or complex)
of cubic systems are determined by the linear factors of the polynomial
C3 = yp3(x, y)−xq3(x, y), where p3 and q3 are the cubic homogeneities
of these systems. So in the case of two distinct infinite singularities
they are determined either by one triple and one simple real or two
double real (or complex) factors of the polynomial C3(x, y).

2 The statement of the Main Theorem

Main Theorem. Assume that a cubic system possesses invariant
straight lines of total multiplicity 8, including the line at infinity with
its own multiplicity and, in addition, it has two real infinite singular-
ities. Then this system can not have infinite singularities determined
by two double factors of the polynomial C3. If the infinite singularities
are determined by one triple and one simple factors of C3, then this
system has one of the 24 possible configurations Config. 8.23 – Config.
8.46, given in Figure 1.
Remark. If in a configuration an invariant straight line has mul-
tiplicity k > 1, then the number k appears near the corresponding
straight line and this line is in bold face. Real invariant straight
lines are represented by continuous lines, whereas complex invariant
straight lines are represented by dashed lines. We indicate next to the
real singular points of the system, located on the invariant straight
lines, their corresponding multiplicities. By ‘(a, b)’ we denote the max-
imum number a (respectively b) of infinite (respectively finite) singu-
larities which can be obtained by perturbation of the multiple point.
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Figure 1. The configurations of invariant lines for cubic systems with
two distinct infinite singularities
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A Class of Homogeneous Quadratic Differential

Systems without Derivations

Ilie Burdujan

Abstract

In this paper we identify the affine equivalence classes for
the class of homogeneous quadratic differential systems, defined
on R3, having no derivation and whose associated commutative
algebras are NN-algebras which have at least a 1-dimensional
nontrivial ideal.

Keywords: homogeneous quadratic differential system, com-
mutative algebra, derivation, isomorphism.

1 Introduction

Recall that the problem of classification, up to an affine equivalence, of
quadratic differential systems is equivalent to the problem of classifica-
tion, up to an isomorphism, of commutative algebras. The study of any
algebra, which is not simultaneously associative and commutative, is
realized along two ways depending on the existence or on the absence
of a derivation. The existence of a derivation for an algebra signifi-
cantly facilitates the study of algebra’s structure. By using algebraic
tools, the classification up to an isomorphism of 3-dimensional commu-
tative algebras, having at least a derivation, was already performed by
I. Burdujan. The lack of any derivation for an algebra is dramatically
reflected in the fact that the study of such algebra becomes more dif-
ficult to be achieved. We exemplify this assertion by presenting a part
of efforts needed for classification, up to an isomorphisms, of a subclass
of real 3-dimensional NN-algebras having no derivation, namely those

c©2014 by I. Burdujan
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algebras having at least an one-dimensional ideal. In fact these results
concern a subclass of homogeneous quadratic systems having origin as
an isolated critical point.

2 Some classification results for real 3-dimen-
sional commutative NN-algebras having no
derivation

The algebras having no nilpotent elements will be named NN-algebras
(here NN is the acronym for no nilpotent). Such algebras were already
studied by Yu. M. Ryabuhin [5], C. Sprengelmeier [6], G.Benkart &
M.Osborn [1], I.Burdujan [2], etc. In [3] it was proved that there exist
nine families of isomorphism classes of real 3-dimensional commutative
NN-algebras having at least a derivation.

Let A(·) be a real 3-dimensional commutative NN-algebra. A theo-
rem due to B.Segre assures that this algebra has at least an idempotent
element e. Let A1 = Re be the corresponding subalgebra of A(·). Of
course, A1 is or is not an ideal of A. Accordingly, the following two
complementary situations must be analyzed: I) there exists an one-
dimensional ideal in A, II) there is no one-dimensional ideal in A.

In present paper we classify the real 3-dimensional commuta-
tive NN-algebras having no derivation and having at least an one-
dimensional ideal, i.e. we deal with Case I, only.

Case I. Let A1 be a one-dimensional ideal of A and the idempotent
e be a basis of it. Then, for each basis B = (e, e1, e2) we have e2 =
e, e · e1 = αe, e · e2 = βe. It follows that the left multiplication Le has
an eigenvalue equal to 1 and two eigenvalues equal to 0. Moreover, Le

is a semi-simple endomorphism and there exists a basis (e, v, w) such
that e · v = e · w = 0. Thus A2 = SpanR{v, w} is a vector subspace of
A, such that e ·A2 = 0, i.e. A2 = ker Le.

The following two possibilities occur:
I1 A2 is a subalgebra of A, I2 A2 is not a subalgebra of A.
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Subcase I1. In this case A2 is just an ideal of A and A = A1 ⊕ A2

(a direct sum of ideals). Since A2 is an NN-algebra, we can choose a
basis in A2 such that the corresponding multiplication table has one of
the next 12 forms exhibited by Markus in [4]. Therefore, 12 types of
nonisomorphic 3-dimensional NN-algebras, which are semisimple, are
obtained. By using Markus’ classification [4] we get the following 12
families of such algebras

NN1 e2 = e v2 = v w2 = w ev = 0 ew = 0 vw = 0
NN2 e2 = e v2 = 2v w2 = w ev = 0 ew = 0 vw = w
NN3 e2 = e v2 = αv w2 = w ev = 0 ew = 0 vw = w
with 0<α<1 α>2
NN4 e2 = e v2 = 2v w2 = βw ev = 0 ew = 0 vw=v+w
with β 6= 0 β 6= 2
NN5 e2 = e v2 = αv w2 = βw ev = 0 ew = 0 vw=v+w
with α 6= 0, α 6= 2, β 6= 0, β 6= 2, αβ 6= 4, α + β = αβ,
and 2

α−1 ≤ β ≤ 2+α
α if α < −1, α > 2

NN6 e2 = e v2 =v w2 =v+βw ev = 0 ew = 0 vw = 0
with 0≤β<2
NN7 e2 =e v2 =v w2 =αv ev=0 ew=0 vw=v+w
with α<−1
NN8 e2 = e v2 = v w2 = v ev = 0 ew = 0 vw = 1

2w
NN9 e2 = e v2 = v w2 = v + βw ev = 0 ew = 0 vw = αw,
with α 6=0 β≥0 β2 <4(1−2α)
NN10 e2 = e v2 = v w2 = −v ev = 0 ew = 0 vw = 1

2w
NN11 e2 =e v2 =v w2 =−v+βw ev=0 ew=0 vw=αw
with α 6=0 α 6=1 β2 <4(1−2α) β2 6=4α2 β≥0
NN12 e2 = e v2 = v w2 = −v ev = 0 ew = 0 vw = w.

By a straightforward checking it results that each algebra defined by a
Table NNi for i ∈ {1, 2, ..., 12} has no derivation.

Theorem 2.1 (i) Any two algebras of type NNi for i∈{3,4,5,6,7,9,11}
corresponding to different values of parameters are non-isomorphic.
(ii) Any algebra of type NNi is not isomorphic to any algebra of type
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NNj for i 6= j, i, j ∈ {1, 2..., 12}.
Proof. The proof is realized either by comparing the sets of idempotents
or by a direct checking. 2

In fact Theorem 2.1 assures that it was obtained the classification,
up to an isomorphism, of the class of real 3-dimensional NN-algebras
which are semisimple (a direct sum of two simple subalgebras). Ac-
cordingly, it was obtained the classification, up to an affinity, of cor-
responding HQDSs. In fact, each of these HQDSs decouples into two
independent subsystems that can be closely solved.
Subcase I2. The algebra A(·) has, in basis (e, v, w), a multiplication
table of the form

Table TI2 e2 = e v2 = ae + bv + cw w2 = a2e + b2v + c2w
ev = 0 ew = 0 vw = a1e + b1v + c1w.

with a2 + a2
1 + a2

2 6= 0.
Let us consider the following change of bases (e, v, w) → (e, f, g)

f = λv + µw, g = θv + τw with
∣∣∣∣

λ µ
θ τ

∣∣∣∣ 6= 0, where λ, µ, θ, τ could

be chosen such that a maximal number of structure constants becomes
either 0 or ±1. We have

f2 = h1(f)e + h2(f)v + h3(f)w, g2 = h1(g)e + h2(g)v + h3(g)w,
f · g = g1(f, g)e + g2(f, g)v + g3(f, g)w,

where
h1(f) = h1(λ, µ) = aλ2 + 2a1λµ + a2µ

2,
h2(f) = h2(λ, µ) = bλ2 + 2b1λµ + b2µ

2,
h3(f) = h3(λ, µ) = cλ2 + 2c1λµ + c2µ

2,

while gi is the polar form for hi (i ∈ {1, 2, 3}) (i.e. gi(f, g) =
1
2 [hi(f + g) − hi(f) − gi(g)]). These equations suggest us to consider
the polynomials:

P1(x) = ax2+2a1x+a2, P2(x) = bx2+2b1x+b2, P3(x) = cx2+2c1x+c2.

Since Span {v, w} is not a subalgebra, its results P1(x) cannot be the
null polynomial.
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In case µτ 6= 0 we put x1 = λ
µ , x2 = θ

τ . Then the following
equations hold:

f2 = µ2[P1(x1)e + P2(x1)v + P3(x1)w],

g2 = τ2[P1(x2)e + P2(x2)v + P3(x2)w],

f · g = µτ

[
P1(x1) +

1
2
P ′

1(x1)(x2 − x1)
]

e+

+µτ

[
P2(x1) +

1
2
P ′

2(x1)(x2−x1)
]

v+µτ

[
P3(x1) +

1
2
P ′

3(x1)(x2−x1)
]
w.

Moreover,

f · g = µτ [(ap + a1s + a2)e + (bp + b1s + b2)v + (cp + c1s + c2)w],

where s = x1 + x2, p = x1x2.
Table TI2 suggests to analyze the vector space

A2 = SpanR{v2, vw,w2}. More exactly, we have to study the following
cases:

(i) dim A2 = 1, (ii) dim A2 = 2, (iii) dim A2 = 3.
In order to save the publication space, the complete results for the

Case (i) will be presented, only.
Case (i) dim A2 = 1

There exists a basis such that the multiplication table gets the form

Table I2 e2
1 = e1 e2

2 = ωe1 + e2 e2
3 = ωe1 + e2

e1e2 = 0 e1e3 = 0 e2e3 = 0,

with ω 6= 0.
Let us denote by A(ω) any algebra having in basis B the multipli-

cation table I2.

Proposition 2.1 The algebras A(ω) and A(ω′) are isomorphic if and
only if ω = ω.
We have to consider the following subclasses of such NN-algebras:
WD.1 A = A(ω) (ω > 1

4), WD.2 A = A(ω) (ω = 1
4), WD.3 A = A(ω)

(ω < 1
4).
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Theorem 2.2 (i) Any two algebras of type WDi for i ∈ {1, 3} corre-
sponding to different values of parameters are non-isomorphic.
(ii) Any algebra of type WDi is not isomorphic to any algebra of type
WDj for i 6= j, i, j ∈ {1, 2, 3}.
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Birkhoff’s center of compact dissipative

dynamical systems

David Cheban

Abstract

We introduce the notion of Birkhoff center for arbitrary dy-
namical systems admitting a compact global attractor. It is
shown that Birkhoff center of dynamical system coincides with
the closure of the set of all positively Poisson stable points of
dynamical system.

Keywords: dynamical system, global attractor, Birkhoff
center.

1 Introduction

Let X be a metric space, T = R+ or Z+, S = R or Z and (X,T, π)
be a flow on X and M ⊆ X be a nonempty, compact and pos-
itively invariant subset of X. Denote by Ω(M) := {x ∈ M :
there exist {xn} ⊂ M and {tn} ⊂ T such that xn → x, tn →
+∞ as n → ∞ and π(tn, xn) → x}. Recall that the point x ∈ X
is called Poisson stable if x ∈ ωx

⋂
αx, where by ωx (respectively, αx)

the ω (respectively, α)-limits set of x is denoted.
It is well known the theorem of Birkhoff (see, for example, [1, 3]) for

two-sided (T = S) dynamical systems on the compact metric spaces.
Theorem 1. The following statements hold:

1. there exists a nonempty, compact and invariant subset B(π) ⊆ X
with the properties:

(i) Ω(B(π)) = B(π);

c©2014 by D. Cheban
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(ii) B(π) is the maximal compact invariant subset of X with the
property (i).

2. B(π) = P(π), i.e. the set of all Poisson stable points P(π) of the
dynamical system (X,R, π) is dense in B(π).

Remark 1. 1. The set B(π) is called the Birkhoff center of
dynamical system (X,R, π).

2. Note that Birkhoff theorem remains true also for the discrete
dynamical systems (X,Z, π). This fact was established in the work of
V. S. Bondarchuk and V. A. Dobrynsky [1].

The main result of this paper is the proof of the analogous to the
Birkhoff theorem for the one-sided dynamical systems (both ones with
continuous and discrete times) with noncompact phase space having a
compact global attractor.

2 The set of non-wandering points of dynami-
cal system

Denote by Φx the set of all entire trajectories γx of (X,T, π) passing
through the point x at the initial moment t = 0.

Definition 1. A point p ∈ X is said to be positively (respective-
ly, negatively) Poisson stable, if x ∈ ωx (respectively, there exists an
entire trajectory γx ∈ Φx such that x ∈ αγx , where αγx := {q ∈ X :
there exists tn → −∞ such that γx(tn) → q as n →∞}).
Lemma 1. Let M be a nonempty, compact and positively invariant
set, then the following statements hold:

1. if p ∈ M is positively (negatively) Poisson stable, then p ∈ Ω(M);

2. Ω(M) is a nonempty, compact and positively invariant subset of
M ;

3. if (X,T, π) is a compactly dissipative dynamical system and J
is its Levinson center [2, ChI], then the set Ω(M) is nonempty,
compact, positively invariant and Ω(M) ⊆ J .
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3 Birkhoff center of compact dissipative dy-
namical system

Let (X,T, π) be a compact dissipative dynamical system [2, ChI] and
J be its Levinson center [2, ChI], and M ⊆ X be a nonempty, closed
and positively invariant subset from X. Denote by M1 := Ω(M) the
set of all non-wandering (with respect to M) points of (X,T, π). By
Lemma 1 the set M1 is a nonempty, compact and positively invariant
subset of J . We denote by M2 := Ω(M1) ⊆ M1. Analogously we define
the set M3 := Ω(M2) ⊆ M2. We can continue this process and we will
obtain Mn := Ω(Mn−1) for all n ∈ N. One has a sequence {Mn}n∈N
possessing the following properties:

1. for all n ∈ N the set Mn is nonempty, compact and positively
invariant;

2. J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ Mn+1 ⊇ . . ..

Denote Mλ :=
∞⋂

n=1
Mn, then Mλ is a nonempty, compact (since the

set J is compact) and invariant subset of J . Now we define the set
Mλ+1 := Ω(Mλ) and we can continue this process to obtain the follow-
ing sequence

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇
Mn+1 ⊇ . . . ⊇ Mλ ⊇ Mλ+1 ⊇ . . . ⊇ Mλ+k ⊇ . . . .

Now we construct the set Mµ :=
∞⋂

k=1

Mµ+k and denote Mµ+1 := Ω(Mµ)

and so on. We obtain a transfinite sequence of nonempty, compact and
positively invariant subsets

J ⊇ M1 ⊇ M2 ⊇ M3 ⊇ . . . ⊇ Mn ⊇ (1)
Mn+1 ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mλ ⊇ . . . ⊇ Mµ ⊇ . . . .

Since J is a nonempty compact set, then in the sequence (1) there is at
most a countable family of different elements, i.e., there exists ν such
that Mν+1 = Mν .
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Definition 2. The set B(M) := Mν is said to be the center of
Birkhoff for the closed and positively invariant set M . If M = X,
then the set B(π) := B(X) is said to be the Birkhoff center of compact
dissipative dynamical system (X,T, π).
Theorem 2. Suppose that (X,T, π) is a compact dissipative dynamical
system and J is its Levinson center, then:

1. B(π) is a nonempty, compact and invariant set;

2. B(π) is a maximal compact invariant subset M of X such that
Ω(M) = M ;

3. if for all t > 0 the map π̃(t, ·) := π(t, ·)∣∣
B(π)

is open, then the

set of all positively Poisson stable points of (X,T, π) is dense in
B(π), i.e., B(π) = P (π), where P (π) := {p ∈ X : p ∈ ωp}.
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Solving boundary value problems for delay

integro-differential equations using spline

functions

Igor Cherevko, Andrew Dorosh

Abstract

We consider a boundary value problem for integro-differential
equations with delay and obtain sufficient conditions for the ex-
istence and uniqueness of its solution. The paper contains an it-
erative scheme of finding an approximate solution as a sequence
of cubic spline functions with defect two.

Keywords: boundary value problems, integro-differential
equations, delay, spline functions.

1 Introduction

Dynamic processes in many applied problems are described by dif-
ferential and integral equations with delay [1]. An analytical solu-
tion of such an equation exists only in the simplest cases, so the
construction and the study of approximate algorithms for solutions
of these equations are important. In the present note we study an
approximate method of solving boundary value problems for integro-
differential equations with delay based on cubic spline with defect two
approximation of the solution. Existence and uniqueness of bound-
ary value problems with delay solution in various functional spaces
were considered in [2, 3]. The usage of spline functions for solving
differential-difference equations was investigated in [4, 5].
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2 Problem statement. Solution existence

Let us consider the following boundary value problem

y′′(x) = f(x, y(x), y(x− τ0(x)), y′(x), y′(x− τ1(x)))+

+

b∫

a

g(x, s, y(s), y(s− τ0(s)), y′(s), y′(s− τ1(s)))ds, (1)

y(i)(x) = ϕ(i)(x), i = 0, 1, x ∈ [a∗; a], y(b) = γ, (2)

where a∗ = min{ inf
x∈[a;b]

(x− τ0(x)), inf
x∈[a;b]

(x− τ1(x))}, γ ∈ R.

Let f(x, u0, u1, v0, v1), g(x, s, u0, u1, v0, v1) be continuous functions
in G = [a, b]×G2

1×G2
2 and Q = [a, b]×G, where G1 = {u ∈ R : |u| <

P1}, G2 = {v ∈ R : |v| ≤ P2}, P1, P2 are positive constants, ϕ(t) ∈
C1[a∗; a], delay τ1(x) is a continuous on [a, b] function such that the set
E = {xi ∈ [a, b] : xi − τ(xi) = a, i = 1, k} is finite.

We shall introduce the notations

P = sup
{
|f(x, u, u1, v, v1)|+

∣∣∣
b∫

a

g(x, s, u, u1, v, v1)ds
∣∣∣ :

|ui| < P1, |vi| < P2, i = 0, 1, x, s ∈ [a, b]
}

, J = [a∗; a], I = [a, b],

I1 = [a, x1], . . . , Ik = [xk−1, xk], Ik+1 = [xk, b], B(J ∪ I) = {y(x) :

y(x)∈(C(J∪I)(C1(J)∪C1(I))∩(
k+1⋃
j=1

C2(Ij))),|y(x)| ≤ P1,|y′(x)| ≤ P2}.
A function y = y(x) from the space B(J ∪ I) is called a solution of the
problem (1)–(2) if it satisfies the equation (1) on [a; b] (with the possible
exception of a set of points E) and boundary conditions (2).
Theorem 1. Let the following conditions hold:

1) max{max
x∈J

|ϕ(x)|, (b−a)2

8 P + max(|ϕ(a)|, |γ|)} ≤ P1,

2) max{max
x∈J

|ϕ′(x)|, b−a
2 P + |γ−ϕ(a)

b−a |} ≤ P2,

3) the functions f(x, u0, u1, v0, v1), g(x, s, u0, u1, v0, v1) satisfy in G
and Q the Lipschitz condition for variables ui, vi, i = 0, 1 with constants
Lj ,Mj , j = 1, 4,
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4) (b−a)2

8

2∑
j=1

(Lj + (b− a)Mj) + b−a
2

4∑
j=3

(Lj + (b− a)Mj) < 1.

Then there exists a unique solution of the problem (1)-(2).

3 Cubic splines with defect two

Let us consider on a segment [a; b] an irregular grid ∆ = {a =
x0 < x1 < . . . < xn = b}, E ⊂ ∆. We shall denote an interpolating
cubic spline with defect two S(y, x) on ∆, which belongs to the space
B(J ∪ I). We can obtain a formula of S(y, x) [4, 5]:

S(y, x) = M+
j−1

(xj − x)3

6hj
+M−

j

(x− xj−1)3

6hj
+(yj−1−

M+
j−1h

2
j

6
)
xj − x

hj
+

+(yj −
M−

j h2
j

6
)
x− xj−1

hj
, x ∈ [xj−1; xj ], hj = xj −xj−1, j = 1, n, (3)

where M+
j = S′′(y, xj +0), j = 0, n− 1, M−

j = S′′(y, xj−0), j = 1, n,
satisfy the following system of equations

hj+1yj−1 − (hj + hj+1)yj + hjyj+1 =

=
hjhj+1

6
(hjM

+
j−1+2hjM

−
j +2hj+1M

+
j +hj+1M

−
j+1), j = 1, n− 1, (4)

y0 = ϕ(a), yn = γ.

4 Computational scheme

A) Choose a cubic spline S(y(0), x) randomly so that the boundary
conditions (2) are enforced.

B) Using the original equation (1) and the spline S(y(k), x), find
M

+(k+1)
j , j = 0, n− 1,M

−(k+1)
j , j = 1, n.

C) Compute {yk+1
j }, j = 0, n, from the equations (4).

D) According to (3), build a cubic spline S(y(k+1), x) using the
values of {yk+1

j },M+(k+1)
j ,M

−(k+1)
j . This spline will be the next ap-

proximation.
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Let us denote
λ1 = L1+L2+(b−a)(M1+M2), λ2 = L3+L4+(b−a)(M3+M4), K = H

h ,
h = min

i
hi, H = max

i
hi, u = K5

8 (b− a)2 + H2

8 , v = K5

2 (b− a) + 2H
3 .

Theorem 2. Assume that the conditions of Theorem 1 hold.
If uλ1 + vλ2 < 1 is true, then there exists H∗ > 0 such that for each
0 < H < H∗ the sequence of splines {S(y(k), x)}, k = 0, 1 . . ., converges
uniformly on [a; b].
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Integrability of some two-dimensional systems

with homogeneous nonlinearities

Brigita Ferčec 1,2, Jaume Giné3, Valery G. Romanovski1,2

Abstract

In this paper we discuss the problem of integrability for pla-
nar polynomial systems. An approach to find reversible systems
within polynomial families of Lotka-Volterra systems with homo-
geneous nonlinearities is proposed.

Keywords: integrability, reversibility, polynomial systems.

1 Introduction

The integrability problem for systems of differential equations is one
of the main problems in the qualitative theory of differential systems.
The integrability problem for systems with quadratic or cubic nonlin-
earities has been intensively studied. Recently several works have been
also devoted to the investigation of systems with quartic and quintic
nonlinearities, see e.g. [2, 3] and references given their.

In this paper we study the problem of existence for a polynomial
system of the form

ẋ = X (x, y) = x−
n∑

j+k=2

ajk xjyk,

ẏ = Y(x, y) = −y +
n∑

j+k=2

bjk xjyk

(1)

c©2014 by B. Ferčec, J. Giné, V.G. Romanovski
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(where aij , bji are complex parameters and x(t) and y(t) are complex
unknown functions) of the first integral of the form

Ψ(x, y) = xy +
∑

j+k≥3

ψj,k xjyk. (2)

This problem of integrability can be considered as a generalization of
the center problem for real systems (see e.g. [3] for more details).

2 Reversibility in systems with homogeneous
nonlinearities

One of important mechanisms for integrability is the so-called time-
reversibility (or just reversibility). By the definition it is said that
the system (1) is (time-)reversible if there is an invertible transforma-
tion R, (x1, y1) = R(x, y), such that the system is invariant under the
transformation and the time inversion t → −T . The simplest case of
reversibility is when R is a linear transformation of the form

R : x1 → γy, y1 → γ−1x, (3)

for some γ ∈ C \ {0}. If a system (1) is reversible with respect to (3),
then it admits a local analytic first integral of the form (2) (Theorem
3.5.5 of [3]).

Sometimes the reversibility is hidden and just through a change of
variables and a scaling of time can be detected. The next theorem
treats this situation when the system becomes reversible with respect
to involution (3) after a change of coordinate and a time rescaling.

Consider a polynomial Lotka-Volterra system of the form

ẋ = x(1 + A(x, y)), ẏ = −y(1 + B(x, y)), (4)

where A and B are homogeneous polynomials of degree d.

Theorem 1. There exists a polynomial f of the form f = 1+F (x, y),
where F is a homogeneous polynomial of degree d − 1 such that the
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change of coordinates

z = k1y/f(x, y)1/(d−1) and w = k2x/f(x, y)1/(d−1), (5)

whose inverse change is given by

x = w/(k2f̃(w, z)1/(d−1)) and y = z/(k1f̃(w, z)1/(d−1)), (6)

where f̃(w, z) = 1/f(x(w, z), y(w, z)) transforms (4) to a system of the
form

dz

dT
= −z(1 + h(z, w)),

dw

dT
= w(1− h(z, w)). (7)

Moreover,

f = 1 +
A + B

2
(8)

and

h(w, z) =
1
2

(
(B̂ − Â) +

1
d− 1

((
x

∂(A + B)
∂x

)∣∣∣∣
x=w/k2,y=z/k1

(f̃ + Â)−
(

y
∂(A + B)

∂y

)∣∣∣∣
x=w/k2,y=z/k1

(f̃ + B̂)

))
, (9)

where

Â(w, z) = A(w/k2, z/k1), B̂(w, z) = B(w/k2, z/k1). (10)

As a direct corollary of this theorem we obtain the following criterion
for integrability.

Theorem 2. System (4) has a first integral of the form (2) if

h(w, z) + h(z, w) ≡ 0, (11)

where h is the function defined by (9).
Proofs of the theorems and their applications can be found in [1].
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Solution of the Chazy System

Valeri Gromak

Abstract

We construct the solution of the Chazy system, which specifies
the conditions for the existence of the Painlevé property for a
third-order nonlinear equation with six poles.

Keywords: Painlevé property, Painlevé equations, Chazy
system.

Some classes of second-order equations were studied by P. Painlevé
and B. Gambier, and 50 canonical equations, whose solutions have no
movable critical singular points, were found. This property is now
called the Painlevé property. Of the equations singled out by Painlevé,
six equations are most important, which now bear his name and whose
solutions are called Painlevé transcendents [1]. R.Fuchs suggested two
approaches to obtaining the Painlevé equations. The first one deals
with isomonodromic deformations of Fuchsian systems. The second,
more geometrical, approach uses elliptic integrals. The Painlevé equa-
tions define nonlinear special functions.

For higher-order equations, the Painlevé classification problem has
proved to be very hard, and so far the most complete results have been
obtained only for higher-order polynomial equations.

The paper [2] is one of the first papers on the classification of higher-
order equations with respect to the Painlevé property. It deals with
the analysis of the Painlevé property of the Chazy equation

y′′′ =
6∑

k=1

Ak(y′ − a′k)
3 + Bk(y′ − a′k)

2 + Ck(y′ − a′k)
y − ak

+ Dy′′ + Ey′+

c©2014 by V. Gromak
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+
6∑

k=1

(y′ − a′k)(y
′′ − a′′k)

y − ak
+

6∏

k=1

(y − ak)
6∑

k=1

Fk

y − ak
. (1)

Here the poles ak = ak(z) are finite and distinct and, in general, are
functions of the independent variable z.

The paper [2] also presents the system of 31 algebraic and differ-
ential equations for 26 unknown functions Ak = Ak(z), Bk = Bk(z),
Ck = Ck(z), D = D(z), E = E(z), and Fk = Fk(z) (Chazy system
(A)–(F)), whose solution, as Chazy claims, determines necessary and
sufficient conditions for the absence of movable critical points of solu-
tions of (1). For example, Chazy system (A)–(B) has the form

6∑

j=1

Aj = 0,
6∑

j=1

ajAj = −6,
6∑

j=1

a2
jAj = −2

6∑

j=1

aj ,

2A2
k +

6∑

j=1

Ak −Aj

ak − aj
=0, k = 1, . . . , 6 (j 6= k), (A)

6∑

j=1

(Bk−Bj)
(
−Ak

2
− 1

ak − aj

)
+A′k −

3
2
Ak

6∑

i=1

a′iAi−

−
6∑

j=1

a′k − a′j
ak − aj

(Ak−3Aj) = 0, (B)

Here the poles ak are parameters of the system. System (A)–(F)
was not studied in [2]. For solution of system (A)–(F) first, note that
the successive elimination of the variables Ak in (A) permits uniquely
expressing A6, A5, A4, A3, and A2 via A1.

We separately note the structure A2:

A2 =
n0A

4
1 + n1A

3
1 + n2A

2
1 + n3A1 + n4

(a2 − a4)(a2 − a5)(a2 − a6)Q2
,

where Q2 = d0A
2
1+d1A1+d2, and the coefficients n0, . . . , n4 d0, d1, d2

and d0, d1, d2 are known functions of ai.
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Lemma. System (A) admits the symmetry (Ak, ak) ↔ (Aj , aj),
j, k = 1, . . . , 6.

Therefore, a permutation of arbitrary components (Ak, ak) of the
solution of system (A) with arbitrary components (Aj , aj) leads to a
solution of system (A).

Theorem 1 [3]. System (A) has the solution

Aj =
1

a5 − aj
+

1
a6 − aj

, j = 1, . . . , 4,

A5 =
1

a1 − a5
+

1
a2 − a5

+
1

a3 − a5
+

1
a4 − a5

+
2

a5 − a6
,

A6 =
1

a1 − a6
+

1
a2 − a6

+
1

a3 − a6
+

1
a4 − a6

+
2

a6 − a5

under the following conditions on the poles:

−3s3a5 + 6s4 + s2a
2
5 + (−3s3 + 4s2a5 − 3s1a

2
5)a6+

+(s2 − 3s1a5 + 6a2
5)a

2
6 = 0, (2)

where s1, . . . , s4 are elementary symmetric polynomials in a1, . . . , a4.
In the general case, equation for A1 has the form

U(p,A1) = p0A
5
1 + p1A

4
1 + p2A

3
1 + p3A

2
1 + p4A1 + p5 = 0, (3)

where p0, . . . p5 are known functions of poles ak.

Theorem 2. Let A1 be a solution of (3) for some fixed values of poles
ak such that Q2 6= 0. Then A1 and Ak (k = 2, . . . , 6), evaluated on the
basis of this value of A1, define a solution of system (A).

Note that if the parameters ak satisfy condition (2), then (3) can be
factorized and represented in the form (A1Q1−P1)Ũ(p̃, A1), where the
Ũ(p̃, A1) is polynomial in A1. The vanishing of the factor (A1Q1 −
P1) permits one to determine A1 and successively the remaining Ak

in a closed form, which coincides with the formulas in Theorem 1.
It follows that Theorem 1 is a special case of Theorem 2. However,
under condition (2), the Ak can be determined in the closed form
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(2). Solution of system (A)–(F) for known Ak can be reduced to the
successive solution of three linear algebraic systems with additional
constraints. In the general case, the solution of systems (B), (C), (F)
can be found by the Gauss method. For example, system (B) for known
Ak is the linear system ABB = RB for B = (B1, . . . , B6)T , where the
matrix AB has the entries

{AB}kj =
Ak

2
+

1
ak − aj

, {AB}kk = −5Ak

2
−

6∑

i=1

1
ak − ai

, i, j 6= k.

In general, the rank of this matrix does not exceed 5. The vector
RB depends only on Ak, ak and their derivatives. If the assumptions
of Theorem 1 hold, then the matrix AB can be represented in a closed
form as well. To this end, one should substitute the values A1, . . . , A6

(2) into the above-represented matrix AB.
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The Averaging in the Multifrequency System of

Differential Equations with Linearly

Transformed Arguments and Integral Boundary

Conditions

Inessa Krasnokutska

Abstract

In this work we researched the existence of solution and gave
justifiction of averaging method on fast variables for multifre-
quency systems of differential equations with linearly transformed
arguments and with integral boundary conditions. The coeffi-
cients in integral conditions depend on slow time, slow variables
and on fast variables too.

Keywords: method of averaging, boundary value problems,
linearly transformed arguments, multifrequency systems, reso-
nances, slow and fast variables, integral conditions.

This paper presents the conditions of existence of solution of the
system with slow and fast variables of the form

da

dτ
= X(τ, aΛ, ϕΘ), (1)

dϕ

dτ
=

ω(τ)
ε

+ Y (τ, aΛ, ϕΘ), (2)

where τ ∈ [0, L], small parameter ε ∈ (0, ε0], ε0 ¿ 1, x ∈ D ⊂ Rm,
ϕ ∈ Rm; λi θj are numbers from semi-interval (0, 1], 0 < λ1 < · · · <
λr1 ≤ 1, 0 < θ1 < · · · < θr2 ≤ 1, aλi(τ) = a(λiτ), ϕθj (τ) = ϕ(θjτ),
aΛ = (aλ1 , . . . , aλr1

), ϕΘ = (ϕθ1 , . . . , ϕθr2
).
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Let us set the system (1), (2) of boundary conditions

L∫

0

f(τ, aΛ, ϕΘ)dτ = d1,

L∫

0

[
r2∑

j=1

hj(τ, aΛ, ϕΘ)ϕθj + g(τ, aΛ, ϕΘ)

]
dτ = d2,

where f, g, h1, . . . , hr2 are 2π-periodic with fast variables vector-func-
tions. d1 and d2 are n and m measurable vectors.

When vector-function h depends only on variables τ and a, in the
work [1] systems without delay were investigated. In this work we
researched the existence of solution and gave justifiction of averag-
ing method on fast variables for multifrequency systems of differen-
tial equations with linearly transformed arguments and with integral
boundary conditions, when all coefficients in integral conditions depend
on slow time, slow variables and on fast variables too. This problem
was solved in [2] for systems without delay.
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First integrals with polynomials not higher than

second order of the mathematical model of the

intrinsic transmission dynamics of tuberculosis

Natalia Neagu, Mihail Popa, Victor Orlov

Abstract

For the mathematical model of the intrinsic transmission dy-
namics of tuberculosis (TB) all first integrals with polynomials
not higher than second order were found.

Keywords: tuberculosis, Lie algebra, first integral.

Consider three-dimensional autonomic real differential system which
simulates the intrinsic transmission dynamics of tuberculosis [1], [2]

dS
dt

= τ − µS − βST, dL
dt

= −δL− µL + (1− p)βST,

dT
dt

= δL− (µ + ν)T + pβST.

(1)

The parameters of the system (1) are described in Table 1 (see page
258).

According to [3] we obtain

Theorem 1. The system (1) admits the noncommutative Lie algebra
of operators of the form

X1 = S
∂

∂S
+ L

∂

∂L
+ T

∂

∂T
+ D1, X2 = (− τ

β
− ν

β
S + ST )

∂

∂S
+

+[
δ − ν

β
L + (p− 1)ST ]

∂

∂L
− (

δ

β
L + pST )

∂

∂T
+ D2, (2)
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where

D1 = −β
∂

∂β
+ τ

∂

∂τ
, D2 = (µ + ν)

∂

∂β
− τ

β
(µ + ν)

∂

∂τ
, (3)

and the structural equation is [X1, X2] = X2.

Table 1. Variables and parameters of the sistem (1)

Value Description
S(t) number of sensible persons in the moment t

L(t) number of infected persons in the moment t

T (t) number of infectious persons in the moment t

βT (t) force of infection per capita in the moment t

τ influx of young people
µ average mortality from causes not related to TB
p probability of rapid progression of the disease
δ constant of speed of reactivation of TB infection
ν additional mortality caused by active TB
β transfer coefficient of TB infection

Note that the expressions

U1 = βτ, U2 = µ, U3 = ν, U4 = δ, U5 = p, (4)

are invariants of the system (1) with respect to the operators (2)–(3),
i.e. D1(Ui) = D2(Ui) = 0 (i = 1, 5).

Further we assume that Ui (i = 1, 4) from (4) do not vanish. This
guarantees us the existence of the quadratic part ST and of the free
term τ in the system (1). The condition µνδ 6= 0 arises from the
medical sense of the parameters.

We determine the coordinates of the vector (τ, β, µ, δ, ν, p) which
contain the parameters of the system (1) when the invariants Ui (i =
1, 4) ( see (4)) are different from zero and first integral has the form

Iq(S, L, T, t) = Pq(S, L, T ) exp(λt) (q ≤ 2). (5)
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Assume that

Pq(S, L, T ) = a + bS + cL + dT + eS2 + fL2 + gT 2+

+2hSL + 2kST + 2lLT. (6)

The coefficients of the polynomial (6) and the parameter λ are real

unknown. From dIq

dt
≡ 0 (q ≤ 2) using the relations (5)–(6) under

system (1) we obtain the following system of polynomial equations:

λa + τb = 0, 2τe + (λ− µ)b = 0, 2τh− µc + δ(d− c) + λc = 0,

2τk + (λ− µ− ν)d = 0, (λ− 2µ)e = 0, −2µf + 2δ(l − f) + λf = 0,

(λ−2µ−2ν)g = 0, 2µh+δ(h−k)−λh = 0, (2µ+ν)l−δ(g−l)−λl = 0,

β(−b + c− cp + dp) + 2(λ− 2µ− ν)k = 0, β(e− h + hp− kp) = 0,

β(k − l − gp + lp) = 0, β(f − h− fp + lp) = 0. (7)

Consequently we arrive at the next result

Theorem 2. Assume that the conditions U1U2U3U4 6= 0 and 0≤U5≤1
hold. Then the system (1) possessing the vector (τ, β, µ, δ, ν, p) has 5
first integrals of the form (5)–(6) (see Table 2).

Table 2. First integrals of the sistem (1)

(τ, β, µ, δ, ν, p) First integral
(τ, β, µ, pν, ν, p) I

(1)
1 = (L + p−1

p T ) exp(t(µ + ν))

(τ, β, µ, δ, ν, 1) I
(2)
1 = L exp(t(δ + µ))

(τ, β, µ,−µ, ν, 1) I
(1)
2 = a + L(c + fL)

(τ, β, µ,−pµ,−µ, p) I
(2)
2 = a + (L + p−1

p T )(c + f(L + p−1
p T ))

I
(3)
2 = ((ν2−µ2)((L+S)2+2T (L+S))/(2µτ)+

(τ, µ(ν2−µ2)
ντ , µ,−ν, ν, 0) +(L + S + T ) + Tν/µ− Sν2/µ2−

−τ/(2µ) + ν2τ/(2µ3)) exp(2tµ)
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Family of quadratic differential systems with

invariant hyperbolas

Regilene D. S. Oliveira, Alex C. Rezende, Nicolae Vulpe

Abstract

In this article we consider the class QSf of all quadratic sys-
tems possessing a finite number of singularities (finite and infi-
nite). Using the algebraic invariant theory we provided necessary
and sufficient conditions for a system in QSf to have invariant
hyperbolas in terms of its coefficients

Keywords: quadratic differential system, group action,
affine invariant polynomial, algebraic invariant curve.

1 Introduction

Quadratic systems with an invariant algebraic curve have been studied
by many authors (see for example [1, 2] and references from [1]). The
main goal of this paper is to investigate nondegenerate quadratic sys-
tems having invariant hyperbolas and this study is done applying the
invariant theory. More precisely in this paper we provided necessary
and sufficient conditions for a quadratic system in QSf to have invari-
ant hyperbolas. We also determine the invariant criteria which provide
the number and multiplicity of such hyperbolas.

2 Statement of the main result

Our main results are stated in the following theorem.

c©2014 by R.D.S. Oliveira, A.C. Rezende, N. Vulpe
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Main Theorem. (A) The conditions η ≥ 0, M 6= 0 and γ1 = γ2 = 0
are necessary for a quadratic system in the class QSf to possess at least
one invariant hyperbola.

(B) Assume that for a system in the class QSf the condition η ≥ 0,
M 6= 0 is satisfied.

• (B1) If η > 0, then the necessary and sufficient conditions for
this system to possess at least one invariant hyperbola are given
in Diagram 1, where we can also find the number and multiplicity
of such hyperbolas.

• (B2) In the case η = 0 and M 6= 0 the corresponding necessary
and sufficient conditions for this system to possess at least one
invariant hyperbola are given in Diagram 2, where we can also
find the number and multiplicity of such hyperbolas.

(C) The Diagrams 1 and 2 actually contain the global bifurcation
diagram in the 12-dimensional space of parameters of the systems be-
longing to family QSf , which possess at least one invariant hyperbola.
The corresponding conditions are given in terms of invariant polynomi-
als with respect to the group of affine transformations and time rescal-
ing.

Remark 1. In the case of the existence of two hyperbolas we denote
them by Hp if their asymptotes are parallel and by H if there exists at
least one pair of non-parallel asymptotes. We denote by Hk (k = 2, 3)
a hyperbola with multiplicity k; by Hp

2 a double hyperbola, which after
perturbation splits into two Hp; and by Hp3 a triple hyperbola which
splits into two Hp and one H.

Remark 2. The expressions for the invariant polynomials η, M ,
βi (i = 1, 2, ..., 13), γi (i = 1, 2, ..., 16), δi (i = 1, 2, ..., 6) and Ri (i =
1, 2, ..., 11) are given in [3]

Acknowledgments. The third author is partially supported
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from SCSTD of ASM.
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Diagram 1. The case η > 0
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Diagram 2. The case η = 0
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Matemática No. 393/2014, pp. 1-50.

Regilene D. S. Oliveira1, Alex C. Rezende1, Nicolae Vulpe2

1Instituto de Ciências Matemáticas e de Computação
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The upper and lower bounds for number of

conditions for center of the differential system

s(1, 2, ..., q)

Mihail Popa, Victor Pricop

Abstract

We examine the system of differential equations that contains
all nonlinearities of degree from 1 to q, denoted by s(1, 2, ..., q).
For this system the estimation of upper bound for the number
of algebraically independent focal quantities, which take part in
solving the center and focus problem for mentioned system, is
known. It was made a comparison between this estimation and
estimation of lower bound for number of essential conditions for
center that was obtained by acad. C. S. Sibirschi for the system
of differential equations s(1, 2, ..., q).

Keywords: system of differential equations, essential condi-
tions for center, the center and focus problem, Krull dimension,
Sibirschi graded algebras.

Let us consider the system of differential equations

dxj

dt
=

q∑

i=1

P j
i (x) (j = 1, 2), (1)

where P j
i are homogeneous polynomials of degree i in the coordinates

of the vector x = (x1, x2). The coefficients and variables of the system
(1) take values from the field of the real numbers R. We denote the
system (1) by s(1, 2, ..., q).

We examine the center and focus problem for this system. In the
paper [1] it was demonstrated

c©2014 by M. Popa, V. Pricop
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Theorem 2.16. The number of essential conditions for center for the
system of differential equations (1) is not less than q2 − q, for even q
and q2 − q − 1, for odd q.

Let us consider the system of differential equations (1) when q = 3,
i.e. s(1, 2, 3). Then from Theorem 2.16 it results

Corollary 1. If in the system of differential equations (1) we have
q = 3, then the number of essential conditions for center is not less
than 5.

In the paper [2] it was examined the sequence of focal quantities
for the system of differential equations s(1, 2, 3) from (1)

L1, L2, ..., Lk, ..., (2)

when the origin of coordinates is a singular point of the second type
(center or focus).

For each focal quantity from this sequence it was put in cor-
respondence a sequence of linear spaces of center-affine (unimodular)
comitants of given type, i.e. for fixed k we have

Lk →
(

2(k + 1),
1
2
(5k2 + 9k + 2) + i, 2(k − i), i

)
, (i = 0, k),

where 2k+1 is the degree of homogeneity of the comitant in coordinates
of the vector x, 1

2(5k2 + 9k + 2) + i is the degree of homogeneity of
the comitant in coefficients of the polynomials P j

1 (x) (j = 1, 2),
2(k − i) is the degree of homogeneity of the comitant in coefficients of
the polynomials P j

2 (x) (j = 1, 2), and i is the degree of homogeneity of
the comitant in coefficients of the polynomials P j

3 (x) (j = 1, 2).
The characteristic of these spaces lies in the fact that for focal

quantities Lk in each of these spaces there exists such comitant of
the weight −1 [3] that the sum of their semiinvariants [2] on Sibirschi
invariant variety for center accurately by a numerical constant is equal
to Lk (k = 1, 2, ...).

Also in the paper [2] it was shown that for any system of differential
equations s(1,m1, ...,m`), where mi are some different integers, the

266



The upper and lower bounds for number of conditions for center

maximal number of algebraically independent focal quantities for this
system, when the origin of coordinates is a singular point of the second
type (center or focus) does not exceed the Krull dimension of Sibirschi
graded algebra S1,m1,...,m`

, and it is equal to

%(S1,m1,...,m`
) = 2

(∑̀

i=1

mi + `

)
+ 3. (3)

Hence we have
Remark 1. The number of algebraically independent focal quanti-

ties for the system of differential equations s(1, 2, 3), when the origin
of coordinates is a singular point of the second type (center or focus)
does not exceed 17.

Adapting the result from (3) for the system of differential equations
s(1, 2, ..., q) from (1) we have

%(S1,2,...,q) = 2

(
q∑

i=2

i + q − 1

)
+ 3 = 2[(2 + 3 + ... + q + q − 1) + 1] =

= 2
[
q(q + 1)

2
+ q − 1

]
= q(q + 1) + 2q − 2 + 1 = q2 + 3q − 1.

We obtain that between relations from Theorem 2.16 and equality
(3) the following equality takes place

%(S1,2,...,q) = q2 + 3q − 1 = [q2 − q] + 4q − 1︸ ︷︷ ︸
for even q

or [q2 − q − 1] + 4q︸ ︷︷ ︸
for odd q

.

From these equalities we conclude the following
Conclusion 1. The estimation (3) for system of differential equa-

tions s(1, 2, ..., q) from (1) is greater than the estimation from Theorem
2.16 with 4q − 1, for even q and with 4q, for odd q.
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2”Ion Creangă” State Pedagogical University
Email: pricovv@gmail.com

268



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

Representations of the Lie tangential

transformations

Sergiu Port

Abstract

In this work the images of the trigonometric functions at the
Lie tangential transformations in the projective plan are repre-
sented.

Keywords: Lie tangential transformations, Lie operator.

Lie tangential transformations form a group described by the Lie
operator. The subgroups of this group are known as the affine and the
projective groups.

It is known that the number of invariants and respectively the ra-
tional basis of the invariants of the group are decreased at the extension
of the group.

Tangential transformations of the point put in the correspondence
a curve, analogous to polar correspondence, where in the projective
plane, a straight line is corresponding to the point.

Lie described the tangential transformation in a plan, by the equa-
tion:

F (x, y, x, y) = 0, (1)

which satisfies the necessary conditions of continuity.

c©2014 by S. Port
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The transformation may be illustrated graphically, as following:

According to Fig. a the point P1 corresponds to the curve C ′
1 and

viceversa the point P ′
1 ∈ C ′

1 corresponds the curve C1 which passes
through the point P1. If the point P1 will move into the plan π af-
ter a curve L, then at the tangential transformation the curve L will
correspond L′ ∈ π′. L′ will be the wrapper of the curve family C ′

i.
To determine the respective curves with the equation (1) the dif-

ferential equation will be solved as:

∂F

∂x
+

∂F

∂y
p = 0, (2)

where p = ∂y
∂x is called a linear element and indicates the direction on

the curve L. Actually, the given transformation puts in correspondence
to each triplet x, y, p of the curve L ∈ π the triplet x, y, p of the curve
L′ ∈ π′.

The Lie tangential transformation possesses invariant characteristic
property: two tangent curves into π will transform in two tangent
curves into π′.

This property allows a classification of curves into a plan. The sug-
gested problem is the representation of the solutions of the differential
equations (2).

In the projective plan, Felix Klein represented some of polynomial
curves, which he had classified. As far as the complex roots of char-
acteristic equation of the linear differential system involves expression
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of solutions by trigonometric functions. Therefore the graphical repre-
sentation is worth to investigate.

We examine images to the Lie tangential transformation of the func-
tions y = sin(x) and y = tg(x). The graphical images of the functions
y = sin(x) and y = tg(x) are represented respectively in Fig. b and
Fig. c.
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Isochronous Hamiltonians with quadratic

nonlinearities

A.E. Roudenok

Abstract

In this paper we study nontrivial and nonglobal polynomial
Hamiltonian isochronous center associated to Hamiltonians of the
form H(x, y) = F (x) + 2G(x)y + Q(x)y2.

Keywords: Hamiltonian, Jacobian pair, trivial (nontrivial)
isochronous center, global (nonglobal) isochronous center.

Consider real polynomial Hamiltonian system

ẋ = −Hy(x, y), ẏ = Hx(x, y). (1)

We will assume that H(0, 0) = 0 and that system (1) has a nondegen-
erate center at the origin.

There is a simple method to generate polynomial Hamiltonian
isochronous centers. Take two polynomials u(x, y) and v(x, y) in two
variables with u(0, 0) = v(0, 0) = 0 such that the determinant of the
Jacobian of the mapping

(x, y) → (u(x, y), v(x, y)) (2)

is constant. A couple of such polynomials is called a Jacobian pair. It
is readily seen that the Hamiltonian system associated to

H(x, y) =
1
2

(
u2(x, y) + v2(x, y)

)
(3)

is linearizable by means of the canonical change of coordinates u =
u(x, y), v = v(x, y) and hence that the origin is an isochronous center.

c©2014 by A.E. Roudenok

273



A.E. Roudenok

We call [1] trivial isochronous centers the centers constructed with this
method.

Authors of the paper [1] first give examples of nontrivial and non-
global polynomial Hamiltonian isochronous centers.

We study nontrivial and nonglobal polynomial Hamiltonian
isochronous centers in the case when the polynomial Hamiltonian (3)
has the form

H(x, y) = F (x) + 2G(x)y + Q(x)y2, (4)

where
u(x, y) = x + ϕ(x), v(x, y) = y + g(x, y) (5)

and ϕ(x) 6= 0.
It is easily proved that in this case

v(x, y) =
y + g(x)
1 + ϕ′(x)

, (6)

where g(x) is some differentiable function.
Substituting functions (5), (6) in (3) and equating coefficients under

equal powers of a variable y in got Hamiltonian and in Hamiltonian (4)
we get equalities

F (x) = (x + ϕ(x))2 +
g2(x)

(1 + ϕ′(x))2
,

G(x) =
g(x)

(1 + ϕ′(x))2
, Q(x) =

1
(1 + ϕ′(x))2

. (7)

From (7) we have

ϕ(x) = −x +

x∫

0

1√
Q(x)

dx, g(x) =
G(x)
Q(x)

. (8)

Substituting these expressions in the first equality of (7) we have

F (x)Q(x)−G2(x)
Q(x)

=




x∫

0

1√
Q(x)

dx




2

. (9)
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Isochronous Hamiltonians with quadratic nonlinearities

Denote
F (x)Q(x)−G2(x) = h(x). (10)

In this case we can write (9) in the form

x∫

0

1√
Q(x)

dx =

√
h(x)√
Q(x)

.

Differentiation of the last equality means that

Q(x)h′(x)− h(x)Q′(x) = 2
√

h(x)Q(x). (11)

Since F (x), G(x), Q(x) are polynomials, the function h(x) from
(10) is polynomial.

It follows from (11) that h(x) is quadrate of some polynomial.
Denote h(x) = f2(x). Then equality (11) is rewritten in the form

Q(x)
Q′(x)

=
f(x)

2(f ′(x)− 1)
. (12)

From (10) we have

F (x) =
f2(x) + G2(x)

Q(x)
. (13)

So we obtain the following result.
Theorem 1. If the Hamiltonian system associated to polynomial
Hamiltonian of the form (3), (4) is linearizable by means of the
change of coordinates (5), (6), then polynomials F (x), G(x), Q(x)
are connected with relations (12), (13), where f(x) is polynomial and
f(0) = 0, f ′(0) = 1, Q(0) = 1.

One can prove the following assertions.
Theorem 2. Polynomials Q(x), f(x)/x have not real roots.
Theorem 3. The degree of the polynomial f(x) is 1/2 of degree of the
polynomial Q(x).
Corollary. The degree of polynomial Q(x) of real isochronous Hamil-
tonian (4) can be equal only to 4n + 6, n ∈ N⋃{0}.
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Theorem 4. Hamiltonians

H1 = x2(1− y − x2y − g(x))2 + (y + x2y + g(x))2,

H2 = x2(1 + y + x2y + g(x))2 + (y + x2y + g(x))2,

where g(x) is a polynomial, a least degree of which is nonless as 2,
are isochronous nonglobal ones. These Hamiltonians are the only ones
among the polynomial isochronous Hamiltonians (4), where the degree
of polynomial Q(x) is equal to 6.

Proof. It was proved above that for a polynomial Q(x) of degree
6 there exists the only pair (Q(x), f(x)) =

(
(1 + x2)3, x(1 + x2)

)
. Pick

out a polynomial G(x) such function (13) is a polynomial. We have
F (x) = (x2 + 2x4 + x6 + G2(x))/(1 + x2)3. The function F (x) is a
polynomial if and only if the polynomials P (x) = x2+2x4+x6+G2(x),
P ′(x), P ′′(x) are such that P (i) = P ′(i) = P ′′(i) = 0. It is easy to
prove that then G(x) = (1 + x2)(−x2 + (1 + x2)g(x)) and F (x) =
x2 − 2x2g(x) + (1 + x2)g2(x) or G(x) = (1 + x2)(x2 + (1 + x2)g(x)),
F (x) = x2+2x2g(x)+(1+x2)g2(x). Hamiltonians H1, H2 are nonglobal
ones so far as their level curve H1 = 1, H2 = 1 have the points of
intersection with an equator of a Poincaré sphere.
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About one irreducible component of the center

variety of cubic system with two invariant

straight lines and one invariant conic

Anton P. Sadovskii

Abstract

The center conditions for the cubic system in the case of equa-
tions (24) in [1, p.188] are presented.

Keywords: center-focus problem, center variety, cubic dif-
ferential system, invariant algebraic curve.

1 Introduction

In [1] necessary and sufficient conditions for the cubic system with two
invariant straight lines and one invariant conic are obtained. One of
the most difficult cases is described by the system of equations (24)
[1, p.188]. The coefficients of this system are expressed through coeffi-
cients of invariant conic. In this paper we give one irreducible compo-
nent of the center variety for the cubic system in the case of equations
(24).

2 One center case for the cubic system

We will consider system

ẋ = y + Ax2 + Cxy + Fy2 + Kx3 + Mx2y + Pxy2 + Ry3,
ẏ = −x−Gx2 −Dxy −By2 − Sx3 −Qx2y −Nxy2 − Ly3,

(1)

where A, B, C, D, F, G, K, L, M, N, P, Q, R, S ∈ C.

c©2014 by A.P. Sadovskii
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Theorem 1. Let V be the center variety of the system (1). Then
V (J) ⊂ V , where

J = 〈−35L9 − L8B(75A− 131F )− 2B9F 5(A + F )(16F 3+
+2(B2 + 12F 2)A + 9A2F + 3B2F ) + B3L6(375A3 − 702F 3+
+61B2A− 1286F 2A + 415A2F + 189B2F )− 5B2L7(7B2−
−35A2 − 22F 2 − 156AF ) + B6F 2L3(66A2B2 − 5F 2(671A2−

−35B2)− 866F 4 − 3002F 3A− 30(39A2 − 8B2)AF ) + B7F 3L2×
×(7F 2(5B2 + 18F 2) + A2(38B2 + 517F 2) + 193A3F + 73(B2+
+6F 2)AF )−B5L4F (2A2(5B2 − 2703F 2) + 2B2F 2 − 861F 4−

−2010A3F −A(4075F 3 − 76B2F ))−B4L5(286B2F 2 + A2(30B2+
+3322F 2)− 295F 4 + 1450A3F + 2A(567F 3 + 80B2F )) + 4B3L2C×

×(BF − L)5 − 2B8F 4(A2(6B2 − 115F 2) + 11B2F 2 − 56F 4−
−30A3F + 2A(8B2F − 71F 3))L, 7L8 + L7B(11A− 37F ) + B3L5×
×(25A3 + 3(B2 + 64F 2)A + 55A2F + B2F )− 2B8F 4(A + F )×
×(16F 3 + 2(B2 + 12F 2)A + 9A2F + 3B2F )−B2L6(B2 − 25A2−
−82F 2 + 18AF )−B6F 2L2(18A2B2 + (85A2 + 27B2)F 2 + 86F 4+
+180F 3A + 2(A2 + 22B2)AF ) + B4L4(10B2F 2 − 2A2(B2 + F 2)−
−99F 4 + 20A3F + 6(B2 − 39F 2)AF )−B5L3F (2A2(5B2 + 62F 2)−
−69F 4 + 76A3F + A(−65F 3 + 14B2F )) + 4L2BD(BF − L)5−
−B7F 3(A2(14B2 − 197F 2) + 25B2F 2 − 96F 4 − 51A3F−

−A(244F 3 − 37B2F ))L,−15L7 − L6B(35A− 27F ) + B7F 3×
×(A + F )(16F 3 + 2(B2 + 12F 2)A + 9A2F + 3B2F ) + B3L4×
×(175A3 − 160F 3 + 29B2A− 48F 2A + 355A2F + 45B2F )−

−B2L5(11B2 − 75A2−124F 2− 296AF )−B4L3(14A2B2+12(95A2+
+B2)F 2 + 165F 4 + 878F 3A + 410A3F + 32B2AF )−B5L2F (2A2×
×(13B2 − 510F 2) + 72B2F 2 − 309F 4 − 328A3F −A(1003F 3−

−82B2F ))−B6F 2(10A2B2 + (343A2 + B2)F 2 + 136F 4 + 378F 3A+
+2(51A2 + 8B2)AF )L + 4B3GL(BF − L)4, −13L8 − 5L7B(5A−
−7F ) + B8F 4(A + F )(9A2F + 2(B2 + 12F 2)A + 16F 3 + 3B2F )+
+B3L5(125A3 − 130F 3 + 23B2A− 173F 2A + 191A2F + 41B2F )−

−B2L6(−65A2 + 9B2 − 61F 2 − 238AF )−B4L4(10A2B2+
+31(23A2 + B2)F 2 + 33F 4 + 385F 3A + 300A3F + 34B2AF )−

−B6F 2L2(7B2F 2 + A2(4B2 + 41F 2)− 17F 4 + 29A3F+
+11A(B − F )F (B + F ))−B5L3F (2A2(9B2 − 290F 2)+
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+32B2F 2 − 103F 4 − 225A3F −A(436F 3 − 47B2F )) + B7F 3×
×(A2(6B2 − 115F 2) + 11B2F 2 − 56F 4 − 30A3F − 2A(71F 3−
−8B2F ))L + 4B4KL(BF − L)4,−11L7 − 7L6B(A− 9F )+

+B4L3(2A2(B2 + 6F 2)− 4B2F 2 − 145F 4 + 18F 3A + 30A3F )−
−B3L4(25A3 − 208F 3 + 3B2A + 16F 2A + 5A2F + 3B2F )+
+B7F 3(A + F )(16F 3 + 2(B2 + 12F 2)A + 9A2F + 3B2F )+
+B2L5(B2 − 25A2 − 168F 2 − 12AF ) + B5L2F (6A2B2+

+4(25A2 + 2B2)F 2 + 97F 4 + 111F 3A + 2(8A2 + 7B2)AF )+
+B6F 2(A2(6B2 − 115F 2) + 11B2F 2 − 60F 4 − 30A3F − 2A×
×(67F 3 − 8B2F ))L− 4B2M(BF − L)5,−13L8 − L7B(29A−
−48F ) + 3B8F 4(A + F )(16F 3 + 2(B2 + 12F 2)A + 9A2F+

+3B2F ) + B3L5(25A3 − 172F 3 + 3B2A− 500F 2A− 70A2F+
+6B2F )−B5F 2L3(268F 3 − 74A3 + 14B2A + 477F 2A + 64A2F+

+20B2F )−B2L6(B2 − 25A2 + 15F 2 − 195AF ) + B6F 2L2×
×(12A2B2 + F 2(415A2 + 13B2) + 267F 4 + 623F 3A + 26(3A2+

+B2)AF )−B4L4(5B2F 2 + A2(2B2 + 27F 2)− 289F 4 + 105A3F−
−A(534F 3 − 9B2F )) + B7F 3(2A2(8B2 − 189F 2) + 30B2F 2−
−184F 4 − 99A3F −A(466F 3 − 43B2F ))L− 4B2(BF − L)5LN,
−75L8 − L7B(155A− 174F ) + 3B8F 4(A + F )(16F 3 + 2(B2+

+12F 2)A + 9A2F + 3B2F ) + B3L5(775A3 − 748F 3 + 125B2A−
−660F 2A + 1360A2F + 256B2F )−B2L6(−375A2 + 63B2 − 457F 2−

−1403AF )−B4L4(141B2F 2 + A2(62B2 + 4611F 2) + 441F 4+
+1805A3F + 137(B2 + 22F 2)AF )−B6F 2L2(29B2F 2 + A2(40B2+
+727F 2) + 181F 4 + 270A3F + A(621F 3 + 70B2F ))−B5L3F (4A2×
×(29B2 − 954F 2) + 260B2F 2 − 918F 4 − 1354A3F −A(3313F 3−
−370B2F )) + B7F 3(4A2(5B2 − 78F 2) + 4(9B2 − 38F 2)F 2−
−81A3F −A(386F 3 − 53B2F ))L− 4B4(BF − L)4LP,−38L7−
−L6B(90A− 67F ) + 3B7F 3(A + F )(16F 3 + 2(B2 + 12F 2)A+
+9A2F + 3B2F ) + B3L4(450A3 − 414F 3 + 70B2A− 113F 2A+

+921A2F +103B2F )−B4L3(36A2B2+8(372A2 + B2)F 2 + 436F 4+
+2307F 3A + 71(15A2 + B2)AF )−B2L5(26B2 − (2A + 7F )×

×(95A + 46F ))−B5L2F (A2(66B2 − 2708F 2) + 204B2F 2 − 827F 4−
−867A3F −A(2675F 3 − 221B2F )) + B6F 2(6B2F 2 − 24A2B2−
−942A2F 2 − 376F 4 − 1042F 3A− 279A3F − 33B2AF )L + 4B4×
×(BF − L)4Q, L(BF − L)−B2R, 6L7 + L6B(14A− 11F )+

279



A.P. Sadovskii

+B7F 3(A + F )(16F 3 + 2(B2 + 12F 2)A + 9A2F + 3B2F )−B3L4×
×(50A3 − 50F 3 + 6B2A− 45F 2A + 89A2F + 7B2F ) + B2L5(2B2−
−26A2−38F 2−105AF )+B4L3(4A2(B2+51F 2)− 4B2F 2+8F 4+
+85A3F +3(B2+37F 2)AF )+B5L2F (10A2(B2−4F 2)+16B2F 2+
+9F 4 − 23A3F −A(3F 3 − 25B2F )) + B6F 2(A2(8B2 − 82F 2)+
+14B2F 2 − 40F 4 − 21A3F − 3A(34F 3 − 7B2F ))L + 4B2(BF−
−L)4LS, 5L6BF − L7 + B7F 2(A + F )216F 3 + 2(B2 + 12F 2)A+
+9A2F +3B2F )+B3L4(4(B2−20F 2)A− 34F 3−36A2F +7B2F )−
−B4L3(5A2(5A2 + B2) + 7(19A2 + 2B2)F 2 − 19F 4 + 24F 3A+

+2(55A2 + 8B2)AF ) + B5L2(2A3(B2 + 123F 2) + 2B2F 3 + 49F 5+
+4F 2(B2 + 60F 2)A + 55A4F + A2(383F 3 + 5B2F ))−B2L5(B2−
−2(5A2+F 2+11AF ))+B6F (A+F )(A2(4B2−139F 2)+11B2F 2−

−56F 4 − 39A3F −A(158F 3 − 13B2F ))L, 1−B(BF − L)Lt〉⋂C[p],
p = (A, B,C, D, F, G, K,L, M, N, P, Q,R, S).

The variety V (J) is an irreducible component of V . In this case
the system (1) has invariant straight lines and one invariant conic

1 + a10x + a01y + a20x
2 + a11xy + a02y

2 = 0,

where a02 6= 0.

3 Conclusion

The obtained result says us about extreme difficulty of the center-focus
problem for the cubic system (1).
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and conics

Anton P. Sadovskii, Tatsiana V. Shcheglova

Abstract

We consider the center-focus problem for cubic systems with
two invariant straight lines and one invariant conic. In [1] it is
proved that a weak focus is a center for such systems if and only
if the first four Liapunov quantities vanish. Seven classes of cubic
systems with the center at the origin with two invariant straight
lines and one invariant conic which is linear by variable y are
presented.

Keywords: center-focus problem, center variety, cubic dif-
ferential system, integrating factor, invariant algebraic curve.

1 Introduction

In 2013 in the monograph of D. Cozma [1] the solution of the center-
focus problem for systems of the differential equations with homoge-
neous nonlinearities of the second and the third degree in the case when
this system has either three invariant straight lines or a bundle of two
invariant straight lines and one invariant conic was presented.

Especially difficult there was a problem of definition of the center
necessary and sufficient conditions for cubic systems with a bundle of
two invariant straight lines and one invariant conic. The uncommon
ingenuity and erudition was necessary to find the solution of this prob-
lem. In many cases the author needed to represent new parametrization
which, eventually, allowed to solve the center-focus problem.

In this paper we will specify systems with the center at the origin
for some Cozma’s cases. These will be systems with invariant conics

c©2014 by A.P. Sadovskii, T.V. Shcheglova
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which are linear relatively variable y. We will widely use the theory
of polynomial ideals and varieties which allows to present the received
results in simple way.

Before passing to the main result we will mark out the paper of
H. ŻoÃla̧dek [2,3], where reversible systems with the center at the origin
are presented, which appear in this paper and the paper [4], where we
present the solution of the center-focus problem for the cubic system
with nine parameters with two parallel straight lines.

2 Cubic systems with the center at the origin

We will consider the system

ẋ = y + Ax2 + Cxy + Fy2 + Kx3 + Mx2y + Pxy2 + Ry3,
ẏ = −x−Gx2 −Dxy −By2 − Sx3 −Qx2y −Nxy2 − Ly3,

(1)

where A, B, C, D, F, G, K, L, M, N, P, Q, R, S ∈ C.
Let us denote vector p = (A,B,C, D, F, G,K, L, M, N, P,Q, R, S)

and the following ideals

J1 = 〈(B − 2C)(B + C)(7B + 4C)− 2F 2(31B + 32C)− 2A(13B+
+16C)F + 20(B + C)DF, (B − 2C)2(B + C) + 4F 2(B + 13C)−
−18A(B − 2C)F − 20F 2G, (B − 2C)2(B + C) + 2F 2(7B + 16C)−
−8A(B − 2C)F + 20FK, BF − L, (B − 2C)(B + C)(3B + 2C)−
−4F 2(7B+8C)−4A(B+4C)F−20(B+C)M, (B−2C)(B+C)×
×(4B + C)− 2F 2(12B + 13C)− 6A(2B + 3C)F + 10(B + C)N,

BF + 2P, (B − 2C)2(B + C)(3B + 2C) + 2F 2(B2 + 52C2 + 52BC)−
−2A(B−2C)(17B+18C)F−40(B+C)FQ,R, (B−2C)3(B+C)2+

+8C3(A− 2F )F − 16F 3B(6A + 7F )− 2B2CF (3A + 19F )+
+2B3F (A+23F )−4F 2C(34F 2+25BC+42AF )−360F 2(B+C)S,
36A2F 2 + 4F 4 − (B − 2C)2(B + C)2 − 4F 2(B + C)(7B + 11C)+

+A(24F 3 + 16(B − 2C)(B + C)F ), 1− (B + C)Ft〉⋂C[p],

J2 = 〈F (A + F )−M −N,C(A + F )− FG−K, FG−Q,
2F 2(A + F )− (2A−D + 4F )N, F 2G− CN, (D − 2F )(DF−

−F 2 −N)N + 2F (F 2 −N)S, B, L, P, R, 1− F (F 2 −N)t〉⋂C[p],

282



Cozma’s centers with invariant straight lines and conics

J3 = 〈B(B − 2C)2 − 24F 2B + 4(B − 2C)DF, B(B − 2C)−
−4F (3A−D + 3F ), 3B + 2G,BF − 2K,BF − L, B(B − 2C)− 4M,

B(B − 2C)− 2F (A + F ) + 2N,BF + 2P, B(5A−D + F )− 2Q,
B2 + 2(A + F )(2A + F )− 2S,R, 1− (B − 2C)Ft〉⋂C[p],

J4 = 〈4B2 + 9F (A + F ), 3F 2 −BC, 2B2 + 3(D − 2F )F, 2B + G,
8B3 + 9F (2BF − 3K), BF − L, 5B2 + 9(2F 2 + M), B2 − 3(4F 2−
−N), R, BF + 3P, 2B3 + 9F (4BF + Q), 4B4 + 9F 2(4B2 − 3S),

1−BFt〉⋂C[p],

J5 = 〈41B2 − 3F 2 + 40BC + (24C − 13G)G, 7B2 − 5F 2 − 3G2−
−8AF, 47B3 + B(20DF − 41F 2 − 11G2) + 20B2G + 4G(3DF−
−GF 2−G2), A(B−2C)− F (2C−G) +K,BF−L, 2B(4B−3C)+

+7F (5A + 2F )− 9M, 4B(B − 3C)− (5A− 11F )F + 9N,
F (2B + G) + P, 2AC + F (C + G)−Q,R, 2B(2B + 3C)−

−9A(A−D)− F (41A + 11F )− 9S, 11B2 − F 2+
+G2 + 8BG, 1− F (5B + 3G)t〉⋂C[p],

J6 = 〈D − 3(A + F ), 2B2A− (F 2 −BC)F, 2B + G,
2(AC + (B + C)F )− 3K, BF − L,AF + M, 2F 2 −B(2B + C)−N,

AB + P, AC − (2B − C)F −Q, R, F 2 + 2B(2B + C) + 3A(A+
+2F )− S, B2(2B + C)2 + F 2(3F 2 − 4BC), 1−Bt〉⋂C[p],

J7 = 〈C(A + F ) + 4B(2A + F ), 2D − 3(3A− F ),
2B + G, 6AB + K,BF − L, 3B2 −M, 3F (A + F ) + 4N,
3BF + P, 3B(7A− F ) + 2Q,R, 7(3A− F )(A + F )− 4S,

7F (A + F )2 + 4B2(9A + F ), 1− (A + F )t〉⋂C[p].

Theorem 1. Let V be the center variety of the system (1). Then

7⋃

k=1

V (Jk) ⊂ V.
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3 Conclusion

In this paper we give seven irreducible components V (Jk) of the center
variety of system (1). All these systems have invariant straight lines

1 + six− s3y = 0, i = 1, 2,

where si, i = 1, 3, are arbitrary complex parameters, and one invariant
conic

1 + a10x + a01y + a20x
2 + a11xy = 0.
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Abstract

In this work we study the existence and uniqueness of positive
and nondecreasing solutions for a fractional two-point boundary
value problem with p-Laplacian operator.

Keywords: Positive solution, fixed point theorem, p-Laplacian
operator, fractional q-difference equation.

In this work, we study a q-difference boundary-value problem with
p-Laplacian operator

Dγ
q (φp(Dδ

qy(t))) + f(t, y(t)) = 0, 0 < t < 1, n− 1 < δ < n, (1){
(D(i)

q y)(0) = 0, i = 0, 1, ..., n− 2
(Dn−2

q y)(1) = (Dqy)(1), Dγ
0+y(t)|t=0 = 0, 0 < γ < 1,

(2)

where 0 < q < 1, Dα
0+ is the Riemann-Liouville fractional derivative,

φp (s) = |s|p−2 s, p > 1. We prove the existence and uniqueness of a
positive and nondecreasing solution for the boundary value problem
(1)-(2) by using a fixed point theorem in partially ordered sets.

The basic space used in this paper is E = C[0, 1]. Then E is a real
Banach space with the norm ‖u‖ = max0≤t≤1 |u(t)|. Note that this
space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t), ∀t ∈ [0, 1].
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Main result of our paper is the following:
Theorem 1. The boundary-value problem (1)-(2) has a unique positive
and increasing solution u(t) if the following two conditions are satisfied:

i.) f : [0, 1] × [0, +∞) → [0, +∞) is continuous and nondecreasing
with respect to the second variable;

ii.) There exists 0 < λ + 1 < M such that for u, v ∈ [0,+∞) with
u ≥ v and t ∈ [0, 1]

φp(ln(v + 2)) ≤ f(t, v) ≤ f(t, u) ≤ φp(ln(u + 2)(u− v + 1)λ).

Moreover
iii.) If f(t, 0) > 0 for all t ∈ [0, 1], then the solution u(t) of boundary

value problem (1)-(2) is strictly increasing.
Example 1. We can show that the fractional boundary-value prob-

lem
D6

1/3u(t) + (
8
3
t1/7 + π) ln (2 + u(t)) = 0, 0 < t < 1, (3)

(
D

(i)
1/3u

)
(0) = 0, ...i = 0, 4,

(
D4

1/3u
)

(1) =
(
D1/3u

)
(1) (4)

has a unique and strictly increasing solution. In this problem, p = 2,
q = 1/3, f(t, u(t)) = (8

3 t1/7 + π) ln (2 + u(t)) and let δ = 11/2 and
γ = 1/2 for (t, u) ∈ [0, 1] × [0,∞). Moreover f : [0, 1] × [0, +∞) →
[0, +∞) is continuous and nondecreasing with respect to the second
variable u since fu = (8

3 t1/7 + π) 1
u+2 > 0. Also f (t, u) − f (t, v) =

(8
3 t1/7 + π) ln

(
1 + u−v

2+v

)
≤ 8+3π

3 ln (1 + u− v) and we can choose λ =
8+3π

3 ≈ 5.8082593. Thus the Theorem 1 says that the boundary-value
problem (3)-(4) has a unique strictly increasing solution u(t).
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Algebraic limit cycles in polynomial differential

systems with a weak focus

Alexandru Şubă, Dumitru Cozma

Abstract

In this paper we show that the algebraic limit cycles of a
polynomial differential system of degree n, n ≥ 3 with a weak
focus of order [(n − 1)/2] lie on at most (n2 − 3)/2 irreducible
algebraic invariant curves if n is odd and on (n2 − 2)/2 ones if n
is even. In particular, the limit cycles of a cubic system with a
weak focus of order one lie on at most three algebraic invariant
curves.

Keywords: polynomial differential system, invariant alge-
braic curve, algebraic limit cycle.

We consider the real polynomial system of differential equations

ẋ = P (x, y) , ẏ = Q (x, y) , GCD(P, Q) = 1 (1)

and the vector field X = P (x, y) ∂
∂x + Q (x, y) ∂

∂y associated to system
(1). Denote n = max{deg(P ), deg(Q)} and suppose that n ≥ 3. If
n = 3, then the system (1) is called cubic.

A singular point (x0, y0) of a system (1) is a weak focus if the eigen-
values of the linearization at (x0, y0) are pure imaginary. Without loss
of generality we may suppose that the singular point (x0, y0) is placed
at the origin. In this case via rotation of axes and time rescaling, the
system (1) becomes

ẋ = y + P2 (x, y) + · · ·+ Pn (x, y) ,
ẏ = −x + Q2 (x, y) + · · ·+ Qn (x, y) ,

(2)

c©2014 by A. Şubă, D. Cozma
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where Pj , Qj are homogeneous polynomials in x, y of degree j. It is
known there is a function F (x, y) defined in a neighborhood of (0, 0)
such that its rate of change along trajectories of (2) is of the form

X(F ) =
∞∑

j=1

Lj · (x2 + y2)j+1,

where Lj , j = 1,∞ are polynomials in the coefficients of (2). The order
of the weak focus is r if L1 = · · · = Lr−1 = 0 but Lr 6= 0.

An algebraic curve f(x, y) = 0, f ∈ C[x, y] (a function f =
exp(g/h), g, h ∈ C[x, y]) is called invariant algebraic curve (exponential
factor) of the vector field X if there exists a polynomial Kf ∈
C[x, y], deg(K) ≤ n− 1 such that the identity X(f) ≡ f(x, y)Kf (x, y),
(x, y) ∈ R2 holds.

A limit cycle of a polynomial vector field X is an isolated periodic
orbit in the set of all periodic orbits of X. An algebraic limit cycle of
degree d of X is an oval of a real irreducible invariant algebraic curve
f = 0 of degree d which is a limit cycle of X.

In 1900 D. Hilbert published a list of problems for being solved
during the 20th century. From this list two problems remain open.
One is the 16th Hilbert problem on the limit cycles of the polynomial
differential equations. This problem remains to be one of the most
difficult task and J. Llibre [3, 4] proposed to study it firstly in the cases
of algebraic limit cycles.

In this paper we will show that the presence of a singular point
of the weak focus type in a polynomial differential system imposes
restrictions on the number of degrees of the algebraic limit cycles. For
this we bring some results from [1, 2, 5].

Theorem 1. Let the system (1) to have: 1) a singular point (x0, y0)
with pure imaginary eigenvalues; 2) n(n+1)/2− [(n+1)/2] irreducible
invariant algebraic curves that do not contain (x0, y0) and 3) the first
[(n− 1)/2] Lyapunov quantities at (x0, y0) vanish, then (x0, y0) is of a
center type.

The following two Theorems are the first corollary of Theorem 1:
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Theorem 2. If the system (1) has a weak focus of order [(n−1)/2],
then it can have algebraic limit cycles of at most (n2 − 3)/2 different
degrees if n is odd, and (n2 − 2)/2 ones if n is even. In particular,
a cubic system with a weak focus can have algebraic limit cycles of at
most three different degrees.

Theorem 3. Any cubic system [(1), n = 3] with a weak fo-
cus (x0, y0) of order at least one and three invariant straight lines
l1, l2, l3, (x0, y0) 6∈ l1 ∪ l2 ∪ l3 does not have algebraic limit cycles.

In [4] two examples of cubic system with two algebraic cycles of
order four there are given:

ẋ = 2y(10 + xy), ẏ = 20x + y − 20x3 − 2x2y + 4y3; (3)

ẋ = y(a2 − r2 − 3ax + 3x2 − ay + 2xy + y2),
ẏ = −a2x + 3ax2 − 2x3 − r2y + axy − x2y + y3,

(4)

with 0 < r < a/2. The cycles of (3) have degree four and are contained
on the invariant curve 2x4 − 4x2 + 4y2 + 1 = 0. The cycles of (4) are
x2 + y2 = r2 and (x − a)2 + y2 = r2. The systems (3) and (4) do not
have invariant straight lines and singular points of weak focus type.

Theorem 4. Any cubic system [(1), n = 3] with a weak focus
of order at least four and two invariant straight lines does not have
algebraic limit cycles.

The cubic system

ẋ = (2y + 4x2 + 2xy + 6x3 + 25x2y − 6xy2 − 23y3)/2,
ẏ = −x(2 + 2x− 4y + x2 − 12xy − 47y2)/2

has a weak focus of degree one at (0, 0), two complex invariant straight
lines x± iy = 0 and an algebraic limit cycle of degree two 3x2 + 3y2 −
12y + 2 = 0.

N.A. Lukashevich (1965) proved that a quadratic system (n = 2)
with a center has no limit cycles. N.P. Erughin (1970) raised the prob-
lem of coexisting centers and limit cycles in polynomial differential
systems. M.V. Dolov (1972) gave an example of cubic system with a
center and a non-algebraic limit cycle.
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The following cubic system

ẋ = y − xy − 2y2 + 2x3 + 3x2y − 6xy2 − 3y3,
ẏ = −x + x2 + 2xy + 6x2y + 6xy2 − 2y3,

has a center at (0, 0), two complex invariant straight lines x± iy = 0,
and the algebraic limit cycles of degree two: 1− 2x + x2 − 4y + y2 = 0
and 1 + x + x2 + 2y + y2 = 0.
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Abstract

In this paper we show that in the class of cubic systems of dif-
ferential equations the maximal multiplicity of an affine invariant
straight line and the maximal multiplicity of the line at infinity
are equal to 7.

Keywords: cubic differential system, invariant straight line,
multiplicity of invariant algebraic curve.

1 Definitions

We consider the real polynomial system of differential equations

ẋ = P (x, y) , ẏ = Q (x, y) , GCD(P,Q) = 1 (1)

and the vector field X = P (x, y) ∂
∂x + Q (x, y) ∂

∂y associated to the
system (1). Denote n = max{deg(P ), deg(Q)}. If n = 3, then the
system (1) is called cubic.

Definition 1. An algebraic curve f(x, y) = 0, f ∈ C[x, y] (a func-
tion f = exp(g/h), g, h ∈ C[x, y]) is called invariant algebraic curve
(exponential factor) of the system (1) if there exists a polynomial Kf ∈
C[x, y], deg(K) ≤ n− 1 such that the identity X(f) ≡ f(x, y)Kf (x, y),
(x, y) ∈ R2 holds.

In the work [1] there are introduced the following definitions of the
multiplicty of an algebraic curve:

Definition 2. An invariant algebraic curve f of degree d for the
vector field X has algebraic multiplicity k when k is the greatest positive
integer such that the k-th power of f divides Ed(X), where

c©2014 by A. Şubă, O. Vacaraş
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Ed(X) = det




υ1 υ2 ... υl

X(υ1) X(υ2) ... X(υl)
... ... ... ...

Xl−1(υ1) Xl−1(υ2) ... Xl−1(υl)


 ,

and υ1, υ2, ..., υl is a basis of Cd[x, y]. If d = 1, then υ1 = 1, υ2 =
x, υ3 = y and E1(X) = P · X(Q)−Q · X(P ).

Definition 3. Let f = 0 be an invariant algebraic curve of degree d
of (1). We say that F = f0+f1ε+· · ·+fk−1ε

k−1 ∈ C[x, y, ε]/(εk) defines
a nondegenerate generalized invariant algebraic curve of order k based
on f = 0 if f0 = f, ..., fk−1 are polynomials in C[x, y] of degree at most
d, f1 is not a multiple of f, and F satisfies the equation X(F ) = FLF ,
for some polynomial LF = L0 + L1ε + · · ·+ Lk−1ε

k−1 ∈ C[x, y, ε]/(εk),
which must necessarily be of degree at most n− 1 in x and y.

Definition 4. Let f = 0 be an invariant algebraic curve of degree d
of system (1). We say that f = 0 is of infinitesimal multiplicity m with
respect to X if m is the maximal order of all nondegenerate generalized
invariant algebraic curves of X based on f .

Definition 5. We shall say that the invariant algebraic curve f = 0
has integrable multiplicity m with respect to X if m is the largest integer
for which the following is true: there are m − 1 exponential factors
exp(gj/f j), j = 1, ..., m − 1, with deg gj ≤ j deg f , such that each gj

is not a multiple of f .
Definition 6. An invariant algebraic curve f = 0 of degree d of the

vector field X has geometric multiplicity m if m is the largest integer for
which there exists a sequence of vector fields (Xi)i>0 of bounded degree,
converging to hX, for some polynomial h, not divisible by f , such that
each Xr has m distinct invariant algebraic curves, fr,1 = 0, ..., fr,m = 0,
of degree at most n, which converge to f = 0 as r goes to infinity.

2 Maximal multiplicity of an affine invariant
straight line of cubic systems

Theorem 1. For cubic systems the algebraic (infinitesimal, integrable,
geometric) multiplicity of an affine invariant straight line is at most
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seven. Any cubic system having an affine invariant straight line of
the algebraic (infinitesimal, integrable, geometric) multiplicity seven via
affine transformations and time rescaling can be brought to the form

ẋ = x3, ẏ = 1 + 3x2y. (2)

Proof. Algebraic multiplicity. For algebraic multiplicity the statement
of Theorem 1 was established by direct calculation. The system (2) only
has the invariant straight line x = 0 and for this line E1(X) = 6x7y,
i.e. k = 7.

Infinitesimal multiplicity. For the system (2) we have F = x+(1+
x)ε(1 + ε) + (1 + x + y)ε3(1 + ε + ε2 + ε3) and LF = x2 − xε + ε2 +
2xyε3 − yε4 − 2y2ε6.

Integrable multiplicity. For (2) and the invariant straight line f ≡
x = 0 we have: g1 = g2 = 1, g3 = 1 + 3x2y, g4 = 1 + 4x2y, g5 =
1 + 5x2y, g6 = 1 + 6x2y + 3x4y2.

Geometric multiplicity. The following cubic system

ẋ = x(x− 3ε)(x− 3ε + 6ε3),
ẏ = 1 + 3x2y − 3ε2 − 6ε4 + 8ε6 + 9ε2(1− 2ε2)y

−12ε(1− ε2)xy + 24ε4(1− ε2)y2 − 12ε3xy2 + 16ε6y3
(3)

has seven distinct invariant straight lines: l1 = x, l2 = x − 3ε, l3 =
x − 3ε + 6ε3, l4 = x − ε − 2ε3 − 4ε3y, l5 = x − ε + 4ε3 − 4ε3y, l6 =
x− 4ε + 4ε3 − 4ε3y, l7 = x− 2ε + 2ε3 − 2ε3y.

If ε → 0, then the system (3) tends to the system (2) and the
invariant straight lines li, i = 1, ..., 7 of the system (3) converge to the
invariant straight line l : x = 0 of the system (2).

3 Maximal multiplicity of the line at infinity

Theorem 2. For cubic systems the algebraic multiplicity of the line
at infinity is at most seven and any cubic system having the line at
infinity of the algebraic multiplicity seven can be written as one of the
following two forms:

ẋ = 1, ẏ = x3 + ax, a ∈ R. (4)
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ẋ = −x, ẏ = x3 + 2y. (5)

The statement of Theorem 2 was established by direct calculation.
In the class of cubic systems, the geometric multiplicity of the line

at infinity for the systems (4) and (5) is also 7. Indeed, the following
cubic system

ẋ = 1− 3xε + axε + x3ε− 4ε2 + 2x2ε2 + 14xε3 − 4axε3−
4x3ε3 − 14x2ε4 + 4x3ε5,

ẏ = ax + x3 − 3yε− 4axε2 − 4x3ε2 + 4xyε2 + 14yε3−
2y2ε3 − 28xyε4 + 12x2yε5 + 14y2ε5 − 12xy2ε6 + 4y3ε7

(6)

has six distinct invariant straight lines: l1 · l2 · l3 = 1−3xε+axε+x3ε−
4ε2+2x2ε2+14xε3−4axε3−4x3ε3−14x2ε4+4x3ε5, l4 = 1−εx+ε2y, l5 =
1− 2εx + 2ε2y, l6 = −1 + 4ε2− 2ε3x + 2ε4y. If ε → 0, then (6) tends to
(4) and li, i = 1, ..., 7 converge to the line at infinity.

The cubic system
ẋ = x(−1 + 3xε)(1− 3xε + 6xε3),
ẏ = x3 + 2y − 6xyε− 3x3ε2 + 6xyε3 − 12y2ε3 − 6x3ε4+
24xy2ε4 + 8x3ε6 − 24xy2ε6 + 16y3ε6

(7)

has seven distinct invariant straight lines: l1 = x, l2 = −1 + 3xε, l3 =
1− 3xε + 6xε3, l4 = 1− 4xε + 4xε3 − 4yε3, l5 = 1− xε + 4xε3 − 4yε3,
l6 = 1− 2xε + 2xε3− 2yε3, l7 = −1 + xε + 2xε3 + 4yε3. If ε → 0, then
(7) tends to (5) and li, i = 2, ..., 7 converge to the line at infinity.
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The Painlevé equations in Hamiltonian form

Henryk Żołądek

The Painlevé equations PI − PV I appeared in the beginning of the
previous century in works of B. Gambier and P. Painlevé as a result
of study of a class of second order differential equations with rational
right-hand sides and satisfying certain rigidity property (the Painlevé
property). These equations turned out not integrable in terms of known
functions. Nowadays the solutions to these equations are called the
Painlevé transcendents. The Painlevé equations have numerous appli-
cations in mathematics and mathematical physics.

Due to works of Japanese mathematicians (see [Oka]) the equations
PI − PV I can be written in the Hamiltonian form

ẋ =
∂h

∂y
, ẏ = −∂h

∂x
,

where h = h(x, y, t) is some (time dependent) Hamilton function; there-
fore they have 3/2 degrees of freedom. After renaming the ‘time’ t by
a new ‘coordinate’ q, introducing a new ‘momentum’ p and extending
the Hamilton function,

H(x, y, q, p) = h(x, y, q) + p,

one obtains an autonomous Hamiltonian system with two degrees of
freedom.

We develop a rather new approach to the Hamiltonian property of
the Painlevé equations. Firstly, one notes that the Painlevé equations
take the generalized Liénard form

ẍ = A(x, t)ẋ2 + B(x, t)ẋ + C (x, t) ,

c©2014 by H. Żołądek
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with rational coefficients (with possible poles at t = 0, t = 1, t = ∞,
x = 0, x = 1, x = ∞ and x = t). We postulate a momen-
tum coordinate of the form y = ẋ/D(x, y). It leads to the condition
D(x, t) = exp

(∫
2Adx + Bdt

)
.Thus D is a well defined function iff

2A′t = B′
x; it turns out that the latter condition holds in the case of

Painlevé equations. The corresponding Hamilton function equals

h(x, y, t) = D(x, t)
y2

2
+ h0(x, t), h0 = −

∫ x C

D
dx.

We have the following extended Hamilton functions HJ , each associated
with the corresponding Painlevé equation PJ :

HI =
1
2
y2 − 2x3 − qx + p,

HII =
1
2
y2 − 1

2
x4 − 1

2
qx2 − αx + p,

HIII =
x2

q
· y2

2
− αx +

β

x
− γ

2
x2q +

δ

2
q

x2
+ p,

HIV = x · y2

2
− x3

2
− 2qx2 − 2(q2 − α)x +

β

x
+ p,

HV =
x(x− 1)2

q
· y2

2
− α

x

q
+

β

qx
+

γ

x− 1
+ δ

qx

(x− 1)2
+ p,

HV I =
x(x− 1)(x− q)

q(q − 1)
· y2

2

− 1
q(q − 1)

{
αx− β

q

x
− γ

q − 1
x− 1

− δ
q(q − 1)
x− q

}
+ p.

The Okamoto Hamiltonians [Oka], denoted by H̃J , take rather different
forms, but they are related with the above Hamiltonians by means of
symplectic transformations (with respect to the symplectic form dx ∧
dy + dq ∧ dp). For example, we have

H̃II = y2/2− (
x2 + q/2

)
y − (α + 1/2)x + p

and the corresponding symplectic map equals

(x, y, q, p) 7−→ (
x, y − x2 − q/2, q, p− q2/8− x/2

)
.
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We realize the Bäcklund transformations of the Painlevé equations
as symplectic transformations. Such a transformation replaces a given
Hamiltonian HJ to the same type Hamiltonian but with changed pa-
rameters. The induced groups of parameter changes are isomorphic to
affine Weyl groups Wa(R) associated with some root systems R. We
have:

Wa(A1) for PII ,

Wa(B2) for PIII ,

Wa(A2) for PIV ,

Wa(A3) for PV ,

Wa(D4) for PV I .

Also the cases with so-called classical solutions are interpreted as
the partial integrability of the corresponding Hamiltonian system. This
means existence of invariant surfaces

Σh = {f = 0, H = h} ,

where f(x, y, q, p) is a rational function on the phase space. These
invariant surfaces are of quite special form, with f = y−E(x, q) which,
together with the relations y = ẋ/D(x, t) and q = t, lead to Riccati
equations of the form

ẋ = a(t)x2 + b(t)x + c(t).

The later equations, for different Painlevé equations, are related with
the classical second order equations. More precisely, we have:

Airy equation for PII ,

Bessel equation for PIII ,

Hermite-Weber equation for PIV ,

confluent hypergeometric equation for PV ,

Gausshypergeometric equation for PV I .
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Another aim of the work is to study the question of integrability of
the 4−dimensional Hamiltonian systems in the Arnold–Liouville sense.
It means that there should exist a first integral F (x, y, q, p) for the
vector field XH , independent of H. If F is an algebraic function (re-
spectively elementary function), then we say that the vector field XH

is algebraically integrable in the Liouville–Arnold sense (respectively
elementarily integrable in the Liouville–Arnold sense). This problem
was firstly considered by Ts. Stoyanova [Sto]. We prove the following
results.

Theorem 1 The Hamiltonian system associated with any of PI −
PV I excluding the cases: (a) α = γ = 0 in PIII , (b) β = δ = 0 in
PIII , (c) γ = δ = 0 in PV , does not admit any first integral which is an
algebraic function of x, y, q, p and is independent of H.

Theorem 2 Any of the equations PI−PV I , excluding the cases (a),
(b) and (c) above, does not admit a first integral which is an elementary
function of x, dx/dt and t.

The above cases (a), (b) and (c) of Theorem 1 are well known (see
[GLS], for example); the corresponding first integrals are given explic-
itly. We must underline that Theorem 1 is not new, only its proof is
new. It was proved by V. Gromak; the cases of equations PI and PII

are described in [GLS]. 1

Stoyanova [Sto] applied a version of the Ziglin method, developed
by J.-P. Ramis with J. Morales-Ruiz [M-R]. It uses the monodromy
group (or the differential Galois group) of the normal variation equation
for a particular algebraic solution of the corresponding Hamiltonian
system. In the case of complete integrability with meromorphic first
integrals the identity component of this differential Galois group should
be abelian. In the case of the equation PV I suitable algebraic solutions

1

The Gromak’s approach uses so-called second Malmquist theorem which states
that if a solution x = ϕ(t) to some of the PJ ’s satisfies an algebraic relation between
t, ϕ and ϕ̇, then this relation is of special type: ϕ̇m+P1(t, ϕ)ϕ̇m−1+. . .+Pm(t, ϕ) ≡ 0
with Pj ∈ C(t) [ϕ]. Therefore we have a monic polynomial in ϕ̇ with polynomial in
ϕ coefficients.

Our approach is direct, without reference to other theorems.
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exist for special values of the parameters. By direct computation of
the monodromy group Stoyanova shows that the identity component
of the differential Galois group of the normal variation equation is not
abelian. Similar arguments, with use of some Stokes operators (rather
than monodromy operators), are applied for the equation PV . But we
underline that only for special (but not discrete) values the parameters
α, β, γ, δ in PV and PV I invariant algebraic curve is given explicitly and
the method works.

Our method of proof of the non-integrability is different. Its idea is
described in [Zol], where the algebraic non-integrability of the 2 degrees
of freedom Hamiltonian systems associated with PI and PII is proved,
and in the preprint [ZoFi] (with Galina Filipuk). By a suitable nor-
malization of the variables we arrive at a perturbation of a completely
integrable system with two algebraic first integrals. Then we consider
the equation in variations with respect to a parameter (denoted by ε)
around a particular solution which is a rather general elliptic curve.
Then analysis of few initial terms in powers of ε of a possible first inte-
gral of the perturbed system leads to some properties of elliptic integral
which cannot be true.

In the proof of Theorem 2 we use the Liouville–Ritt [Rit] theory of
elementary functions.
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The New Method for Calculation of the

Diffraction Integrals

Alla Albu, Vladimir Zubov

Abstract

An algorithm for calculating integrals of rapidly oscillating
functions given on a smooth two-dimensional surface is proposed.
The surface is approximated by a collection of flat triangles with
the values of the integrand known at their vertices. These values
are used as reference ones to extend the function to other points
of a triangle. The integral of the extended function over the
surface of a triangle is calculated exactly. The desired value of the
full diffraction integral is determined as the sum of the integrals
calculated over the surfaces of all triangles.

Keywords: diffraction integral, algorithm for computing
two-dimensional integrals of rapidly oscillating functions.

1 Introduction

The Fresnel–Kirchhoff diffraction theory with related Kirchhoff meth-
ods and physical optics techniques are widely used to solve numerous
problems associated with propagation, diffraction, and scattering of
waves of various natures, which are problems lacking in strict analyt-
ical solutions. An attractive feature of the theory is that the solution
can be immediately written in the form of a diffraction integral and
the approach itself is rather simple and visual.

Much interest has recently been expressed in the creation of ap-
plication packages intended to help engineers in the design of optical
systems. The widely known Samsung Electronics Company develops,

c©2014 by A. Albu, V. Zubov
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improves, and uses its Software Laser Optics Design and Analysis Tool
(SLO-DAT) intended for the design of laser optical systems (LOS). A
combined method is used in SLO-DAT to determine the field param-
eters at any surface point behind the LOS. Specifically, the original
laser beam is represented as a set of rays, and the field distribution of
the transformed beam over the surface of the LOS exit pupil is deter-
mined. Next, the diffraction distortions of the beam introduced by the
LOS are taken into account with the use of the finite size of the LOS
exit pupil; i.e., the complex field amplitude distribution of the LOS-
transformed beam is determined by computing the diffraction integral
over the surface of the exit pupil.

The computation of the diffraction integral is not a new problem.
It is well known that its analytical evaluation is possible only in rare
cases. Accordingly, an important problem is to design efficient numer-
ical algorithms for diffraction integral computation. This is an integral
of a rapidly oscillating function. Some methods for its computation
can be found in textbooks and special scientific literature. Integrals of
rapidly oscillating functions can also be computed using built-in proce-
dures in Maple, Mathcad, Mathematica, etc. However, there is always
a risk of a result being incorrect.

When a method for diffraction integral computation is chosen, it is
desirable to use the specific features of the problem under considera-
tion, specifically, take into account the distribution of the complex field
amplitude on the input surface (integration surface).

We present an algorithm for diffraction integral computation that
takes into account the specific features of SLO-DAT. Note that the
algorithm is rather universal, so it can be efficient and useful as applied
to other problems.

2 Mathematical statement of the problem

Suppose that we know the field distribution of the transformed laser
beam over the surface of the exit pupil of a laser optical system. The
problem is to calculate the field of the transformed laser beam at points
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of the observation surface by applying the diffraction integral:

U(X
′
, Y

′
, Z

′
)=

∫∫

S

(cosβ + cosγ)U(X, Y, Z)eik·r(X′
,Y
′
,Z
′
,X,Y,Z)

2λi · r(X ′ , Y ′ , Z ′ , X, Y, Z)
dS (1)

Here, S is the integration domain, U(X, Y, Z) is the complex field
amplitude given at the point with coordinates (X, Y, Z) in the integra-
tion domain, U(X

′
, Y

′
, Z

′
) is the desired complex field amplitude at

the point with coordinates (X
′
, Y

′
, Z

′
) on the observation surface, β

is the angle between the normal to the wavefront and the normal to
the integration surface at the point (X,Y, Z), γ is the angle between
the normal to the integration surface and the vector with coordinates
(X

′ −X, Y
′ − Y, Z

′ − Z), λ is the radiation wavelength, k is the wave
number (k = 2π/λ), and r(X

′
, Y

′
, Z

′
, X, Y, Z) is the distance from the

point (X, Y, Z) to the point (X
′
, Y

′
, Z

′
).

The integral has the following features:
(a) The integrand performs fast oscillations in the integration do-

main; i.e., (1) is an integral of a rapidly oscillating function.
(b) Integral (1) is a two-dimensional integral of a rapidly oscillating

function.
The computation of complex integral (1) is reduced to the compu-

tation of two real surface integrals, of which one is the integral of a
real function ω(X,Y, Z) times cos(kψ(X, Y, Z)), while the other is the
integral of ω(X,Y, Z) times sin(kψ(X, Y, Z)). Even if the arguments
of ψ(X, Y, Z) vary rather moderately, the functions cos(kψ(X, Y, Z))
and sin(kψ(X, Y, Z)) vary very rapidly for large k.

3 Method for computing diffraction integrals

In the algorithm, the integration surface S is approximated by a piece-
wise smooth surface that is the union of flat triangles. Each vertex of
a triangle is a point on at which the complex field amplitude is given.
The values of the phase and the complex amplitude at the points of
the triangle are approximated by a bilinear function, using the known
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values of the field at the vertices of the triangle. Next, the elementary
diffraction integral over a triangle is calculated exactly (analytically).
The diffraction integral over S is calculated as the sum of elementary
diffraction integrals over all triangles.

The following algorithm is used to approximate the integration sur-
face by flat triangles. The points with input data lying on the inte-
gration surface (on the exit pupil surface of the optical system) are
projected onto the plane OXY (orthogonal to the axis of the optical
system). For this purpose, the point with coordinates (X, Y, Z) is put
in correspondence with the point (X,Y, 0). The projected points are
the input data for partitioning the projection of the integration surface
into triangles. The vertices of the desired triangles must be projected
points. The desired set of triangles is constructed by applying Delau-
nay triangulation. Next, the integration surface (the surface of the
exit pupil) is approximated by triangles. More specifically, each vertex
with coordinates (X, Y, 0) in a triangle produced by the triangulation
is assigned new coordinates (X, Y, Z) such that this point lies on the
surface of the exit pupil.

When calculating the diffraction integrals using the computer, of-
ten erroneous results occur. This happens due to the use of formulas
that contain a division of two expressions, each of which is close to
zero. The computer evaluates the indeterminate form of type 0/0 in-
correctly. The significance of the proposed algorithm for calculation of
the diffraction integrals is in the developed regular formulas that do
not contain indeterminacies.
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Decisional analysis of supply planning in

monopolistic economic systems

Anatolie Baractari, Anatol Godonoaga, Ana Tuceac

Abstract

In this paper, a decisional model for monopolistic business ac-
tivity is analyzed in order to establish the optimal input of factors
of production and output of products and services. The decisions
are based on resources supply, demand of monopolistic goods and
on their prices. The investigated models are non-differentiable,
and their solving can be effectively accomplished using numerical
algorithms built on method of generalized gradient.

Keywords: monopoly, supply and demand, profit, the op-
timal decision, generalized gradient method, non-differentiable
models.

An economic system of production is identified as a monopoly if
it is a unique bidder of certain goods in a given market. Further, we
will consider a decision situation that arises from the main goal: to
maximize profit for a monopolistic firm.
Description of the mathematical model. Goal function:

R0 (x, y) =
n∑

j=1

[cj (·)min {yj ; Yj} − pj max {0; yj− Yj}] − (1)

−
m∑

i=1

qixi → max
(x, y)

Subject to:
n∑

j=1

aijyj = xi, i = 1,m. (2)

c©2014 by A. Baractari, A. Godonoaga, A. Tuceac
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Vector of goods:

y = (y1, ..., yj , ..., yn) ∈ Dy =
{

y ∈ En : y
j
≤ yj ≤ ȳj , j = 1, n

}
, (3)

Vector of resources:

x = (x1, ..., xi, ..., xm) ∈ Dx =
{
x ∈ Em : xi ≤ xi ≤ x̄i, i = 1, m

}
.
(4)

Notations: the sets Dx and Dy are assumed known; cj(·) – selling price
of a unit of good j – depends on the amount of offer yj and on the
quantity of demand Yj of this good; pj – losses (in monetary units),
when a unit of product j is not sold; qi-price of the resource i ; aij –
technological coefficient. Further, it will be assumed that the selling
price of product j , depending on quantity yj , is expressed as

cj (·) =
{

cj(yj), if yj ≤ Yj

cj(Yj), for yj > Yj
,

cj (Yj) =

{
c̄j , if Yj ≤ y

j

cj (ỹj) , if y
j
≤ Yj ≤ ȳj , Yj ≤ yj ; where ỹj = Yj ,

(5)

cj(yj) = c̄j − (c̄j − cj) ∗
yj − y

j

ȳj − y
j

(6)

and decreases linearly for yj ∈
[

y
j
; ȳj

]
.

Taking into consideration the nature of the relations (2) we obtain
R0 (x, y) = R(y) =

∑n
j=1 Rj(xj), where

Rj(yj) =
n∑

j=1

[
cj(·)min {yj ; Yj} − pj ∗max {0; yj− Yj} − (

m∑

i=1

aijqi) yj

]
. (7)

Analyzing the properties of the function Rj(yj), it is observed that for
yj < Yj :

Rj(yj) =

(
c̄j ȳj − cjyj

ȳj − y
j

−
m∑

i=1

aijqi

)
· yj −

c̄j − cj

ȳj − y
j

· y2
j , (8)
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and for yj ≥ Yj ,

Rj(yj) = (cj(Yj) + pj) · Yj − (pj +
m∑

i=1

aijqi)yj . (9)

Structure of the model

R(y) → max (10)

in conditions (3–7) allows to apply, in the process of solving, the method
of generalized gradient [3]. Relations (8), (9) admit to ”adjust” the val-
ues cj and c̄j in order to assure the positive output of the economic
system for the category of products of prime necessity, but not nec-
essarily to satisfy the demand Yj completely. In other words, for the

interval
[
y

j
; ȳj

]
the values c̄j > cj can be indicated, that satisfy the

following inequality
c̄j ȳj−cjy

j

ȳj−y
j

−∑m
i=1 aijqi > 0.

The method of solving. Let us assume that we know the esti-
mations for values Yj , j = 1, n.
1. We build the functions ϕ1

i (y) =
∑n

j=1 aijyj − x̄i; ϕ2
i (y) = xi −∑n

j=1 aijyj , i = 1, m and ϕ(y) = max
1≤i≤m

{
ϕ1

i (y), ϕ2
i (y)

}
– the maximum

value of these 2m functions;
2. The generalized gradients of functions R(y) and ϕ(y) are represented
by gR(y) and gϕ(y) respectively;
3. An arbitrary element y0 ∈ Dy is taken, then, calculate the elements
y1, y2, ..., yk, yk+1... ∈ Dy. Suppose that the element yk is already
obtained. To find the element yk+1 the following algorithm is used:

yk+1 =
∏

Dy

(yk − hk · gk), (11)

where the step size:

hk ≥ 0, hk → 0,
∞∑

k=0

hk = ∞, (12)
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and the vector gk, which determines the direction of displacement, is
built according to the following scheme [2]:

gk =
{ −gR(yk), if ϕ(yk) ≤ 0

gϕ(yk), for ϕ(yk) > 0.
(13)

Remark 1. In practical applications, a priori is indicated a number
K̄, and the calculations are stopped as soon as the k = K̄. The obtained
solution at iteration K̄, if it is necessary, can be taken as a starting
point y0 for a new release of the algorithm. This process can be repeated
until the decision yK̄ is taken as an optimal solution.

Remark 2. More frequently, of course, the situations are met,
where the demand volume Yj is not known, but the values Y j and Ȳj,
Y j < Ȳj, and Yj ∈

[
Y j ; Ȳj

]
can be estimated. These situations could

lead to decision models under risky conditions or to the complex models
with uncertainty factors, otherwise [1].

Remark 3. Method (11-13) is general, in the sense of ability to
solve some classes of non-differentiable problems. Also, this method can
facilitate the obtaining of acceptable solutions (decisional alternatives)
in real time, which is very important for businesses.
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Bayesian Experimental Design for Network Loss

Tomography

Andrei Iu. Bejan

Abstract

We consider a sequential experimental design problem for net-
work loss tomography with a random choice of paths. We apply
a Bayesian approach and Kullback-Leibler divergence to max-
imise the informational gain obtained at each step of the network
probing experiment and show that the choice of paths is, in fact,
deterministic. We discuss practical aspects of this result.

Keywords: path probing, statistical network loss tomogra-
phy, Bayesian experimental design, Kullback–Leibler divergence

1 Introduction

Let N = (V, L) denote a network with the set of nodes V and the set
of links L. Each link l ∈ L is characterised by the loss rate 1− θl which
is the probability that a message/packet/probe will fail to successfully
pass this link if sent along. Let P be a given set of probing paths in N .
A probing path consists of one or more pairwise adjacent links in N .
We assume that the monitoring system can inject probes on all paths in
P and observe whether they successfully reach their destinations or not.
Link failures are independent and if a probe is sent along path y ∈ P,
the distribution of the outcome x (success or failure in transmitting the
probe along the entire length of y) is

Py(x) = [Ψy(θ)]x [1−Ψy(θ)](1−x) , x = 0, 1,

c©2014 by A.Iu. Bejan
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where Ψy(θ) :=
∏
l∈y

θl is the probability of successful transmission

along y. Thus, θl is the reliability of link l, whereas Ψy is the reli-
ability of path y.

The goal in loss tomography is to infer the success rates (comple-
ments of which are the link loss rates) of all or some links in N by ob-
serving results of end-to-end probes on a given set of probing paths P.
The goal of loss tomography experimental design is to identify such a
set of probing paths optimally (with respect to some optimality cri-
terium).

2 Statistical Design in Network Tomography

Statistical tomography models each link state as a random variable
with unknown probability distributions, and apply various estimation
techniques to estimate these distributions or their characteristics from
path measurements [1]. Consequently, experimental designs derived
with such a purpose use a metric which aims to maximise precision of
this estimation. We shall take a different approach in devising exper-
imental designs which aim to maximally increase the knowledge gain
obtained in an experiment.

2.1 Experimental Model

Various experimental loss network tomography models are possible, but
in this work we are only concentrating on the following experimental
scenario:

Experiment: Let φ
(i)
y be a probability of choosing to probe path

y at step i. Use N probes by determining sequentially at each step
the optimal vector φ(i) for randomly choosing a path to probe after
observing the result of the previous probing.

2.2 Experimental Design

Let the model vector parameter be θ, the model is described by a prob-
ability distribution f(z |θ,d) of the outcome z of the studied process
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under experimental conditions described by the design parameter d.
Our knowledge/uncertainty about θ is described by a prior distribu-
tion π(θ). Using a typical Bayesian approach, after observing z this
knowledge updates to π(θ|z). We shall measure the usefulness of the
experiment using the Kullback–Leibler divergence:

UKL(d) := Ez,θ

[
log

π(θ | z,d)
π(θ)

]
≡ Ez [DKL{π(θ | z,d) ‖ π(θ)}] , (1)

where DKL{h(t) ‖ g(t)} :=
∫
R

h(t) log h(t)
g(t) dt. This quantity measures

the informational gain obtained after updating the prior information
to posterior.

3 Main Result

Lemma 1 (First-order conditions) The partial derivative of the ex-
pected utility UKL(d) with respect to its continuous component di can
be calculated as follows:

∂UKL(d)
∂di

=
∫

Θ

∫

Z
log

π(θ | z,d)
π(θ)

f ′di
(z |θ,d)π(θ) dθdz, (2)

provided the functions f(· | ·, ·), π(·) are such that differentiation of
UKL(d) and the corresponding integration are interchangeable.
Theorem 1
In the above random sequential design the following deterministic
choice of the path maximises the expected Kullback-Leibler divergence
between the current and updated knowledge on θ :

yi = arg max
y


 ∑

x=0,1

∫

Θ

log
πi(θ | y, x)

πi−1(θ|yi−1, xi−1)
Py(x; θ)πi−1(θ) dθ


 .

Proof
Let z = (y, x) and the design vector di be the vector of path choice
probabilities φi. The distribution of observables z is as follows:
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f(z |θ,φi) =
∑
y∈P

φi
yPy(x; θ), where Py(x) = (

∏
l∈y

θl)x(1 − ∏
l∈y

θl)(1−x).

We next use Lemma 1 to find the following representation:
∂UKL(φi)

∂φi
w

=
∫

Θ

∫

Z
log

πi(θ | y, x,φi)
πi−1(θ|yi−1, xi−1)

f ′φi
w
(z |θ, φ)πi−1(θ) dθdz

=
∑

x=0,1

∫

Θ

log
πi(θ | y = w, x)

πi−1(θ|yi−1, xi−1)
Pw(x; θ)πi−1(θ) dθ.

Thus, ∂UKL(φi)
∂φi

w
does not depend on φi. Together with the feasibil-

ity conditions
∑
y∈P

φi
y = 1 and φi

y ≥ 0, this implies that the maximal

component of the gradient vector of UKL(φi) indicates which path to
probe. This completes the proof.

The talk will discuss practical aspects of computation of yi.
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Auxiliary busy periods for M2|G2|1 system with

PH distribution and strategy ”reset-to-zero”

Diana Bejenari, Attahiru S. Alfa,
Gheorghe Mishkoy, Lilia Mitev

Abstract

An M2|G2|1 system with two priority classes is considered.
There is orientation time when service is switching from one class
of priority to another. Analytical results are obtained for the
auxiliary busy period under the “reset-to-zero” strategy when
the switching times have PH distribution.

Keywords: M2|G2|1 system, busy period, PH distribution.

1 Introduction

In this paper an M2|G2|1 system with two priority classes and orienta-
tion time while switching from serving one class of priority to another
is studied. The requests of class 1 are endowed with absolute (pre-
emptive) priority. If they arrived in the system while serving a request
of class 2 or orientation to class 2, the service of this class 2 message
and/or the orientation towards the service of messages of class 2 will
be interrupted. The switching time from class 1 to class 2 is C12 and
from class 2 to class 1 is C21. The switching times are assumed to have
PH distribution. For the case of “reset-to-zero” strategy we obtain an-
alytical results for auxiliary busy periods. Given that the distribution
functions of service and orientation time are of general order, this type
of system can be used for modeling and analyzing a wide spectrum of
real problems. The research methods are based on Laplace-Stieltjes
transforms, generating functions and PH distribution.
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2 The busy period for strategy “reset-to-zero”

The distribution of the busy period and auxiliary periods for strategy
“reset-to-zero” in the free state and absolute priority schemes are given
in [1]. All the distributions are presented in terms of Laplace-Stieltjes
transform and are obtained by the method of catastrophes. In condi-
tions that C01 = C21 and C02 = C12 the distribution of busy period for
strategy ”reset to zero” of the M2|G2|1 system is given by [1]:

π(s) =
a1

a1 + a2
π21(s) +

a2

a1 + a2
π22(s),

π21(s) = π1(s+a2)+{π1(s+a2(1−π2(s)))−π1(s+a2)}ν2(s+a2(1−π2(s))),

π22(s) = ν2(s + a2(1− π2(s)))π2(s),

π1(s) = c21(s + a1(1− π1(s)))π1(s), (1)

π2(s) = h2(s + a2(1− π2(s))), (2)

π1(s) = β1(s + a1(1− π1(s))), (3)

where ν2(s) and h2(s) are given in [1].

3 Matrix forms for auxiliary busy periods

The matrix forms and matrix algorithms for auxiliary busy periods
π1(s) and π1(s) are obtained in this section. Suppose that B1(x) is a
PH distribution [2] with representation (αt

1, T1), where

T1 =




−a1 a1 . . . 0 0
0 −a1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −a1 a1

0 0 . . . 0 −a1




,

and
T 0

1 =
(
0 0 . . . a1

)t
.
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The Laplace-Stieltjes transform β1(s) of probability distribution B1(x)
of the time until absorbtion in the state 0 is β1(s) = αt

1(sI − T1)−1T 0
1 .

Then the matrix form of equation (3) is

a1(s) = αt
1g1(s)y1(s), (4)

where a1(s) = 1− π1(s) and y1(s) = (g1(s)I + A1)−1e can be obtained
by solving the simultaneous linear equations

(g1(s)I + A1)y1(s) = e,

where A1 = −T1. The matrix algorithm for equation (3) is a1(s) =
1 − (a1ω1)n, where ω1 = 1/(g1(s) + a1), αt

1e = 1 and we start with
a1(s) = 1 and αt

1 = (10 . . . 0), the remaining values are input values
(a1, ã1 = a1 and s).

Suppose that C21(x) is a PH distribution with representation
(αt

21, T21), where

T21 =




−δ21 δ21 . . . 0 0
0 −δ21 . . . 0 0
...

...
. . .

...
...

0 0 . . . −δ21 δ21

0 0 . . . 0 −δ21




,

and
T 0

21 =
(
0 0 . . . δ21

)t
.

The Laplace-Stieltjes transform c21(s) of probability distribution C21(x)
of the time until absorbtion in the state 0 is

c21(s) = αt
21(sI − T21)−1T 0

21.

Then the matrix form of equation (2) (a1 = ã1) is

b1(s) = αt
21g1(s)(1− a1(s))ỹ21(s), (5)
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where ỹ21(s) = (g1(s)(1−a1(s))I +D21)−1e can be obtained by solving
the simultaneous linear equations (g1(s)(1− a1(s))I + D21)ỹ21(s) = e,
where D21 = −T21.

The matrix algorithm for equation (2) is b1(s) = 1−(δ21γ1)n, where
γ1 = 1/(g1(s)(1 − a1(s)) + δ21), αt

21e = 1 and we start with a1(s) = 1
and αt

21 = (10 . . . 0), the remaining values are input values (δ21, ã1 =
a1 and s).

4 Conclusion

The presented results will be used for obtaining the matrix form of
busy period of the mentioned system.
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Derivation of Boolean functions by the blocks

method

Mihai Bulat, Sergiu Cataranciuc, Iacob Ciobanu,
Vladimir Izbas, Aureliu Zgureanu

Abstract

A method for calculating using blocks of the partial deriva-
tives of the boolean function which are represented in algebraic
form – a polynomial form, disjunctive normal form and conjunc-
tive normal form is proposed. The method can be used success-
fully for functions which depend on a large number of variables
(tens and hundreds). This method can be applied to solve many
problems from different areas such as: elaborating of encryption
system with variable keys, some problems from discrete mathe-
matics (systems isomorphism problem, problem of determining
of chromatic number in graphs ect.).

Keywords: boolean function, derivative of function, subsets
of columns, block of partition.

1 Introduction

In [2] the keys of encryption system are built on the basis of subsets
column of partial derivatives of Boolean functions using subsets of col-
umn of functions from the key. With increasing of number of functions
variables the encryption speed decreases. The situation can be changed
if the subsets of column of partial derivatives are calculated without
calculating the subsets of column of functions. This we can do by using
blocks which correspond to conjunctions (disjunctions) of the algebraic
form of functions [2].

c©2014 by M. Bulat, S. Cataranciuc, I. Ciobanu, V. Izbas, A. Zgureanu
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2 The subsets of column of derivatives of
boolean functions

Suppose we have a Boolean function

F (x1, ..., xτ , xτ+1, ..., xn) = U1 ⊕ ...⊕ Ur, (1)

where conjunctions Ui are of the form

Ui = x
σi1
i1
∧ ...∧x

σis
is
∧x

σj1
j1
∧ ...∧x

σjk
jk

and ∀a, b : σia , σjb
∈ {0, 1}.

We construct the sets

X̃1 = {x1, ..., xτ} = {1, ...τ}, X̃2 = {xτ+1, ..., xn} = {τ + 1, ..., n}

and find the subset of column [1] of the partial derivative

S
zj(

∂tUi
∂x11

...∂x1m ∂x21
...∂x2b

)1 ,

where 11, ..., 1m ∈ {1, ..., τ}, 21, ..., 2b ∈ {τ + 1, ..., n}, t = m + b.
Denote {xi1 , ..., xis} = {i1, ..., is} and {xj1 , ..., xju} = {j1, ..., jk}
and construct the sets:

{c1, ..., cq} = {i1, ..., is}\{11, ..., 1m},
{t1, ..., tp} = {j1, ..., jk}\{21, ..., 2b}.

The following Theorem is true:

S
zj(

∂tUi
∂x11

...∂x1m∂x21
...∂x2b

)1=





Y, if





1) {11, ..., 1m} = {i1, ..., is}
2) {21, ..., 2b} ⊆ {j1, ..., jk}
3)∀ a ∈ {t1, ..., tp} : x̃a = σ̃a

⋂q
u=1 m̄

σcu
cu , if





1) {11, ..., 1m} ⊂ {i1, ...1s}
2) {21, ..., 2b} ⊆ {j1, ..., jk}
3)∀a ∈ {t1, ..., tp} : x̃a = σ̃a

∅, in other cases
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where Y = {0, 1, 2, ..., 2τ − 1}.
The subsets of column of derivatives of function are obtained by the
symmetrical difference of subsets of column of all conjunctions from
(1).

3 Some applications

• Suppose the secret key represent a set of Boolean functions
F = {F1, ..., Fk}[2] and for information encryption the subsets of
column of partial derivatives of functions from this set are used.
The method of derivation by blocks allows a fast calculation of
derivatives of functions that depend on tens and hundreds of vari-
ables. This makes possible to quickly change the encryption key
during information encrypting. The change of the number of vari-
ables in the functions from F practically does not influence the
speed of information encryption. The increasing of the number of
variables in the functions from F implies a higher cryptographic
resistance of system without having a great impact of encryp-
tion speed. Encryption system from [2] is improved based on
derivation by blocks of the functions from key. In this system
the keys are variable and change from one to another message
and during information encryption. Generally the same symbol
from message is encrypted differently. This makes it practically
impossible to restore the message if we know part of it.

• The method of derivation by blocks allows to solve the problem
of determining the upper and lower boundaries for the chromatic
number of a graph [3].

4 Conclusion

• The proposed method allows increasing encryption system relia-
bility by increasing of the number of variables in functions from
key without essential changing of encryption speed and volume
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of message.

• It is welcome to generalise this method for functions which are
represented in other analytic forms.
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Covering undirected graphs by convex sets

Radu Buzatu

Abstract

This paper is focused on some aspects of undirected graphs
covering, in particular convex sets problem (CCS) and partition-
ing undirected graph into convex sets problem (PCS). We prove
theorems regarding existence of graphs with fixed number of con-
vex sets which serve as solutions to CCS and PCS problems.

Keywords: convexity, d-convexity, graphs, convex covers,
vertex covers.

1 Introduction

Let G(X,G) be a simple connected graph. We use the notion of d-
convexity that is defined in [1]. The concepts of convex p-cover and
convex p-partition are defined in [2,3] as follows: a graph G has convex
p-cover if X(G) can be covered by p convex sets, that is, there exists
X = {X1, X2, . . . , Xp}, p ∈ N , such that X(G) =

⋃
1≤i≤p Xi; set Xi is

convex and Xi 6⊆
⋃

1≤j≤p
i6=j

Xj , for 1 ≤ i ≤ p. If all sets of X are disjoint,

then X is a convex p-partition of X(G). Additionally, there are defined
numbers ϕc(G) and θc(G). The convex cover number ϕc(G) of a graph
G is the least integer p ≥ 2 for which G has convex p-cover. The convex
partition number θc(G) of a graph G is the least integer p ≥ 2 for which
G has a convex p-partition.

We define new concepts: non-trivial convex p-cover and non-trivial
convex p-partition. A graph G has a non-trivial convex p-cover if G has
convex p-cover and all sets of X are non-trivial, |Xi| ≥ 3, for 1 ≤ i ≤ p.

c©2014 by R. Buzatu
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If a graph G has a non-trivial convex p-cover and all sets of X are
disjoint, then X is a non-trivial convex p-partition of X(G).

The non-trivial convex cover number ϕcn(G) of a graph G is the
least integer p ≥ 2 for which G has a non-trivial convex p-cover. The
non-trivial convex partition number θcn(G) of a graph G is the least
integer p ≥ 2 for which G has a non-trivial convex p-partition.

2 Covering and partitioning of graphs

In this section there are presented several proved theorems regarding
existence of graphs with fixed number of convex sets which serve as
solutions to CCS and PCS problems and some properties of graph
covers and graph partitions.

Let Pϕ(X(G)) and Pθ(X(G)) be minimum families of sets, which
serve as solutions to CCS and PCS problems.

Theorems which describe properties are presented below.

Theorem 1. If ϕc(G) ≥ 3, then for any Pϕ(X(G)), ∀A,B ∈
Pϕ(X(G)), where A 6= B, ∃C ∈ (Pϕ(X(G))\A)\B, such that ∃a ∈ A,
∃b ∈ B, ∃c ∈ C, where c ∈ 〈a, b〉.
Corollary 1. If θc(G) ≥ 3, then for any Pθ(X(G)), ∀A,B ∈
Pθ(X(G)), where A 6= B, ∃C ∈ (Pθ(X(G))\A)\B, such that ∃a ∈ A,
∃b ∈ B, ∃c ∈ C, where c ∈ 〈a, b〉.
Theorem 2. If ϕc(G) ≥ 3, then for any Pϕ(X(G)), ∀A ∈ Pϕ(X(G)),
∃B ∈ Pϕ(X(G))\A, ∃C ∈ Pϕ((X(G))\A)\B, such that ∃a ∈ A, ∃b ∈
B, ∃c ∈ C, where a ∈ 〈b, c〉.
Corollary 2. If θc(G) ≥ 3, then for any Pθ(X(G)), ∀A ∈ Pθ(X(G)),
∃B ∈ Pθ(X(G))\A, ∃C ∈ Pθ((X(G))\A)\B, such that ∃a ∈ A, ∃b ∈ B,
∃c ∈ C, where a ∈ 〈b, c〉.

Next few theorems regard existence of graphs with fixed number of
convex sets.
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Theorem 3. ∀p, n ∈ N , where 2 ≤ p ≤ n, an undirected connected
graph G exists, such that:

a) |X(G)| = n;

b) ϕc(G) = p;

c) θc(G) = p.

Theorem 4. ∀q, n ∈ N , where 2 ≤ q ≤ bn
3 c, an undirected connected

graph G exists, such that:

a) |X(G)| = n;

b) θcn(G) = q.

Theorem 5. ∀q, n ∈ N , where 2 ≤ q = n − 2, there is no undirected
connected graph G, such that:

a) |X(G)| = n;

b) ϕcn(G) = q.

Theorem 6. ∀q, n ∈ N , where 2 ≤ q ≤ n− 3, an undirected connected
graph G exists, such that:

a) |X(G)| = n;

b) ϕcn(G) = q.

Theorem 7. Let G be an undirected connected graph, conditions a)-
b) are met, G /∈ F , where F is a family of graphs (see Fig.1), then
ϕcn(G) = 2.

a) |X(G)| ≥ 5;

b) ϕc(G) = 2.
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3 Conclusion

These findings can help in characterization of graphs for which ϕc(G),
ϕcn(G), θc(G), θcn(G) are predefined. Furthermore, results describing
relation between solutions of CCS and PCS problems can be obtained.
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A Method for Solving Stochastic Discrete

Control Problems on Networks with Varying

Time of States’ Transitions of the System

Maria Capcelea

Abstract

The stochastic version of discrete optimal control problem on
networks with an average cost optimization criterion and with
varying time of state transitions is studied.

Keywords: stochastic discrete control problem, stationary
strategies.

1 Problem Formulation

In this paper we consider the stationary stochastic discrete optimal
control problem on networks with an average cost optimization crite-
rion, when the time of systems’ transitions from one state to another
may vary in the control process. The problem will be reduced to the
case with unit time of states’ transitions of the system.

Let a discrete dynamical system L with finite set of states X be
given. At every discrete moment of time t = t0, t1, t2, ... the state of
L is x (t) ∈ X and at the starting moment of time t0 = 0 the state
of the dynamical system is x0 = x(0). Assume that the dynamics
of the system is described by a directed graph of state’s transitions
G = (X, E). An arbitrary vertex x of G corresponds to a state x ∈ X
and an arbitrary directed edge e = (x, y) ∈ E expresses the possibility
of the system L to pass from the state x (t) to the state x (t + τe), where
τe is the time of the system’s transition from the state x = x (t) to the

c©2014 by M. Capcelea
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state y = x (t + τe) through the edge e = (x, y). So, on the edge set E
it is defined the transition time function τ : E → N and, also, the cost
function c : E → R, which associates to each edge the cost ce of the
system’s transition from the state x to the state y.

We assume that the set X may admit states in which system L
makes transitions to a next state in the random way, according to given
distribution function of probabilities on the set of possible transitions
from these states. So, the set X is divided into two subsets XC and
XN (X = XC

⋃
XN , XC

⋂
XN = ∅), where XC represents the set of

controllable states x ∈ X, in which the transitions of the system to a
next state y can be controlled by the decision maker, and XN represents
the set of uncontrollable states x ∈ X, in which the decision maker is
not able to control the transition, because the system passes to a next
state y randomly. The probability distribution function p : EN → [0, 1]
on the set EN = {e = (x, y) ∈ E | x ∈ XN} is defined in such a way
that

∑
y∈X+(x) px,y = 1, X+ (x) = {y ∈ X|e = (x, y) ∈ E}. Here px,y

expresses the probability of system’s transition from the state x to the
state y.

A directed edge e = (x, y) in G corresponds to a stationary con-
trol of the system in the state x ∈ X. A sequence of directed edges
Ẽ = {e0, e1, ..., et, ...}, where ej =

(
x (tj) , x

(
tj + τej

))
, j = 0, 1, 2, ...,

determines in G a control of the system with fixed starting state x (0).
An arbitrary control in G generates a trajectory x (t0) , x (t1) , x (t2) , ...
for which mean integral-time cost by a trajectory can be defined by the
formula f

(
Ẽ

)
= lim

t→∞

(
1
σ

∑t−1
j=0 cej

)
, where σ =

∑t−1
j=0 τej . The control

problem on network (G, XC , XN , c, p, x0) with an average cost opti-
mization criterion consists in finding the stationary strategy s∗ that
provides the minimal mean integral-time cost by a trajectory.

We define a stationary strategy for the control problem as a
map s : x → y ∈ X+ (x) for x ∈ XC . For the arbitrary sta-
tionary strategy s the graph Gs = (X, Es

⋃
EN ), where Es =

{e = (x, y) ∈ E | x ∈ XC , y = s (x)}, corresponds to a Markov process
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with the probability matrix P s =
(
ps

x,y

)
, where

ps
x,y =





px,y, if x ∈ XN and y ∈ X,
1, if x ∈ XC and y = s(x),
0, if x ∈ XC and y 6= s(x).

2 Reduction to the problem with unit time of
states’ transitions

Our problem can be reduced to the case with unit time of states’
transitions on an auxiliary graph G′ = (X ′, E′). Graph G′ is ob-
tained from G, where each directed edge e = (x, y) ∈ E with cor-
responding transition time τe is changed by a sequence of directed
edges e′1 = (x, xe

1) , e′2 = (xe
1, xe

2) , ..., e′τe
=

(
xe

τe−1, y
)
. So, the set

of vertices X ′ of the graph G′ consists of the set of states X and
the set of intermediate states XI = {xe

i | e ∈ E, i = 1, 2, ..., τe − 1},
i.e., X ′ = X

⋃
XI. Also, we consider the sets X ′

C and X ′
N , so that

X ′ = X ′
C

⋃
X ′

N , X ′
C = XC and X ′

N = X ′\XC . The set of edges E′ is
defined as

E′ =
⋃

e∈E

Ee, Ee =
{

(x, xe
1) , (xe

1, xe
2) , ...,

(
xe

τe−1, y
) ∣∣ (x, y) ∈ E

}

and the cost function c′ : E′ → R by c′x,xe
1

= cx,y if e = (x, y) ∈ E,
c′xe

1,xe
2

= cxe
2,xe

3
= ... = cxe

τe−1,y = 0. The probability function p′ : E′
N →

[0, 1] is defined as follows:

p′x′,y′ =
{

px,y, if x′ = x, x′ ∈ XN ⊂ X ′
N and y′ = xe

1,
1, if x′ ∈ X ′

N\XN .

Between the set of stationary strategies s : x → y ∈ X+ (x) for x ∈ X
and s′ : x′ → y′ ∈ X ′+ (x′) for x′ ∈ X ′, there exists a bijective mapping
such that the corresponding average costs on G and on G′ are the same.
So, if s′∗ is the optimal stationary strategy of the problem with unit
transitions on G′ , then the optimal stationary strategy s∗ on G is
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determined by fixing s∗ (x) = y if s′∗ (x) = xe
1, where e = (x, y). The

linear programming algorithms for solving the control problem with a
unit time of states’ transitions have been developed in [1].

We consider that the network (G, XC , XN , c, p, x0) is perfect, i.e.,
the graphs G and Gs are strongly connected.

Theorem 1. Let α∗x′,y′ (x′ ∈ X ′
C , y′ ∈ X ′) , q∗x′ (x′ ∈ X ′) be a basic

optimal solution of the following linear programming problem:
Minimize ψ̄(α, q) =

∑
x′∈X′

C

∑
y′∈X′+(x′) c′x′,y′αx′,y′+

∑
z′∈X′

N
µz′qz′,

subject to



∑
x′∈(X′

C)−(y′) αx′,y′ +
∑

z′∈X′
N

pz′,y′qz′ = qy′ , ∀y′ ∈ X ′,∑
x′∈X′

C
qx′ +

∑
z′∈X′

N
qz′ = 1,∑

y′∈X′+(x′) αx′,y′ = qx′ , ∀x′ ∈ X ′
C ,

αx′,y′ ≥ 0, ∀x′ ∈ X ′
C , y′ ∈ X ′; qx′ ≥ 0, ∀x′ ∈ X ′,

where µz′ =
∑

y′∈X′(z′) p′z′,y′c
′
z′,y′ , ∀z′ ∈ X ′

N . Then the optimal sta-
tionary strategy s′∗ can be found on the base of the formula (s′x′,y′)

∗ ={
1, if α∗x′,y′ > 0
0, if α∗x′,y′ = 0

, where x′ ∈ X ′
C , y′ ∈ X ′+(x′).

The stochastic control problem on the network with an arbitrary
structure can be reduced to an auxiliary problem on perfect network.
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Euler characteristic of abstract cubes complex

Sergiu Cataranciuc

Abstract

The complex of abstract cubes In = {I0, I1, . . . , In}, defined
by m-dimensional cubes family In = {Im

1 , Im
2 , . . . , Im

β1
}, 0 ≤ m ≤

n is studied. Formula for the Euler characteristics for the In

complex is deduced. The formula is expressed by cardinals of
the groups of the homologies and by a number of m-dimensional
abstract cubes from In.

Keywords: : Abstract cubes, Euler characteristic, group of
homologies, group rank, Betti number.

1 Introduction

Euler characteristic is frequently used in algebraic topology and com-
binatorics of the polyhedrons, which represents a topological invariant
– number, which describes form and structure of the space. Initially,
Euler characteristic was introduced in the study of polyhedrons, partic-
ularly, it was used to study the Platon bodies. In modern mathematics
this number appears in study of homologies of spaces in correlation
with a list of another invariants.

Formula which connects a number of 3-dimensional facets of the
polyhedrons for the first time was introduced by Leonard Euler in 1752,
despite the fact that some its references can be found in manuscripts
of Rene Descartes. This formula was lately generalized by H. Poincare
for n-dimensional polyhedrons.

Next we will introduce some relations for Euler characteristic, also
known as Euler-Poincare characteristic for complex of abstract cubes
In. Euler characteristic of the complex In will be denoted as χ(In).

c©2014 by S. Cataranciuc
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2 Groups in the abstract cubes complex

In paper [1] groups of ¤−homologies of the complex In were defined.
Ranks of these groups represent topological invariants of the complex.
For the group ¤m(In, Z), 0 ≤ m ≤ n the complete system of invariants
is defined by rank of this group and torsion coefficients of the group.
These invariants play an important role in construction of Euler formula
of the complex.

We will mention some properties of the abstract cubes complex
In = {I0, I1, . . . , In}, which are studied in papers [2].

A) Set Lm of all cubic m−dimensional chains from In form a com-
mutative group in relation to addition operation.

B) Group Lm has a finite system of generators. Therefore, in Lm

there exist a finite number of m−dimensional chains Lm
i1

, Lm
i2

, . . . , Lm
it

,
so that each chain Lm ∈ Lm can be expressed as a linear combina-
tion Lm = p1L

m
i1

+ p2L
m
i2

+ . . . + ptL
m
it

, where p1, p2, . . . , pt are integer
numbers.

C) Homologies groups ¤0(In, Z),¤1(In, Z), . . . ,¤n(In, Z) of the
complex In has a finite system of generators.

Definition 1. Rank of the group of homologies ¤m(In, Z)
of the n−dimensional complex of abstract cubes In is called Betti
number with dimension m of this complex, and can be denoted as
ρmcard¤m(In, Z), 0 ≤ m ≤ n.

Let the Zm and Zm
0 be a group of m−dimensional cycles and group

of m−dimensional cycles ¤−homologous to 0 of the complex In.

Theorem 1. For the quotient factor Zm/Zm
0 with dimension m of

the cubic complex Im, ρ(Zm) = ρ(Zm
0 ) + ρ(Zm/Zm

0 ) is true.

Theorem 2. Group of (m−1)−dimensional cycles and ¤−homologuous
to zero Zm−1

0 of n−dimensional complex of abstract cubes In is iso-
morph to the quotient factor Zm/Zm

0 .
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3 Euler characteristic

We will denote by αm the number of n−dimensional abstract cubes of
the complex In.

αm = cardIm, 0 ≤ m ≤ n.

Theorem 3. If In
1 , In

2 , . . . ,In
p are connex components of the com-

plex In and Im = In
1 ∪ In

2 ∪ . . . ∪ In
p , then the following is true:

¤0(In, Z) = Z + Z + . . . + Z︸ ︷︷ ︸
N times

.

Theorem 4. For the complex of abstract cubes In the following
equality is true:

n∑

m=1

(−1)mαm =
n∑

m=1

(−1)mρm.

Proof: For families Im and Lm the following is true: ρ(Lm) =
cardIm = αm. Based on Theorem 1, for the groups Lm, Zm and
Lm/Zm we have:

ρ(Lm) = ρ(Zm) + ρ(Lm/Zm). (1)

Based on Theorem 2, groups Lm/Zm and Zm−1
0 are isomorph.

Therefore, relation (1) can be written as ρ(Lm) = ρ(Zm) + ρ(Zm−1
0 ).

If we accept that ρ(Z−1
0 ) = 0, then (2) is true for every m, 0 ≤

m ≤ n. Considering definition of the rank of the group and applying
Theorem 1 for groups Zm, Zm

0 and for quotient factor Zm/Zm
0 we

have:

ρ(Zm) = ρ(Zm
0 ) + ρ(Zm/Zm

0 ) = ρ(Zm
0 ) + ρm, 0 ≤ m ≤ n. (2)

After substitution of relation (3) in (2) we have:

ρ(Zm) = ρ(Zm
0 ) + ρm + ρ(Zm−1

0 ), 0 ≤ m ≤ n. (3)

332



Euler characteristic of abstract cubes complex

Considering that Zn
0 = {0}, from the mentioned results we obtain

ρ(Z−1
0 ) = ρ(Zn

0 ) = 0.
Because ρ(Lm) = cardIm = αm, we have that:

αm = ρm + ρ(Zm
0 ) + ρ(Zm−1

0 ), 0 ≤ m ≤ n. (4)

Multiplying both parts of the relation (5) with (−1)m and sum by index
m, 0 ≤ m ≤ n. The next equation is true:

n∑

m=1

(−1)mρ(Zm−1
0 ) +

n∑

m=1

(−1)mρ(Zm
0 ) = 0.

In condition that: Zm
0 = {0}, ρ(Z−1

0 ) = ρ(Zn
0 ) = 0. Finally, from

relation (5) we have that:
n∑

m=1

(−1)mαm =
n∑

m=1

(−1)mρm.¥

4 Conclusion

Formula for calculation of Euler characteristic is deduced for a com-
plex of abstract cubes In, using invariants of groups of homologies In.
Using Theorem 4 we ascertain an important relation of the Euler char-
acteristic of the complex used for solving problems with applicative
aspect.
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Sergiu Cataranciuc

USM
Email: s.cataranciuc@gmail.com

333



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

Gromov hyperbolicity and cop and robber game

J. Chalopin, V. Chepoi, P. Papasoglu, T. Pecatte

Abstract

In these notes, I will briefly describe the results which I will
present in the talk entitled Cop and robber game and hyperbolic-
ity, which are based on paper [3]. Generally speaking, our main
result is that Gromov hyperbolicity can be characterized by the
cop and robber game with speeds: in a δ-hyperbolic graph a
slower cop can always catch a faster robber and, conversely, if in
a graph G a slower cop can always catch a faster robber, then
the hyperbolicity of G is quadratic in the speed of the cop. As
a byproduct of our results, we obtain a constant factor approxi-
mation of hyperbolicity of an n-vertex graph in O(n2) time.

Keywords: geometry, computer science, Gromov hyperbol-
icity, linear isoperimetric inequality, cop and robber game.

1 Cop and robber game

The cop and robber game originated in the 1980’s with the work of
Nowakowski, Winkler, Quilliot, and Aigner, Fromme, and since then
has been intensively investigated by many authors under numerous
versions and generalizations. Cop and robber is a pursuit-evasion game
played on finite undirected graphs G = (V, E). Player cop C attempts
to capture the robber R. At the beginning of the game, C chooses a
vertex of G, then R chooses another vertex. Thereafter, the two sides
move alternatively, starting with C, where a move is to slide along an
edge of G or to stay at the same vertex. The objective of C is to capture
R and the objective of R is to continue evading C. A cop-win graph
is a graph in which C captures R after a finite number of moves. We

c©2014 by J. Chalopin, V. Chepoi, P. Papasoglu, T. Pecatte
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investigate a natural extension of the cop and robber game in which the
cop C and the robber R move at speeds s′ ≥ 1 and s ≥ 1, respectively.
The unique difference of this “(s, s′)-cop and robber game” and the
classical cop and robber game is that at each step, C can move along
a path of length at most s′ and R can move along a path of length at
most s not traversing the position occupied by the cop.

2 Gromov hyperbolicity

δ-Hyperbolic metric spaces have been defined by M. Gromov in 1987 via
a simple 4-point condition [1, 4]: for any four points u, v, w, x, the two
larger of the distance sums d(u, v)+ d(w, x), d(u,w)+ d(v, x), d(u, x)+
d(v, w) differ by at most 2δ. They play an important role in geometric
group theory, geometry of negatively curved spaces, and have recently
become of interest in several domains of computer science. In case of
geodesic metric spaces and graphs, δ-hyperbolicity can be defined in
several equivalent ways. We will use the definition of hyperbolicity via
the linear isoperimetric inequality, which I recall now.

A loop c is a sequence of vertices (v0, v1, v2, . . . , vn−2, vn−1, v0) of a
graph such that for each 0 ≤ i ≤ n−1, either vi = vi+1, or vivi+1 ∈ E; n
is the length `(c) of c. A non-expansive map Φ from a graph G = (V, E)
to a graph G′ = (V ′, E′) is a function Φ: V → V ′ such that for all
v, w ∈ V , if vw ∈ E, then Φ(v) = Φ(w) or Φ(v)Φ(w) ∈ E′. For an
integer N > 0 and a loop c in G, an N -filling (D, Φ) of c consists of a
2-connected planar graph D and a non-expansive map Φ from D to G
such that the following conditions hold:

1. Φ is a bijection between c and the external face ∂D of D,

2. every internal face of D has at most 2N edges.

The N -area AreaN (c) of c is the minimum number of faces in an N -
filling of c. A graph G satisfies a linear isoperimetric inequality if there
exists an N > 0 and a K such that any loop c of G has an N -filling
such that AreaN (c) ≤ K · `(c)). The following result of Gromov [4]
proven in [1] is the basic ingredient of our proof:
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Theorem 1 (Gromov). If a graph G is δ-hyperbolic, then any loop of
G admits a 16δ-filling of linear area. Conversely, if a graph G satisfies
the linear isoperimetric inequality AreaN (c) ≤ K ·`(c) for some integers
N and K, then G is δ-hyperbolic, where δ ≤ 108K2N3 + 9KN2.

3 Results

Generally speaking, our main result is that Gromov hyperbolicity can
be characterized by the cop and robber game with speeds: in a δ-
hyperbolic graph a slower cop can always catch a faster robber and,
conversely, if in a graph G a slower cop can always catch a faster robber,
then the hyperbolicity of G is quadratic in the speed of the cop. We
continue with the formal formulations.

A (non-necessarily finite) graph G = (V, E) is called (s, s′)-
dismantlable if the vertex set of G admits a well-order ¹ such that
for each vertex v of G there exists another vertex u with u ¹ v such
that Bs(v, G − {u}) ∩Xv ⊆ Bs′(u,G), where Xv := {w ∈ V : w ¹ v}.
From the definition immediately follows that if G is (s, s′)-dismantlable,
then G is also (s, s′′)-dismantlable for any s′′ > s′ (with the same dis-
mantling order). In case of finite graphs, the following result holds (if
s = s′ = 1, this is the classical characterization of cop-win graphs):

Theorem 2. [2] A finite graph G is (s, s′)-cop win if and only if G is
(s, s′)-dismantlable.

We will also consider a stronger version of (s, s′)-dismantlability:
a graph G is (s, s′)∗-dismantlable if the vertex set of G admits a well-
order ¹ such that for each vertex v of G there exists another vertex u
with u ¹ v such that Bs(v,G) ∩ Xv ⊆ Bs′(u,G). In [2] it was shown
that δ-hyperbolic graphs are (s, s′)∗-dismantlable for some values s, s′

depending of δ. For sake of completeness, we recall here these results.

Proposition 1. [2] For a δ-hyperbolic graph G and any integer r ≥ δ,
any breadth-first search order ¹ is a (2r, r + 2δ)∗-dismantling order of
G.
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We continue with the main results of this section:

Theorem 3. [3] If a graph G is (s, s′)∗-dismantlable with 0 < s′ < s,
then G is δ-hyperbolic with δ = 16(s + s′)

⌈
s+s′
s−s′

⌉
+ 1

2 ≤ 32 s(s+s′)
s−s′ + 1

2 .

Idea of the proof: At the first step, we will establish that for any
cycle c of G, Areas+s′(c) ≤

⌈
`(c)

2(s−s′)

⌉
(for this we use Lemma 1). At the

second step, we will present a modified and refined proof of Theorem
2.9 of [1], which will allow us to deduce that if Areas+s′(c) ≤ `(c)

2(s−s′) +1,

then G is O( s2

s−s′ )-hyperbolic.

Lemma 1. If a graph G is (s, s′)∗-dismantlable with s′ < s and c =
(v0, v1, . . . , vn−1, v0) is a loop of G of length n > 2(s + s′), then c
contains two vertices x = vp, y = vq with q − p = 2s mod n such that
d(x, y) ≤ 2s′.

Proposition 2. If a graph G is (s, s′)∗-dismantlable with s′ < s and c

is a loop of G, then Areas+s′(c) ≤
⌈

`(c)
2(s−s′)

⌉
.

Proposition 3. For a graph G and constants K ∈ Q and N ∈ N such
that 2KN is a positive integer, if for every cycle c of G, AreaN (c) ≤
dKl(c)e, then the geodesic triangles of G are 16KN2-slim and G is
(32KN2 + 1

2)-hyperbolic.

The assertion of Theorem 3 follows from Propositions 2 and 3 by
setting N := s + s′ and K := 1

2N ·
⌈

N
(s−s′)

⌉
≥ 1

2(s−s′) .
Here are the main consequences of Theorem 3:

Corollary 1. [3] If a graph G is (s, s′)-dismantlable with s′ < s (in
particular, G is a finite (s, s′)-cop-win graph), then G is δ-hyperbolic
with δ = 64s2.

Corollary 2. [3] If a graph G is (s, s′)∗-dismantlable with s− s′ ≥ ks
for some constant k > 0, then G is 64s

k -hyperbolic. Conversely, if G is
δ-hyperbolic, then G is (2r, r + 2δ)∗-dismantlable for any r > 0.
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4 Algorithmic consequences

The hyperbolicity δ∗ of a metric space (X, d) is the least value of δ
for which (X, d) is δ-hyperbolic. By a remark of Gromov [4], if the
four-point condition in the definition of hyperbolicity holds for a fixed
base-point u and any triplet x, y, v of X, then the metric space (X, d) is
2δ-hyperbolic. This provides a factor 2 approximation of hyperbolicity
of a metric space on n points running in cubic O(n3) time. Using fast
algorithms for computing (max,min)-matrix products, it was noticed
in [5] that this 2-approximation of hyperbolicity can be implemented
in O(n2.69) time. In this section, we will describe a fast O(n2) time
algorithm for constant-factor approximation of hyperbolicity δ∗ of a
graph G = (V, E) with n vertices and m edges, assuming that its
distance-matrix has already been computed. Our main algorithmic
result is the following

Proposition 4. There exists a constant-factor approximation algo-
rithm to approximate the hyperbolicity δ∗ of a graph G with n vertices
running in O(n2) time if G is given by its distance-matrix. The algo-
rithm returns a 1569-approximation of δ∗.

The hyperbolicity δ∗ of a graph G is an integer or a half-integer
belonging to the list {0, 1

2 , 1, 3
2 , 2, . . . n − 1, 2n−1

2 , n}. Without loss of
generality, we will assume that δ∗ ≥ 1

2 . Due to the space constraints,
here we will present an auxiliary algorithm (Algorithm 1) that for a
parameter α either ensures that G is (784α + 1

2)-hyperbolic or that G
is not α

2 -hyperbolic. Algorithm 1 is based on Theorem 3 and Corollary
1. Algorithm 1 can be easily transformed into a O(n2) log δ∗ time
algorithm for approximating δ∗.
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Algorithm 1: Approximated-Hyperbolicity(G = (V, E), α)
Construct a BFS-order ¹ starting from an arbitrary vertex v0;
For each v ∈ V , let fα(v) be the vertex at distance
min{2α, d(v, v0)} from v on the path of the BFS-tree from v to
v0 ;
for each v ∈ V do

if B4α(v) ∩Xv 6⊆ B3α(fα(v)) then return No

return Yes

First, suppose that Algorithm 1 returns Yes. This means that
the BFS-order ¹ is a (4α, 3α)∗-dismantling order of the vertices of
G. Consequently, from Theorem 3, G is (784α + 1

2)-hyperbolic. Now,
suppose that the algorithm returns No. This means that there exists
a vertex v such that B4α(v)∩Xv 6⊆ B3α(fα(v)). From Corollary 1 with
r = 2α, this implies that G is not α

2 -hyperbolic and thus δ∗ > α
2 .
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Dynamic Games in Informational Extended

Strategies

M. Cocirla

Abstract

In this article we’ll have a short view over the dynamic form of
the informational extended games. For constructing the dynamic
form of the double-sided informational extended games we’ll use
the dynamic Bayesian games. A parallel backward induction al-
gorithm, for solving informational extended games with infor-
mational flow is oriented in two directions, based on Zermelo’s
algorithm will be given.

Keywords: informational extended games, dynamic form,
Bayesian games, backward induction, parallel algorithm.

1 Introduction

Information becomes central as soon as players move in sequence. We
can’t analyze a dynamic game not taking into consideration what do
players know, how much do they know and when do they know that.
4 informational types of games are known:

• Perfect information: a game in which a player knows exactly
in what node of the game tree is he now, and what is the way
that brought him here.

• Imperfect information: a game in which some players do not
know what actions were chosen by other participants or the na-
ture, earlier in the game.

c©2014 by M. Cocirla
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• Complete information: the game in which the knowledge
about all participants of the game and about game in general
is known to all players.

• Incomplete information: the game in which some players have
private information about the game, before it begins.

This informational aspects are used to define and construct the dy-
namic form of the informational extended games.
Informational extended games generated by a one-way directional in-
formational flow, notation j

inf→ i, are games where player i, and only
him, knows exactly what value of the strategy will be chosen by the
player j. Besides informational extended games with informational flow
oriented in one direction we also know informational extended games
with informational flow oriented in two directions, so called double-
sided informational extended games. This type of games are denoted

by i
inf
¿ j and its meaning is that this game is a j

inf→ i game for player
i and in the same time is a i

inf→ j game for player j. For a detailed
description of this type of games see [1].

2 The dynamic form of the informational ex-
tended games

Finding the dynamic form of one-way informational extended games is
quite an easy thing if we have the normal form of the game, an algo-
rithm for this can be found here [2], but how to act in case we have
a double-sided informational extended game? At this point a helpful
tool will be the Bayesian Games. Double-sided informational extended

game i
inf
¿ j can be seen as a sequence of games where both, player i

and j know the moves of each other but none of them knows the type
of the other players. From this point of view the double-sided informa-
tional extended games are games of incomplete information. Taking
this in consideration, we can represent the double-sided informational
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extended games in the dynamic form as a Bayesian Game that results
in joining the both game trees of i

inf→ j and j
inf→ i games and the first

move will be done by nature. Nature will assign a random variable to
each player which can take values of types for each player and associ-
ating probabilities or a probability density function with those types.
If the probabilities will be equal to 1

2 , then the game will be of type

i
inf
¿ j.

3 A parallel backward-induction algorithm for
solving the dynamic informational extended
games

Zermelo’s backward induction algorithm is used as base, with some
modification, to solve the dynamic double-sided informational extended
games. We’ll divide the initial problem in some subproblems and run
the backward induction algorithm for every of these problems, a good
idea, in this order of ideas will be to use a parallel machine to solve
the double-sided informational extended games. In this order of ideas
we’ll give some specifications on a parallelized backward induction al-
gorithm. The above algorithm uses the MPI library standard.
Parallel Algorithm for solving double-sided informational extended
games in the dynamic form:

1. Use the MPI functions MPI comm group, MPI Group incl
and MPI Comm create to create the new communicator and
new group of processes;

2. Use the function MPI Scatter to send the data of the sequence
games to different processes in the communicator, that processes
should determine the set of penultimate nodes Pt = {mi ∈ M :
s(mi) ∈ T} and for every penultimate node processes should
construct the set of successor nodes S(mi) = {m ∈ M : s(m) :
M → {m ∪ ∅}} ⊂ T ;
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3. For every set of successor nodes, determined earlier, use the re-
duction function MPI Reduce with reduce operation
MPI MAXLOC to determine the maximum payoff of the player
who is to choose also the action that leads to it;

4. The root node will perform the replacements: T ← (T \ S(m))∪
{m}, X ← X \ {m}, u(m) ← u(ν(a|m));

5. If the initial nodes of every sequential game were reached, the
root process will calculate the payoff of every player as an average
value of payoffs obtained in all subgames ui =

∑
pi · ui(mi), else

will go to step 2;

Theorem 1. The backward induction algorithm finds, for every fixed
Pt, a Nash equilibrium in the informational extended games with finite
number of strategies.

References

[1] B. Hancu. Informational extended games generated by the one and
double way directional informational flow. 21.479. Studia Universi-
tatis, seria Stiinte exacte si economice nr. 7(47) Chisinau 2011, pp.
32–43.

[2] M. Cocirla. The dynamic form of the bimatricial informational ex-
tended games. International Conference Mathematics & Informa-
tion Technologies: Research and Education(MITRE 2013 ) August
18-22, 2013 Chisinau. Abstracts, pp. 30–31.

Cocirla Mihai

State University of Moldova
Email: cocirlamihai@gmail.com

343



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

The application of modern information

technologies in the port activity

Alina Costea

Abstract

Quality of Service (QoS) and Class of Service (CoS) technolo-
gies play nowadays an important role in the analysis of network
traffic which is highly variable and can be characterized in terms
of bandwidth, delay, loss and availability.

Keywords: Quality of service, Class of Service.

1 Introduction

Today the majority of traffic is based on the IP protocol. On the one
hand, this is useful because it provides a single traffic protocol and it
simplifies the maintenance of hardware and software products. How-
ever, IP-based technologies also have many shortcomings. According
to the IP protocol, packages are delivered over the network without
having a well-determined way. This leads to the fact that the quality
of service in such networks cannot be predicted. QoS and CoS tech-
nologies serve to guarantee that various applications can be properly
maintained in IP networks.

2 The application of QoS (quality of service)
standards

Quality of Service is a concept that generally refers to the ability of the
network to provide the best service for the traffic of the selected net-
work by various technologies. Quality of service is the ability to provide

c©2014 by A. Costea
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different priorities to different applications, users or data flows, or to
guarantee a certain level of performance to a data flow. QoS (Quality of
Service) refers to a wide range of network technologies and techniques.
The purpose of QoS is to provide guarantees on the ability of a net-
work to achieve predictable results. Elements of network performance
within the scope of QoS often include the availability of the bandwidth
(throughput), latency (delay), and error rate. QoS involves prioritiza-
tion of the network traffic. QoS may be oriented towards a network
interface, a particular server or a performance router, or according to
specific applications. A monitoring system of the port network should
typically be implemented as part of the QoS in order to ensure that the
network is performing as desired. QoS is especially important for the
new generation of Internet applications such as VoIP, video-on-demand
and other consumer services.

3 The application of CoS (class of service)
standards

CoS is a way of managing the network traffic by grouping together
similar types of traffic (e.g., e-mail, streaming video, voice, large file
transfer) and by treating each type as a class with its own level of ser-
vice priority. Unlike QoS traffic management, CoS does not guarantee
a level of service in terms of bandwidth and delivery time. On the other
hand, CoS technology is simpler to manage and more scalable like a
network that increases in structure and traffic. Class of service is a con-
cept of network input flow divided into different classes. This concept
provides class-dependent service for each package of flow, depending
on each priority class that belongs to it. CoS provides the continuous
setting of priorities for the retransmission structure and ATM traffic
over IP networks. In the structure of CoS movement, priorities are set
by the Differentiated Services code at the beginning of an IP package.
We need to understand how the queuing system works under different
configurations and rules. Some features of interest to a standby system
operator are the following:
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- Queue Length: queue length is the number of elements, in this case
the packages that are queuing in a certain location or place waiting to
be processed. This is often an indication of how qualitative a queuing
system is. The longer the queue length is, the worse the quality of
service is from the point of view of the user, although this is not always
correct.

- Probability of requirement loss (Loss Probability): If the waiting
place where the elements have to wait is limited, which often occurs in
the real systems, then the elements that will arrive after the waiting
place is occupied by other elements, will be considered lost and they can
return in a subsequent moment of time. In packages data systems, the
loss of a package might be very unacceptable and customers are worried
about the probability of the waiting period. The higher this value is,
the worse the quality of service of the system from the customer’s
perspective is.

- Waiting Time: Waiting time is the time between the arrival of an
item in the system and the onset of its servicing. This is the most used
quality of the system, by customers. Of course the higher this feature
is, the worse the quality of service of the system is, from the customer’s
point of view.

- System Time: It is the waiting time plus the time needed in order
to be served. This is perceived in the same way as the waiting time
of the beginning of the service, except when dealing with a preventive
system where some elements may be sometimes interruptedly served.

- Work Load: The work load is the time required to process the
queuing elements and is equal to the sum of the remaining time for
serving the element in service and the service time of all items waiting
in a conservation working system. In a conservation working system,
the service which is not complete is repeated and no work is removed.
A queuing system becomes available and the server becomes inactive
at the moment, when the work load is reduced to zero.

- Busy Period: Busy period is the time that begins with the change
of the server to a new queue after the previous served queue is available,
and ends when the respective queue becomes empty. This measure
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shows more interest for the ISP that wants to keep its resources fully
used. So, the higher this value is, the more satisfied an ISP is. However,
if the source used to provide services is human like in a bank, a grocery
store, and so on, then there is a time limit when the service provider
wants to keep a server busy before the server becomes ineffective.

4 Conclusion

An important role in analysing and optimizing information processes
in the port activity is played by the queuing theory, in particular by
the priority queuing systems theory. As recently demonstrated, the
serving with priority appears as optimum service in the class of all
service legalities. Moreover, the diversification of traffic information in
priority classes becomes inevitable even in the activity of information
flow in the seaport.
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AIRSEC

Integration and Prototypeimplementation

Supporting Airport Security – Modelling,

Simulation and Optimization of Datafusion

Processes in Multilayered Networks

Matthias Dehmer, Dmitrii Lozovanu, Stefan Pickl

Abstract

This paper introduces the joint project AIRSEC which was
initiated in 2013 between Moldova, Academy of Science, and Ger-
many, UBw Munich. Many processes from various technical, so-
cial and economic areas such as information technology, trans-
portation systems, multi-agent resource management, power dis-
tribution etc. can be modelled as multilayered decision processes
which lead to multiobjective discrete control and optimal flow
problems on dynamic networks. For such kind of problems es-
pecially in the context of aviation management, efficient discrete
algorithms as well as their robust implementation will be needed
in the future. In the project AIRSEC a novel combination of
optimization methods and basic game-theoretic concepts will be
exploited. This contribution will give an introduction into this
joint research project and present first results.

Keywords: Computational Networks, Decision Process, Po-
sitional Games.

1 Introduction

Decision support on networks structures becomes more and more im-
portant: Therefore, the discrete algorithms of the project AIRSEC
will be embedded in a comfortable software environment which will be

c©2014 by M. Dehmer, D. Lozovanu, S. Pickl
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developed as a web-based solution to determine optimal solutions on
such general networks. The gained solutions will be implemented and
tested within the CENETIX (Center for network innovation and ex-
perimentation at the Naval Postgraduate School in Monterey (USA))
environment. CENETIX do research for the analysis and optimization
of IT-based decision procedures. For such an application special vi-
sualization techniques on such networks are crucial. The aim of the
project is now a novel combination of both expertise – especially in the
optimization and visualization of certain multilayered decision prob-
lems. New solution procedures will be developed and embedded in
real-world scenarios which are gained by the related project RIKOV.
In the project RIKOV vignettes are central; they can be considered as
bases of such a multilayered decision problem.

2 The Project RiKoV – Vignette Analysis

RiKoV stands for strategic planning and intelligent scenario develop-
ment for the security of public transport. Efficient measures are de-
veloped and embedded in an intelligent decision support tool which is
based on an automated generated scenario process. RIKOV is sup-
ported by the BMBF (Bundesministerium für Bildung und Forschung)
within the special program “Sicherheitsforschungsprogramm der Bun-
desrepublik Deutschland”. RIKOV consists of several institutes and de-
partments from Universities (Karlsruhe Institut für Technologie KIT,
Fachhochschule Köln) as well as partners from industry (Airbus De-
fence and Security). The aim of RiKoV is to develop a comprehensive
holistic approach of risk management and strategic planning in criti-
cal infrastructures. The approach is based on an intelligent scenario
planning tool. The heart of this approach is the generation of suitable
vignettes as bases of a multilayered decision process (see Fig. 1).

The vignettes model measurements, priorities and also the recov-
ery time. Our approach is that these processes can be modelled via
a specific multilayered decision framework [1-8]. As its bases we take
a multilayered network structure. Measurements, capabilities and re-
covery times are now simulated via special visualization techniques on
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Figure 1. Structure of Vignette Analisys

these networks. For this purpose we will introduce special graph mea-
sures. The success of this approach depends on the research outcome
and feasibility of the preceding steps. If successful, this task will lead
to novel techniques that might be very useful to localize special proper-
ties within the process. Depending on the used models including graph
matching and other analysis methods, these properties can mark spe-
cial locations with critical potential or regions with high probabilities
for quick recovery existence.

3 Multilayered Decision Framework –
Visualization

This special structure should be used now as a general multilayered
decision framework for the AIRSEC project. The construction of crit-
ical scenarios according to the vignettes takes into account past and
possible future scenarios in the context of aviation management. Those
scenarios will be simulated and visualized using agent-based modelling
dynamical systems data farming.
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Appropriate security measures will be identified and evaluated to
eliminate unacceptable risks and attenuate unwanted consequences,
taking into consideration social values, legal restrictions, and an anal-
ysis of cost-effectiveness. For this, the social acceptances of security
measures as well as the challenge of limited financial budgets are fused
to the IT-based risk management (and stochastic vulnerability analy-
sis) in order to afford the best constellation of measures to the identified
risks. The correlation between measures and risks will be presented in
a multicriteria risk matrix (vulnerability, threat, consequences) which
will be correlated with the graph measures. This new approach will be
embedded in a comfortable decision support tool.

4 New Class of Stochastic Poistional Games

This approach leads us also to a new class of so-called stochastic games.
In previous works an essentially new class of stochastic positional games
was formulated and studied applying the game-theoretical concept to
Markov decision problems with average and expected total discounted
costs optimization criteria. To formulate this class of games it is as-
sumed that Markov decision processes may be controlled by several
actors (players). The set of states of the system in such processes is
divided into several disjoint subsets which represent the corresponding
position sets of the players. Each player has to determine which action
should be taken in each state of his position set in order to minimize
(or maximize) his own average cost per transition or the expected total
discounted cost. For the stochastic discrete optimal control problems
with infinite time horizon this approach is developed in a similar way
and a new class of stochastic positional games on networks is obtained.
Nash equlibria can be derived and an elaboration of the algorithms for
determining the optimal stationary strategies of the players is possible.
In [9] Nash equilibria conditions for the stochastic positional games
with average and discounted payoff functions of the players are formu-
lated and proved and algorithms for determining the optimal strategies
for different classes of games are developed. These results are specified
for antagonistic stochastic positional games and algorithms for deter-
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mining the optimal strategies of the players are gained.
We show that the obtained results generalize the well known results

for deterministic positional games and new conditions for determin-
ing the solutions of the problems can be derived. Moreover, we show
that the considered class of stochastic positional games can be used for
studying cyclic games and Shapley stochastic games. New polynomial
time algorithms for deterministic antagonistic positional games are de-
scribed. The algorithms for determining the optimal strategies of the
players in deterministic cases are developed for a more general class of
positional games on networks.

Both approaches will be combined in the AIRSEC project.

5 Conclusion

The presented approach helps especially decision makers of aviation
transportation providers to decide and manage the implementation of
different security measures. These measures are visualized on a graph
theoretic structure and embedded in a decision support tool. The holis-
tic risk management supports the development to a customized optimal
security, including prevention and civil protection in times of tension
between the technical and organizational maximum attainable on the
one hand, and the striving of economically meaningful concepts derived
from the social values of security on the other hand. The analysis of
positional games and the visualization of certain network processes is
a novel approach in this context of aviation management.
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B-stable subgraphs in undirected graphs

Nicolae Grigoriu

Abstract
In this article special structures of stable subgraphs and some

of their most important properties that will be necessary for cal-
culation of the number of transitive orientations of an undirected
graph are described.

Keywords: stable subgraph, B-stable subgraph, transitive
orientation, non-triangulated chain.

1 Introduction

In order to solve many theoretical and applicative problems, transi-
tive orientation of the undirected graphs was studied by many math-
ematicians [1], [2], [3]. There was obtained a number of theoretical
results and algorithms related to establish ownership of an arbitrary
graph to this class, and building a transitive orientation. This type
of graphs can be studied using special structures: stable subgraphs
and non-triangulated chain. We will recall that a directed graph−→
G = (X;

−→
U ) transitively orientated if there is satisfied transitive rela-

tion [x, y] ∈ −→UG&[y, z] ∈ −→UG =⇒ [x, z] ∈ −→UG for every three vertexes
x, y, z ∈ XG. An undirected graph for which we assign a certain ori-
entation of the edges so that we get a transitive oriented graph will be
called transitive orientable graph.

2 B-stable subgraphs

Definition 1. [4] Subgraph A of the undirected graph G = (X; U)
will be called stable subgraph if for every vertex x ∈ XG \XA one of

c©2014 by N. Grigoriu
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the following conditions will be satisfied: x ∼ y or x � y for ∀y ∈ XA.
Definition 2. Stable subgraph F of the undirected graph G =

(X; U) will be called B-stable subgraph if for every stable subgraph M
of G one of the following conditions is satisfied:

1. XF ∩XM = ∅;
2. XF ⊆ XM .

Observation 1. Complete graph Kn does not contain B-stable
subgraphs.

This is the consequence of the fact that intersection of every subset
of vertexes which defines a stable subgraph from Kn is a nonempty set.

Lemma 1. If A and B are B-stable subgraphs, then XA∩XB = ∅.
Proof: Suppose contrary. Let F = A ∩ B. In this case, by lemma 3
from [5] it is obtained that XA \XF defines a stable subgraph. It can
be observed that XA \ XF ⊂ XA. So, there is a contradiction with
the fact that A is a B-stable subgraph. This contradiction proves that
intersection of the vertexes of two B-stable subgraphs is an empty set.¥

Theorem 1. If F is a B-stable subgraph of the graph G = (X; U),
and x ∈ XG \ XF is a vertex adjacent to the set XF , then for every
transitive orientation

−→
G only one of the following holds:

1. [x, y] ∈ −→UG, ∀y ∈ XF ;

2. [y, x] ∈ −→UG, ∀y ∈ XF .

Proof: Suppose contrary. Let vertexes y, z ∈ XF , so in the transitive
orientation

−→
G the following relation is satisfied:

[y, x] ∈ −→UG&[x, z] ∈ −→UG. (1)

It can be easily observed that for every vertex t ∈ XG \ XF , t 6= x
as [t, x] ∈ UG, implies that there is an edge [t, w], ∀w ∈ XF . By the
observation 1 it is clear that G is not a complete graph.

Lets suppose a vertex s ∈ XG for which there exists vertex v ∈ XG,
where the relation v 6= s is satisfied, and [v, s] /∈ −→UG.

There are possible the following situations:
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1. s ∈ XF , v ∈ XF ;

2. s ∈ XF , v /∈ XF ;

3. s /∈ XF , v ∈ XF ;

4. s /∈ XF , v /∈ XF .

Next, every situation will be analyzed particularly.
a) Because s ∈ XF , it results that [x, s] ∈ UG. Based on relation (1)

at least one of the following relations holds [z, s] ∈ UG or [y, s] ∈ UG.
Suppose that

[z, s] ∈ UG. (2)

If v = y, because of the fact that every vertex t ∈ XG \XF adjacent
to x is also adjacent to every vertex in XF , including z, it results that
the set defined by vertexes {x, z} ⊂ XF , generates a stable subgraph.
This fact contradicts assumption that F is a B-stable subgraph.

In the case that v 6= y, by relation (1) and (2) it is obtained that
[v, x] ∈ −→

UG. This implies that [v, z] ∈ −→
UG. It can be easily shown

that the set {x, z} ⊂ XF also generates a stable subgraph. So, there is
contradiction of the fact that F is a B-stable subgraph.

b) If x ∈ XG \XF and [v, s] /∈ UG, where s ∈ XF , then by relation
(1) it results that [v, x] /∈ UG. If there is a vertex w ∈ XG \ XF

adjacent to the set XF , then it can be easily observed that set of
vertexes (XF \ {y, s}) ∪ {x, w} defines a stable subgraph. It is clear
that intersection of this set of vertexes with XF is an empty set. This
fact contradicts that F is a B-stable subgraph.

c) The case, when s /∈ XF , v ∈ XF , can be expressed in the same
way as the case b) by replacing name of variables.

d) Because s, v ∈ XG \ XF and [s, v] /∈ UG, then the following
situations are possible:

1. s ∼ u,∀u ∈ XF ;

2. s � u,∀u ∈ XF .
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1. If s ∼ u,∀u ∈ XF , then by relation (1) it can obtained that
[y, s] ∈ −→UG&[s, x] ∈ −→UG. So, every vertex adjacent to s will be adjacent
to u,∀u ∈ XF too.

2. In case that s � u,∀u ∈ XF , then by (1) it can be observed that
[s, u] /∈ UG, where u ∈ Γ(w), ∀w ∈ XF .

Because [v, s] /∈ UG, then the same procedure as for vertex v can
be applied. And so, it can be obtained that (X \ {y}) ∪ A, where
A = {x|[x, y] ∈ UG, ∀y ∈ XF } is a stable subgraph.

All the contradictions mentioned above lead to the proof of the
theorem. ¥

3 Conclusion

B-stable subgraphs will be used in further studies of transitively ori-
entable graphs, in order to find an algorithm of construction of the
transitive orientation and construction of the formula for number of
transitive orientations of the graph.
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Probabilistic Approach to Stochastic and

Agent-Based Computational Models

Ghennadii Gubceac, Florentin Paladi

Abstract

The application refers to the generic stochastic model for crys-
tal nucleation which is useful to depict the impact of interface be-
tween the nucleus considered as a cluster of a certain number of
molecules and the liquid phase for the enhancement of the overall
nucleation process.

Keywords: Agent-Based Models; Stochastic Processes; Com-
plex Systems.

1 Introduction

In general, agent-based modeling is currently a technique widely used
to simulate complex systems in computer science and social sciences.
On the other hand, a Markovian process is a stochastic process whose
future probabilities are determined by its most recent values. The
agent-based computational models (ABM) fits well this description,
except the cases when decisions are dependent on the state of the sys-
tems of more than one step ago, that is the case when ABM agents
experience learning, adaptation, and reproduction [1].
In this study, the application refers to the generic stochastic model
for crystal nucleation which is useful to depict the impact of inter-
face between the nucleus considered as a cluster of a certain number
of molecules and the liquid phase for the enhancement of the overall
nucleation process. It is generally known that first-order phase transi-
tions occur by nucleation mechanism, and both the nucleus, a cluster

c©2014 by G. Gubceac, F. Paladi
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of atoms or molecules, and the nucleation work, an energy barrier to
the phase transition, are basic thermodynamic quantities in the theory
of nucleation. However, the critical nucleus formation is statistically a
random event with a probability largely determined by the nucleation
work which increases with the subnuclei size [2]. The traditional differ-
ential equation modeling is not the alternative to agent-based models;
only a set of differential equations, each describing the dynamics of one
of the system’s constituent units, is an agent-based model [3].

2 A probabilistic approach to the crystal nu-
cleation process

The application refers to the nucleation process, a widely spread phe-
nomenon in both nature and technology, which may be considered as
a representative of the aggregation phenomena in complex systems.
Let’s consider N atoms which can be in 3 different states (cluster, liq-
uid and their interface), and can perform 4 possible moves: liquid to
interface, interface to liquid, interface to cluster, and cluster to inter-
face. One can identify 4 different combinations denoted by probabilities
p1. . . p4. That is, drawing randomly one particle, it will be of type i
with probability pi. Let N = 1, 2, . . . ,∞, be the total number of atoms
in the system, and {n1, n2, n3, n4} are their partition into 4 subsets.
Each subset can be called cluster, and the process itself – clustering.
Schematic distribution of particles in clusters is shown in Fig. 1. This
diagram illustrates a potential process for the generation of a crystal
nucleus in the course of irreversible structural relaxation of the nonequi-
librium supercooled liquid. The number of possible partitions in this
case is

P (N, m = 4) =
1
3 !

3∏

i=1

(N + i),

where ni = 0, N, i = 1, 4 and
∑4

i=1 ni = N . For example, in a
system of N=1,000 atoms, P(N,m=4) equals to 167,668,501! Accord-
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Figure 1. Schematic diagram illustrating the distribution of particles
with corresponding share in cluster, p1, liquid, p4, and at the interface,
p2 and p3. The darkness represents the degree of order in the molecular
arrangements, and the encircled part stands schematically for a more
ordered cluster, namely a crystal nucleus.

ingly, the number of repeated computer runs in an ABM model would
be very large due to different possible partitions. But we are able
to overcome this problem by developing similar stochastic mathemat-
ical models which can describe exactly the results of the agent-based
computational models, and, finally, by bridging the gap between ABM
modeling and stochastic processes.

3 Conclusion

A useful aggregation procedure for representing the three-dimensional
distribution of states, and a general formula that describes clustering
process among interacting agents in heterogeneous populations are pro-
posed. In particular, we obtained that different distributions of states
can lead to the same point inside the sphere around the origin, i.e. dif-
ferent microscopic partitions can generate the same aggregate result.
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It is proven that while the number of particles at the liquid-cluster
interface increases, the stability of the entire system decreases simulta-
neously, and the nucleus formation would be definetely enhanced due
to the displacement of the bifurcation point in the region of smaller
clusters [4].
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Using INS to correct SAR data on the fly

Maxim Guryanov, Alexander Prokofyev

Abstract

Airplane Synthetic Aperture Radar (SAR) data has phase
errors caused by turbulence. These errors affect the resolution of
obtained SAR images. In this paper we present a new technique
to detect and correct phase errors in SAR data based on inertial
navigation system (INS) data and mathematical modelling of the
airplane’s flight. All computations can be performed in real time.
This approach provides better SAR image quality without using
autofocus algorithms.

Keywords: Synthetic Aperture Radar (SAR), autofocus.

1 Introduction

The main characteristic of a SAR image is the image resolution. Dif-
ferent autofocus algorithms like Coherence Map Drift (CMD) or Phase
Gradient Autofocus (PGA) can improve quality of SAR images using
raw SAR data. The problem is computational complexity.

One of the reasons for the low quality of SAR images is the dif-
ference between the actual trajectory of flight and the trajectory the
mathematical model is based on. The common procedure of image
creation is based on a linear trajectory.

We present an algorithm for using INS data to negate geometric
distortions of the flight by correcting phase errors in SAR data. After
that, regular procedures of image creation based on a linear trajectory
can be used.

c©2014 by M. Guryanov, A. Prokofyev
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2 Mathematical model of the flight

The common model with a linear trajectory is used. Let Z (n) be the
difference between actual and expected flight altitudes. Let n refer to
the n-th range bin. Y (n) is the difference between actual and expected
range positions. Let the Dm be the distance from the airplane to scatter
at the range bin m. βm is the angle of sight to the m-th row. The model
looks like it is shown in Fig.1.

Z (n) and Y (n) can be obtained from the INS. The main idea is
based on the fact that precision of inertial systems is low for big periods
of time and high for small periods. Position errors are taken at the
rate of pulse repetition frequency (PRF) of SAR. So we have error
estimation from INS for every azimuth bin.

Figure 1. Illustration of positional errors.
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3 SAR data correction

We can use Z (n) and Y (n) to calculate the phase error for every
range bin. The phase of complex signal obtained from point scatter at
azimuth bin n and range bin m is:

Φn,m = −
(

4π ·Dm

λ

)
. (1)

The distance Dm has an error:

∆D (n, m) = − (Z (n) cos (βm)− Y (n) sin (βm)) . (2)

Distance errors may cause range bin shifting. We can estimate the
actual range bin mnew for scatter at (n,m) as it is shown in Eq. (3)

mnew = m +
(

2 ·∆D (n,m)
λ

)
. (3)

The actual phase for every signal can be found as it is shown in
Eq. (4)

Φnew (n,m) = Φn,m −
(

4π ·∆D (n,m)
λ

)
. (4)

New SAR data can be formed in real time. All these results can be
used only if errors are small:

Z (n) ¿ H, Y (n) ¿ H. (5)

4 Conclusion

The proposed method was successfully applied in UAV on-board SAR-
processing system. It is possible to obtain poor SAR images in real
time with a minimum time delay. The high resolution SAR images can
be formed from resulting SAR data with other autofocus algorithms.

The proposed method cannot totally replace regular autofocus algo-
rithms. The modern inertial navigation system does not have sufficient
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precision. This method cannot remove other reasons for low SAR image
resolution, like a high Doppler rate.
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Parallel algorithm to solve two person game

with perfect information

Boris Hâncu

Abstract

In this article for solving the informational extended games
we apply the Selten-Harsanyi principle. We elaborate the paral-
lel algorithm to determine the Bayes-Nash equilibrium profile in
informational extended games.

Keywords: informational extended games, complete and
perfect information, Bayes-Nash equilibrium.

1 Two person game with informational ex-
tended strategies

Let Γ = 〈I = {1, 2}, X, Y,Hi : X × Y → R〉 be the normal form of the
static noncooperative games with complete and perfect informa-
tion, where I is the set of players, X,Y are the sets of available al-
ternatives of the player 1 and player 2, Hi : X × Y → R, i ∈ I is
the payoff function of the player i ∈ I. The players know exactly their
and of the other players payoff functions and they know the sets of
strategies. Players 1 and 2 know what kind of the strategy will be
chosen by each of other. These conditions stipulate that we can use
the informational extended strategies generated by a two-directional
informational flow[1]. In the general case the set of the informa-
tional extended strategies of the player 1 (respectively 2 ) is the set of
the functions Θ1 = {θ1 : Y → X} (respectively Θ2 = {θ2 : X → Y }).
The game is played as follows: independently and simultaneously
each player chooses the informational extended strategy θ1 ∈ Θ1 and
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θ2 ∈ Θ2, after that the players 1 and 2 calculate the value of the payoff
Hi (θ1 (y) , θ2 (x)) , and with this the game is finished.
Remark. The game described above will be denoted by G (1 ¿ 2)
and is the game with incomplete information because the player 2
(for example) does not know what kind of the informational extended
strategy θ1 ∈ Θ1 will be chosen by the player 1, and so the player 1
generates the uncertainty of the player 2 about the complete structure
of the payoff function H2(θ1(y), θ2(x)) in the game with non informa-
tional extended strategies. Therefore to solve the game G (1 ¿ 2) the
Harsanyi -Selten principle [2] will be used.

2 Converting the two person game with infor-
mational extended strategies to Harsanyi -
Selten game

Let ∆1 = {δj
1, j ∈ J1} (∆2 = {δk

2 , k ∈ J2} respectively) be
the set of types for the player 1 (player 2) that means: player 1
(player 2) is of the type δj

1 (of the type δk
2 ) if he, choosing the

θj
1 ∈ Θ1 (θk

2 ∈ Θ2) informational extended strategy, generates for
the player 2 (for player 1) uncertainty in the structure of its pay-
off function. Denote by p(δk

2/δj
1) (q(δj

1/δk
2 ) respectively) a probabil-

ity for the player 1 (for player 2) that means the following: if the
player 1 (player 2) chooses the strategy θj

1 (strategy θk
2), than he be-

lieves that the player 2 (player 1) with the p(δk
2/δj

1) (q(δj
1/δk

2 ) respec-
tively) chooses the strategy θk

2 (strategy θj
1). The set of all range

of the informational extended strategies of the players will be de-
noted by X̃j =

{
x̃j ∈ X : x̃j = θj

1 (y) ,∀y ∈ Y
}

for all j ∈ J1 and

Ỹk =
{
ỹk ∈ Y : ỹk = θk

2 (x) , ∀x ∈ X
}

for all k ∈ J2. Using these nota-

tions we can construct the normal form Γ∗B =
〈
J, {Rj}j∈J , {Uj}j∈J

〉

of the Selten-Harsanyi game with complete and imperfect information,
that is associated with the game G (1 ¿ 2). Here the set of type-players
J =

{
j = (i, δj

i ), i = 1, 2, j = 1, ..., m1 + m2

}
is equal to the sets of all

informational extended strategies of the players, J = J1
⋃

J2. The
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sets of the pure strategies are Rj = X̃j , for j ∈ J1 and Rj = Ỹ j for
j ∈ J2. The payoff function for all type-players j = (1, δj

1), j ∈ J1 is

Uj

(
x̃j , {ỹk}k∈J2

)
=

∑
k∈J2

p
(
δk
2 |δj

1

)
H1 (x̃j , ỹk) ∀x̃j ∈ X̃j , ỹk ∈ Ỹk. In

the similar mode the payoff function for all type-players j = (2, δj
2), j ∈

J2 is Uj

({x̃k}k∈J1
, ỹj

)
=

∑
k∈J1

p
(
δk
1 |δj

2

)
H2 (x̃k, ỹj) ∀x̃k ∈ X̃k, ỹj ∈

Ỹj . The game Γ∗B is played as follows: independently and simultane-
ously each type-player j = (i, δl

i) chooses the strategy rj ∈ Rj , after
that each player calculates the payoff values Uj(·) and with this the
game is finished. Denote by NE [Γ∗B] the set of all equilibrium profiles
in the game Γ∗B.
Definition. For all fixed probabilities p(·), q(·) strategy profile (x∗, y∗) ≡
(x∗(p), y∗(q)) , x∗ ∈ X, y∗ ∈ Y, for which the conditions x̃∗j =
θj
1(y

∗) ∀j ∈ J1 and ỹ∗k = θk
2(x∗) ∀k ∈ J2 are fulfilled, is called the

Bayes-Nash equilibrium profile in non informational extended strate-
gies generated by the

(
x̃∗j , ỹ

∗
k

)
∈ NE [Γ∗B].

Denote by BN [G (1 ¿ 2)] the set of all Bayes-Nash equilibrium profiles
in the game G (1 ¿ 2). According to [3] we can prove the following
theorem.
Theorem. Let the game Γ satisfy the following conditions:

1) the X and Y are non-empty compact and convex subsets of the
finite-dimensional Euclidean space;

2) the functions θj
1, ∀j ∈ J1 and θk

2 , ∀k ∈ J2 are continuous on
Y (on X respectively) and functions H1, H2 are continuous on
X × Y ;

3) the functions θj
1, ∀j ∈ J1 (θk

2 , ∀k ∈ J2 respectively) are quasi-
concave on Y (on X respectively), the functions H1 (H2 respec-
tively) are quasi-concave on X (Y respectively) and monotonically
increasing on X × Y .

Then BN [G (1 ¿ 2)] 6= ∅.
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3 Parallel algorithm to solve two person game
with perfect information

If in the game Γ the sets of strategies X and Y of the player 1 and 2
are at most countable, H1 and H2 are the discrete payoff functions,
then, using the mixed Distribute Memory Model and Shared Memory
Model parallel cluster, for all fixed probabilities pk ≡ p(δk

2/δj
1) and qj ≡

q(δj
1/δk

2 ) we elaborate the following parallel algorithm to determine the
Bayes-Nash equilibrium profile (x∗(pk), y∗(qj)) in game Γ:

a) using MPI programming model and open source library
ScaLAPACK-BLACS, scatter for MPI process (k, j) all of the
necessary data to calculate (x∗(pk), y∗(qj)) for fixed pk and qj ;

b) for all fixed functions θj
1, θ

k
2 and probabilities pk, qj each (k, j)

MPI process using OpenMP programming model and an open
source library ScaLAPACK, calculate the Nash equilibrium pro-
file

(
x̃∗j , ỹ

∗
k

)
in the game Γ∗B, after that calculate the strategy

profile (x∗(pk), y∗(qj)), where x∗(pk) =
[
θk
2

]−1 (ỹ∗k) and y∗(qj) =[
θj
1

]−1 (
x̃∗j

)
.

c) using open source library ScaLAPACK-BLACS, the root MPI
process is gathering the strategy profiles (x∗(pk), y∗(qj)) from
(k, j) MPI process.
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nomice, No. 7(47), Chişinău, 2011, pp. 32–43.
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Probability Distribution for the Sum of

Two Independent Telegraph Processes

Alexander D. Kolesnik

Abstract

Closed-form expressions for the transition density ϕ(x, t) and
the probability distribution function Φ(x, t) = Pr{S(t) < x}, x ∈
R, t > 0, of the sum S(t) = X1(t) + X2(t) of two independent
Goldstein-Kac telegraph processes X1(t), X2(t) at arbitrary time
instant t > 0, are presented. A governing third-order partial
differential equation for ϕ(x, t) is also given.

Keywords: telegraph process, telegraph equation, transition
density, probability distribution function, sum of telegraph pro-
cesses, hypergeometric functions

Let X1(t), X2(t) be two independent Goldstein-Kac telegraph pro-
cesses on the real line R that, at the initial time instant t = 0, simul-
taneously start from the origin 0 ∈ R. Both processes are developing
with the same speed c and are controlled by two independent Poisson
processes of the same rate λ > 0.

Consider the sum S(t) = X1(t) + X2(t), t > 0, of these processes.
Let ϕ(x, t), x ∈ R, t ≥ 0, denote the transition density of process S(t)
treated as a generalized function. Density ϕ(x, t) is concentrated in the
close interval [−2ct, 2ct] and consists of two components. The singular
component is concentrated at three points 0,±2ct and corresponds to
the case when no Poisson events occur up to time t. The remaining
part (−2ct, 0) ∪ (0, 2ct) of the interval [−2ct, 2ct] is the support of the
absolutely continuous part of density ϕ(x, t) corresponding to the case
when at least one Poisson event occurs up to time instant t.

The explicit form of ϕ(x, t) is given by the following theorem.

c©2014 by A.D. Kolesnik
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Theorem 1. The density ϕ(x, t), x ∈ R, t ≥ 0, has the form:

ϕ(x, t) =
e−2λt

2
δ(x) +

e−2λt

4
[δ(2ct + x) + δ(2ct− x)]

+
e−2λt

2c

[
λI0

(
λ

c

√
4c2t2 − x2

)
+

1
4

∂

∂t
I0

(
λ

c

√
4c2t2 − x2

)

+
λ2

2c

∫ 2ct

|x|
I0

(
λ

c

√
τ2 − x2

)
dτ

]
Θ(2ct− |x|),

where δ(x) is the Dirac delta-function, Θ(x) is the Heaviside unit step
function and

I0(z) =
∞∑

k=0

1
(k!)2

(z

2

)2k

is the modified Bessel function of zero order.

Consider the function

g(x, t) =
(

∂

∂t
+ 2λ

)
ϕ(x, t). (1)

Here ∂/∂t means differentiation in t of the generalized function ϕ(x, t).
The unexpected and amazing fact is that this function satisfies the
Goldstein-Kac telegraph equation with doubled parameters 2c and 2λ.

Theorem 2. Function g(x, t) defined by Eq.(1) satisfies the tele-
graph equation

(
∂2

∂t2
+ 4λ

∂

∂t
− 4c2 ∂2

∂x2

)
g(x, t) = 0. (2)

From Eq.(1) and Eq.(2) it follows that the transition density ϕ(x, t)
of process S(t) satisfies the third-order hyperbolic partial differential
equation

(
∂

∂t
+ 2λ

)(
∂2

∂t2
+ 4λ

∂

∂t
− 4c2 ∂2

∂x2

)
ϕ(x, t) = 0. (3)
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Note that differential operator in Eq.(3) represents the product of the
Goldstein-Kac telegraph operator with doubled parameters 2c, 2λ and
shifted time differential operator. This interesting fact means that,
while the densities of two independent telegraph processes X1(t) and
X2(t) satisfy the second-order telegraph equation (see [1, Section 2.3]),
their convolution (that is, the density ϕ(x, t) of the sum S(t) = X1(t)+
X2(t)) satisfies third-order equation Eq.(3). One can, however, check
that ϕ(x, t) is not the fundamental solution of equation Eq.(3).

Under Kac’s scaling condition c →∞, λ →∞, (c2/λ) → ρ, ρ > 0,
equation Eq.(3) transforms into the heat equation

(
∂

∂t
− ρ

∂2

∂x2

)
u(x, t) = 0.

This means that S(t) is asymptotically a homogeneous Wiener process
with zero drift and diffusion coefficient σ2 = 2ρ.

In the next theorem we present the closed-form expression for the
probability distribution function

Φ(x, t) = Pr {S(t) < x} , x ∈ R, t > 0,

of process S(t).

Theorem 3. The probability distribution function Φ(x, t) has the
form:

Φ(x, t) =





0, if x ∈ (−∞, −2ct],
G−(x, t), if x ∈ (−2ct, 0],
G+(x, t), if x ∈ (0, 2ct],

1, if x ∈ (2ct, +∞),

t > 0,
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where functions G±(x, t) are given by the formula:

G±(x, t) =
1
2
± e−2λt

4
cos

(
λx

c

)

+
λxe−2λt

2c

[ ∞∑

k=0

(λt)2k

(k!)2

(
1 +

λt

2k + 2

)
F

(
−k,

1
2
;
3
2
;

x2

4c2t2

)

+
∞∑

k=0

(λt)2k+1

(k!)2 (2k + 1) 3F2

(
−k,−k − 1

2
,
1
2
; −k +

1
2
,
3
2
;

x2

4c2t2

)]
.

Here

F (α, β; γ; z) ≡ 2F1(α, β; γ; z) =
∞∑

k=0

(α)k (β)k

(γ)k

zk

k!

is the Gauss hypergeometric function and

3F2(α, β, γ; ξ, ζ; z) =
∞∑

k=0

(α)k (β)k (γ)k

(ξ)k (ζ)k

zk

k!

is the generalized hypergeometric function.

The probability distribution function Φ(x, t) is left-continuous with
jumps at the origin x = 0 and at the terminal points x = ±2ct deter-
mined by the singularities concentrated at these three points.
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Optimization of Markov Processes

with Final Sequence of States

and Unitary Transition Time

Alexandru Lazari

Abstract

In this paper the Markov processes with final sequence of
states and unitary transition time are studied. These stochastic
systems represent a generalization of zero-order Markov processes
studied in [1]. The evolution time of these systems, as a function
of distribution of the states and transit matrix, is minimized using
signomial and geometric programming approaches.

Keywords: Markov Process, Final Sequence of States, Evo-
lution Time, Geometric Programming, Signomial Programming,
Posynomial Function.

1 Introduction

The stochastic systems with final sequence of states represent an exten-
sion of classical Markov processes. Various kinds of these systems were
studied in [3]. In this thesis the efficient polynomial algorithms for
determining the main probabilistic characteristics (expectation, vari-
ance, mean square deviation, n-order moments) of evolution time of
the given stochastic systems were proposed.

Another interpretations of these Markov processes were analyzed in
1981 by Leo J. Guibas and Andrew M. Odlyzko in [6] and G. Zbaganu
in 1992 in [5]. First article considers the evolution of these stochastic
systems as a string, composed from the states of the systems and studies
the periods in this string. In the second paper the author considers that

c©2014 by A. Lazari
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the evolution of Markov process is similar with a poem written by an
ape. The evolution time of the system is associated with the time that
needs for the ape to write that poem (the final sequence of states of
the system).

Based on the results mentioned above, efficient methods for mini-
mizing the expectation of evolution time of zero-order Markov processes
with final sequence of states and unitary transition time were obtained
in [1]. The main idea was that the expectation of the evolution time
can be written as a posynomial plus one unit. The geometric program-
ming approach was applied and the problem was reduced to the case
of convex optimization using the interior-point methods.

Next, in this paper, a generalization of this problem is considered.
The Markov processes (of order 1) are analyzed and the evolution time
is minimized. The signomial and geometric progamming (described in
[4]) are applied.

2 Statement of the problem

Let us consider the discrete stochastic system L (defined in [2]) with
the set of possible states denoted by V , such that |V | = ω < ∞.
The state of the system at every moment of time t ∈ N is denoted by
v(t) ∈ V .

Let p∗(v) represents the probability that v(0) = v, v ∈ V , and
p(u, v) represents the probability of transition from the state u ∈ V to
v ∈ V .

Let x1, x2, . . . , xm ∈ V be fixed. We say that the system stops,
when it passes through all the states x1, x2, . . . , xm, consecutively. The
stopping time T represents the evolution time of the given system L.

Next, we consider that the distributions p and p∗ are not fixed. So,
we have the Markov process L(p∗, p) with final sequence of states X,
distribution of the states p∗ and transition matrix p, for every param-
eters p and p∗. The problem is to determine the optimal distribution
p∗ = p∗ and optimal transition matrix p = p, that minimize the expec-
tation of the evolution time T (p∗, p) of the stochastic system L(p∗, p).
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3 Main results overview

Theorem 1. The optimal distribution of the states is p∗, where
p∗(x1) = 1 and p∗(x) = 0, ∀x ∈ V \{x1}.
Theorem 2. We consider the sets X = {x1, x2, . . . , xm−1} and
Y = {(x1, x2), (x2, x3), . . . , (xm−1, xm)}. The optimal transition ma-

trix p has the following properties:

1. p(x, y) = 0, if (x, y) ∈ V 2\Y and x ∈ X;

2. p(x, y) = 1, if (x, y) ∈ Y and (x, z) ∈ V 2\Y , ∀z ∈ V \{y};
3. p(x, x1) = 1 and p(x, y) = 0, ∀y ∈ V \{x1}, if x ∈ V \X;

4. p(x, y) > 0, ∀(x, y) ∈ Y .

Theorem 3. The optimal transition matrix can be determined solving
the following signomial programs:

E(T (p)) = d1d
−1
2 → min





∑
(x,y)∈Y

p(x, y) = 1, ∀x ∈ X

d−1
i,1 di + d−1

i,1 di,2 = 1, i = 1, 2
d−1

i,j δi,j(p) = 1, i, j = 1, 2
di > 0, di,j > 0, i, j = 1, 2
p(x, y) > 0, ∀(x, y) ∈ Y .

E(T (p)) = d1d
−1
2 → min





∑
(x,y)∈Y

p(x, y) = 1, ∀x ∈ X

d−1
i,1 di + d−1

i,1 di,2 = 1, i = 1, 2
d−1

i,j δi,3−j(p) = 1, i, j = 1, 2
di > 0, di,j > 0, i, j = 1, 2
p(x, y) > 0, ∀(x, y) ∈ Y .

according to the properties described by Theorems 1 and 2, where
δi,j(p), i, j = 1, 2, are the posynomials from the decomposition
E(T (p)) = (δ1,1(p)− δ1,2(p))(δ2,1(p)− δ2,2(p))−1 that follows from the

algorithm developed in [3]. These signomial programs represent geome-
tric programs with posynomial equality constraints and can be handled
as geometric programs using the way followed in [4]. If p1 and p2 are
the solutions of the problems described above, then the optimal transi-
tion matrix is p ∈ {p1, p2} for which E(T (p)) is minimal.
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4 Conclusion

In this paper it is presented how to optimize the evolution time of
Markov processes with final sequence of states and unitary transition
time. To achieve this goal, the author successfully uses signomial and
geometric programming methods.
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Determining Nash Equilibria for Stochastic

Positional Games with Average Payoffs

Dmitrii Lozovanu, Stefan Pickl

Abstract

Stochastic positional games with average payoffs of the play-
ers are studied. Nash equilibria conditions for the considered
class of games are formulated and algorithms for determining the
optimal stationary strategies of the players are proposed. The ob-
tained results are applied for analyzing cyclic games and Shapley
stochastic games.

Keywords: Markov decision processes, Optimal stationary
strategy, Shapley stochastic games, Stochastic positional games,
Nash equilibria.

1 Introduction

We consider a class of stochastic positional games with average payoffs.
Necessary and sufficient conditions for the existence of Nash equilibria
in the considered class of games are formulated and proven. Based
on these results we develop algorithms for determining the optimal
stationary strategies of the players. Moreover, we show that for the
antagonistic positional games saddle points always exist and efficient
iterative procedure for determining the saddle points can be derived.
The obtained results generalize Nash equilibria conditions for determin-
istic positional games and they can be used for studying and solving
some classes of Shapley stochastic games with average payoffs.
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2 Formulation of the Basic Game Model

A stochastic positional game with m players and average payoffs of the
players consists of the following elements:

- a finite set of states X that is divided into m disjoint subsets
X = X1 ∪X2 ∪ · · · ∪Xm, where each subset Xi represents the
position set of player i ∈ {1, 2, . . . , m};

- a finite set of actions A = ∪x∈XA(x), where A(x) represents the
set of actions in the state x ∈ X, and in the state x ∈ Xi of the
position set of player i ∈ {1, 2, . . . , m} the action a ∈ A(x) can be
chosen only by the corresponding player i;

- a transition probability function p : X ×A×X → [0, 1] that
gives the probability transitions pa

x,y from an arbitrary state
x ∈ X to an arbitrary state y ∈ Y for a fixed action a ∈ A, where∑

y∈X pa
x,y = 1, ∀x ∈ X, a ∈ A;

- m transition cost functions ci : X ×X → [0, 1] that give the
transition costs ci

x,y from an arbitrary state x ∈ X to an arbitrary
state y ∈ X for each player i ∈ {1, 2, . . . ,m};

- a starting state x0 ∈ X.

The game starts at a given state x0 of the dynamical system at the
time moment t = 0. In this state the move is made by player i ∈
{1, 2, . . . ,m} if x0 ∈ Xi. The move means that player i fixes an action
a0 ∈ A(x0) in the state x0 and the dynamical system passes randomly
to a state x1 ∈ X according to transition probabilities pa0

x,y. At this
stage in the state x0 the immediate cost µj(x0, a0) =

∑
y∈X pa0

x0,yc
j
x0,y

for each player j ∈ {1, 2, . . . ,m} is determined. After that, if x1 ∈ Xi,
then player i ∈ {1, 2, . . . , m} fixes an action a1 ∈ A(x1) and the
system passes randomly to the next state x2 according to transition
probabilities pa1

x1,y. At this stage in the state x1 the immediate cost
µj(x1, a1) =

∑
y∈X pa1

x1,yc
j
x1,y for each player j ∈ {1, 2, . . . , m} (and so
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on indefinitely) is again determined. In such a way a play of the stochas-
tic positional game x0, a0, x1, a1, . . . , xt, at, . . . defines a stream of im-
mediate costs µj

0, µ
j
1, µ

j
2, . . . , where µj

t = µj(xt, at), t = 0, 1, 2, . . . . The
average stochastic positional game is an infinite game with the follow-
ing payoffs of the players: ωj = limt→∞ 1

t

∑t−1
τ=1 µj

τ , j = 1, 2, . . . , m.
In [1, 2] it is shown that this game can be formulated in the terms
of stationary strategies. The stationary strategies of the players are
defined as m maps si : x → a ∈ A(x) for x ∈ Xi, i = 1, 2, . . . , m,.
If the players 1, 2, . . . ,m fix their stationary strategies s1, s2, . . . , sm,
respectively, then we obtain a situation s = (s1, s2, . . . , sm). This situ-
ation corresponds to a simple Markov process determined by the prob-
ability distributions p

si(x)
x,y in the states x ∈ Xi for i = 1, 2, . . . , m.

We denote by P s = (ps
x,y) the matrix of probability transitions of

this Markov process. If the starting state x0 is given, then for
the Markov process with the matrix of probability transitions P s

we can determine the average cost per transition ωi
x0

(s1, s2, . . . , sm)
with respect to each player i ∈ {1, 2, . . . ,m} taking into account
the corresponding cost matrix Ci = (ci

x,y). So, on the set of situ-
ations we can define the payoff functions of the players as follows:
F i

x0
(s1, s2, . . . , sm) = ωi

x0
(s1, s2, . . . , sm), i = 1, 2, . . . , m. In this

game we are seeking for a Nash equilibrium. We denote this game by
(X, A, {Xi}i=1,m, {ci}i=1,m, p, x0). In the case m = 2, c2 = −c1 we ob-
tain an antagonistic stochastic positional game. If pa

x,y = 0 ∨ 1, ∀x, y ∈
X, ∀a ∈ A, the game is transformed into the cyclic game [2].

3 The Main Result

Theorem 1. Let (X, A, {Xi}i=1,m, {ci}i=1,m, p, x) be an average
stochastic positional game. Then in this game there exists a Nash equi-
librium for an arbitrary starting position x ∈ X if and only if there exist
the functions εi : X → R, i = 1, 2, . . . , m and the values ω1

x, ω2
x, . . . , ωm

x

for x ∈ X that satisfy the following conditions:

1) µi
x,a +

∑
y∈X

pa
x,yε

i
y − εi

x − ωi
x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x),
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i = 1, 2, . . . ,m, where µi
x,a =

∑
y∈X

pa
x,yc

i
x,y;

2) min
a∈A(x)

{µi
x,a+

∑
y∈X

pa
x,yε

i
y−εi

x−ωi
x} = 0, ∀x ∈ Xi, i = 1, 2, . . . , m;

3) on each position set Xi, i ∈ {1, 2, . . . , m} there exists a map si∗ :
Xi → A such that
si∗(x) = a∗ ∈ Arg mina∈A(x)

{
µi

x,a +
∑

y∈X

pa
x,yε

i
y − εi

x − ωi
}

and

µj
x,a∗ +

∑
y∈X

pa∗
x,yε

j
y − εj

x − ωj = 0, ∀x ∈ Xi, j = 1, 2, . . . , m.

If such conditions hold, then the set of maps s1∗, s2∗, . . . , sm∗ deter-
mines a Nash equilibrium of the game for an arbitrary starting position
x ∈ X and F i

x(s1∗, s2∗, . . . , sm∗ = ωi
x, i = 1, 2, . . . ,m.

Based on this theorem and the results from [1, 2] we have elabo-
rated algorithms for determining the optimal stationary strategies of
the players (in the case when a Nash equilibrium for the game exists).
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Abstract

The constitutive nonlinear equations of anisotropic materials
are examined in reversible deformation area. The constitutive
equations of the second order, in which the tensors of elastic con-
stants of forth order listed, are analyzed in detail. The matrix
representation of these tensors and analysis of independent con-
stants of elasticity in function of material symmetry and type of
atoms interactions is given.

Keywords: tensor, stress, strain, symmetry, constant elas-
ticity

1 Introduction

With superior order tensors (four, six, eight) we meet at studying the
relations between stress and strain. At reversible process the governing
equations are written in the form

tij = cijnmdnm + cijnmpqdnmdpq + cijnmpqkldnmdpqdkl + ...,

where by tij , dij – the stress and strain tensors are denoted respec-
tively, but by cijnm, cijnmpq, cijnmpqkl – tensors of elasticity constants
of order four, six and eight. From symmetry of stress, strain tensors
and thermodynamic lows, for tensors of elastic constants the following
symmetry relations result:

cijnm = cjinm = cijmn = cnmij (1)

c©2014 by V. Marina, V. Marina
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cijnmpq = cjinmpq = cijmnpq = cijmnqp = cnmijpq = cpqnmij = cijpqnm

cijnmpqkl = cjinmpqkl = cijmnpqkl = cijnmqpkl =

= cijnmpqlk = cnmijpqkl = ck ln mpqij . (2)

In function of type of interaction between atoms or molecules, the
extra relations can be added to the relationships (1), (2). If the in-
teractions between atoms or molecules are central (the ionic contact),
then tensors of elasticity constants of any order are totally symmetric.
Remember, that one tensor is totally symmetric if it is symmetric in
order with all pairs of indices. In case of forth order tensor, there ex-
ists one more relation cijnm = cinjm. The material symmetry, which
is quantitatively expressed by symmetry plans and symmetry axes of
different order, leads to reduction of number of independent constants
of elasticity.

2 A matrix representation of a fourth order
tensor

The experimental dates for components of tensors of elasticity con-
stants are presented in crystallographic system of coordinates, in which
there are sizes only of the independents. Calculation of elasticity con-
stants in arbitrary system is considerably simplified, if the superior
order tensors are represented by composite matrix [1]. So, the fourth
order tensor can be presented under the shape cijnm = (cij)nm, where,
(cij)nm – is square composite matrix of the second order, every element
of which represents also a square matrix (3).

For the fourth order tensor, which enjoys the symmetry properties
(1), the components of the composite matrix are expressed only by 21
independent constants. The 21 independent constants can be presented
as a column matrix 21x1, the elements of which we denote by aI , where
I = 1, 2, . . . , 21.
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    (3) 
 

So, the tensor of elasticity constants will be expressed in the fol-
lowing way:
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  (4) 
  

 If tensor is totally symmetric, the following relations can be a8 =
a5, a7 = a4, a12 = a6, a19 = a18, a13 = a10, a14 = a11. In the case of
orthotropic material and for material with cubic symmetry the matrix
of elasticity constants is expressed by (5). The relations between stress
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  (5) 
  

 
and strain in arbitrary system of coordinates in linear approximation
is determined by relation

din =
3∑

k=1

3∑

q=1




3∑

c=1

3∑

l=1

3∑

m=1

3∑

j=1

[rijrnmrklrqc(Cjm)lc] tkq


 , (6)

where by rij the matrix of rotation is denoted, in which the base po-
sition of this coordinate system is determined from crystallographic
system.

3 Conclusions

The possibility of matrix presentation by superior order tensors es-
sentially simplifies the mathematic modelling of nonlinear behavior of
anisotropic materials. It has been found, that governing equations of
second order in general case of anisotropy are expressed by 77 indepen-
dent constants of elasticity.
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Abstract

The constitutive nonlinear equations of anisotropic materials
are examined in reversible deformation area. The constitutive
equations of the second order, in which the tensors of elastic con-
stants of forth order listed, are analyzed in detail. The matrix
representation of these tensors and analysis of independent con-
stants of elasticity in function of material symmetry and type of
atoms interactions is given.

Keywords: tensor, stress, strain, symmetry, constant elas-
ticity.

1 A matrix reprezentation of a six order tensor

In the case of nonlinear relations between stress and strain the six and
eight order tensors are intervened, and these tensors can be presented in
the form of composite matrix. On basis of symmetric relations it is pos-
sible to pass from two indexes notations to one index after Viogt [1-3]
convention 11 ∼ 1, 22 ∼ 2, 33 ∼ 3, 23 ∼ 4, 13 ∼ 5, 12 ∼ 6. Adopt-
ing this convention, we will write cijnm = cKM , cijmnrs = cKMF ,
cijmnrskq = cKMFL, where the small letters have the values 1,2,3, but
big 1,2,...,6. Additionally we have

cKM = cMK , cKMF = cMKF = cFMK = cKFM

cKMFL = cMKFL = cKMLF = cMKLF = cLFKM = cLFMK =

c©2014 by V. Marina, V. Marina
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= cFLKM = cFLMK = cFKLM = . . .

Matrixes cKM , cKMF , cKMFL don’t represent the tensor in the ob-
tained meaning. Therefore, in the rule of components transformation
at rotation of reference system there is not directly given the rotation
matrix r. It can be demonstrated, that for these matrixes the known
rules of components transformation can be used, so

c′KM = RKIRMJcIJ , c′KMF = RKIRMGRFT cIGT ,

c′KMFL = RKIRMGRFT RLUcIGTU .

(CI)GT matrix takes the form (1), i.e. C1 =
(

C1

C2

)
.
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So, the tensor of elastic constants of fourth order is expressed by
21 independent components, but six order tensor form 56. These 56
components are presented in the form of column matrix with 56 × 1
dimensions.

If materials have other elements of symmetry too, the number of in-
dependent constants of elasticity is reduced. So, it can be proved, that
for materials with cubic symmetry the number of elasticity constants
of stress tensor of sixth order is decreased down to six.

The only non-zero constants of elasticity tensor of sixth order are

c1 = C111 = c22 = C222 = c37 = C333,

c2 = C112 = c3 = C113 = c7 = C122 = c23 =

= C223 = c12 = C133 = c27 = C233,

c8 = C123, c51 = C456, c16 = C144 = c34 = C255 = c46 = C366,

c19 = C155 = c21 = C166 = c31 = C244 = c36 =

= C266 = c41 = C344 = c44 = C355.

Therefore, the elastic behavior of material of cubic symmetry in
approximation tij = cijnmdnm + cijnmpqdnmdpq is described by 9 inde-
pendent constants; 3 components of forth order tensor a1, a4, a7 and
six independent components of sixth order tensor c1, c2, c8, c16, c19, c51.
In the case of isotropic material, between independent constants of
forth order tensor the relationship takes place a4 = a1−a7

2 , but for elas-
ticity constants of sixth order tensor tree more relations are obtained
c16 = 1

2(c2 − c8), c19 = 1
4(c1 − c2), c51 = 1

8(c1 − 3c2 + 2c8). Therefore,
the governing equations of second order in case of isotropic materials
are expressed from only 5 independent constants. If interaction be-
tween atoms is central, than the following relations exist a7 = a4 = a1

3 ,
c8 = c16 = c51 = 7c2−c1

6 , so, in case of one isotropic material with
central interactions, the governing equations of the second order are
expressed only by tree independent constants. In case of governing
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equations of tree order may interfere the eight order tensors. These
tensors are expressed by square matrix of sixth order, each element is
represented by the sixth order matrix.

2 Conclusions

For cubic symmetry materials the number of independent constants of
elasticity is reduced down to 9. In the case of isotropic materials the
number of independent constants of elasticity is reduced down to 5, if
interaction between atoms is central, than the number of independent
constants is reduced down to 3.
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Inverse Problem of Adequate Mathematical

Description Synthesis
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Abstract

The main problem of mathematical simulation is the construc-
tion (synthesis) of mathematical model of motion of real dynamic
system which in aggregate with model of external load gives re-
sults of mathematical simulation adequate to experimental ob-
servations. Two basic approaches to this problem are selected.
These problems are incorrect problems by their nature and so,
for their solution the regularization methods are being used.

Keywords: mathematical simulation, adequate mathemati-
cal description, inverse problems.

1 Introduction

It is supposed that real physical process is observed and the records
of experimental measurements of some characteristics of this process
are given. If results of simulation of this physical process with some
mathematical description coincide with given experimental measure-
ments characteristics with experiment accuracy, this mathematical de-
scription will be named as an adequate mathematical description. It is
necessary to construct the algorithm of adequate mathematical descrip-
tion of this process for further use. In the given work the mathematical
models of physical processes described only by linear system of the or-
dinary differential equations will be examined [1]:

ẋ(t) = C̃x(t) + D̃z(t), (1)

c©2014 by Y. Menshikov
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with the equation of observation

y(t) = F̃ x(t), (2)

where x(t) = (x1(t), x2(t), .., xn(t))T is vector-function variables char-
acterizing the state of process, z(t) = (z1(t), z2(t), .., zl(t))T is vector-
function of unknown external loads, y(t) = (y1(t), y2(t), .., ym(t))T ;
C̃, D̃, F̃ are matrices of the appropriate dimension with constant coef-
ficients which are given approximately, F̃ is nonsingular matrix dimen-
sion m × n and rangF̃ = m, ((.)T is a mark of transposition). If the
part of external loads of real process is known, this case can be reduced
to the one which was examined earlier with using the linearity of ini-
tial dynamic system. We assume that state variables xi(t), 1 ≤ i ≤ n
of system (1) correspond to some real characteristics x̃i(t), 1 ≤ i ≤ n
of process which are being investigated, and that the vector function
ỹ(t) = F̃ x̃(t) is obtained from experimental measurements.

Two basic approaches to synthesis of adequate mathematical de-
scription exist [1]. The problem of synthesis of adequate mathematical
description with the use of system (1) can be formulated as follows: it
is necessary to find unknown vector function of external loads z(t) in
such a way that the vector function y(t), which is obtained from system
(1),(2) under this external load z(t), coincides with experimental data
ỹ(t) with a given accuracy of experimental measurements in chosen
functional metrics. The adequate mathematical descriptions first of all
are aimed at the forecast of motion of real processes. With the help of
adequate mathematical description it is possible to predict the motion
of real process in new conditions of operation.

2 Statement of problem

Let’s assume that external load z(t) is unknown and vector function
ỹ(t) in the equations (2) is measured by an experimental way. The part
of state variables x̃1(t), x̃2(t), ..., x̃m(t) can be obtained by an inverse
of equation (2) with function ỹ(t), as F̃ is nonsingular matrix.
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After simple transformations, in some cases it can be obtained sev-
eral integral equations of the first kind for all components of the un-
known function of external load z(t):

∫ t

0
K1(t− τ)zi(τ)dτ = Pi(t), i = 1, .., l, (3)

where Ki(t− τ), Pi(t) are known functions.
Rewrite the equation (3) in the form [1]:

Apz = uδ, (4)

where Ap is completely continuous operator, Ap : Z → U, z ∈ Z, uδ ∈
U, uδ is initial experimental data (graphic), z is unknown function,
(Z, U are functional spaces). Further, we shall suppose that the element
uδ in the equation (4) is given with a known error: ‖uδ − uex‖ ≤ δ,
where δ is const, δ > 0, uex is exact initial data.

Let’s denote by Qδ,p the set: Qδ,p = z : ‖Apz − uδ‖ ≤ δ. The set
Qδ,p is not bounded at any δ. Thus, the initial mathematical model of
physical process and any function from the set Qδ,p provide an adequacy
of results of mathematical simulation with accuracy δ. Besides, the
exact solution zex(Aexzex = uex) of the equation (4) may not belong
to the set of possible solutions Qδ,p, as the operator Ap is describing
inexactly the real physical process [1].

3 Features and Method of Solution

The inverse problems of synthesis have a number of features by virtue
of this quality of exact solution:

- the size of an error of the approximate solution in relation to the
exact solution zex has no importance for further use of the approximate
solution as we will use the inexact operator Ap for forecast of real
process motion;

- there is no sense to study behavior of the approximate solution
of an inverse problem depending on the reduction of an error of the
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initial data δ. In other words, the approximate solution cannot have
properties of regularization.

For definition of the unique solution of an inverse problem (4) from
set of the possible solutions it is possible to use approach which was of-
fered by Phillips and Tikhonov [2]. Consider now the following extreme
problem:

Ω[zδ,p] = inf
z∈Qδ,p

Ω[z], (5)

where functional Ω[z] has been defined on set Z [7].

Theorem 1. If the functional space Z is reflex Banach space, the
functional Ω[z] is convex and lower semi-continuity on Z, Lebesgue set
for some function from Qδ,p is bounded, then the function zδ,p ∈ Qδ,p

exists.
The examples are given [1].

4 Conclusion

The algorithms of synthesis of the mathematical description of real pro-
cess (for example the motion of some dynamic system) are considered
which allows receiving adequate results of mathematical simulation.
Two basic approaches to this problem are selected. Within the frame-
work of one of these approaches some algorithms are offered.
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Abstract
Some performance characteristics for exhaustive polling

models with semi-Markov delays, such as distribution of busy
period, non-stationary queue lengths, probability of states are
presented.

Keywords: polling system, queue lengths, busy period,
probability of states.

1 Introduction

It is well known that polling models play an important role in analysis
and designing wireless nertworks [1]. A polling model is a system of
multiple queues accessed by a single server in a given order. Among
important characteristics of these systems are the k -busy period,
probability of states and queueing length [2]. We consider a queueing
system of polling type with semi-Markov delays. Handling mechanism
for this system is given by polling table f : {1, 2, . . . , n} → {1, 2, . . . , r},
where the function shows that at the stage j, j = 1, n, user number
k, k = 1, r, r ≤ n is served (more details see in [1]). The items
(messages) of the user k, according to Poisson distribution with
parameter λk arrive. The service time for the items of class k is a
random variable Bk with distribution function Bk(x) = P{Bk < x}.
Duration of the orientation from one user to user k is a random variable
Ck with distribution function Ck(x) = P{Ck < x}. Thus Ck can be
interpreted as a loss of time in preparing the service process for user of
class k.
c©2014 by Gh. Mishkoy, D. Bejenari, L. Mitev
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2 The distribution of k-busy period

Definition 1. The k-busy period is a measure of the time that ex-
pires from when a server begins to process, after an empty queue, to
when the k-queue becomes empty again for the first time [3].

Denote by Πδ
k(x) distribution function of the k-busy period, and by

πδ
k(s) it’s Laplace-Stieltjes transform.

Theorem 1. Function πδ
k(s) is determined from equation

πδ
k(s) = ck(s + λk − λkπk(s))πk(s), (1)

where
πk(s) = βk(s + λk − λkπk(s)) (2)

and by ck(s) and βk(s) the Laplace-Stieltjes transforms of distribution
functions Ck(x) and Bk(x) are denoted,

ck(s) =

∞∫

0

e−sxdCk(x), βk(s) =

∞∫

0

e−sxdBk(x).

Remark 1. From Theorem 1 the first moment of the k-busy period
can be obtained.

3 Probability of states

Denote PBk
(x), PCk

(x) and P0(x) the probabilities that at instant x
the system is busy by service of k -messages, switching to k -messages
and system is free, respectively.

Theorem 2. The Laplace-Stieltjes transforms of PBk
(x), PCk

(x)
and P0(x) are determined from

pBk
(s) =

λk[1− πk(s)]
s[s + λk − λkπ

δ
k(s)]

, (3)
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pCk
(s) =

λk[1− ck(s)]
s[s + λk − λkπ

δ
k(s)]

, (4)

p0(s) =
1
s
− [pBk

(s) + pCk
(s)]), (5)

where πδ
k(s) and πk(s) are determined from (1) and (2).

4 Distribution of virtual queue length

Let Pm(x) be the probability that at the instant x there are m
messages in the k-queue. Denote

Pk(z, x) =
∞∑

m=1

Pm(x)zm, 0 ≤ z ≤ 1,

the generating function of queue length distribution and by pk(z, s),
the Laplace transform of function Pk(z, s).

Theorem 3.

pk(z, s) =
1 + λkπ

δ
k(z, s)

s + λk − λkz
, (6)

πδ
k(z, s) =

1− ck(s + λk − λkz)
s + λk − λkz

+
βk(z, s)

z − βk(s + λk − λkz)
×

×[zck(s + λk − λkz)− πδ
k(s)], (7)

βk(z, s) =
1− βk(s + λk − λkz)

s + λk − λkz
. (8)

Remark 2. From Theorem 3 the stationary queue length can be
obtained.
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5 Conclusion

The main purpose of research of polling systems is to determine the
characteristics of systems development. In this paper there were pre-
sented some performance characteristics for exhaustive polling model
with semi-Markov delays, such as the distribution of k-period, proba-
bility of states, queue lengths distribution, that can be used in analysis
of different type of systems from real life.
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Abstract

In the paper we discuss problems of numerical simulation of
magnetohydrodynamical (MHD) astrophysical problems.

Majority of astrophysical problems are characterized by wide
variation of parameters, often by many orders of magnitude. The
numerical methodology which we use for the simulation is based
on finite volume approach. The operator-difference scheme is
implicit and completely conservative. As examples of success-
ful application we describe simulation results of cold protostellar
cloud collapse and magnetorotational supernova explosion.

Keywords: numerical methods, astrophysics, magnetohy-
drodynamics.

1 Introduction

Modern astrophysics is a science where significant part of problems
can be solved only by mathematical simulation. The only possibility
to make experiment in astrophysics except observations is to make
numerical simulations. A lot of astrophysical problems can be described
in the frame of gas dynamics or magnetohydrodynamics.

For the simulation of such kind of problems we use numerical
method based on finite volume approach. Completely conservative
implicit operator-difference scheme on triangular Lagrangian grid of
variable structure was applied to the simulation of such astrophysical
problems as cold protostellar rapidly rotating cloud collapse, magne-
torotational supernova explosion.

c©2014 by S.G. Moiseenko, G.S. Bisnovatyi-Kogan, N.V. Ardeljan
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2 Basic equations and numerical method

For the simulations we consider a set of magnetohydrodynamical equa-
tions with selfgravitation and with infinite conductivity [1].

We have used a numerical technique, based on a conservative (in
the absence of gravitation), implicit first order of accuracy in space
and time operator difference scheme on a triangular grid with a grid
reconstruction, developed and described in [2,3].

For a numerical solutions, we introduce a triangular grid, covering
the restricted domain in r, z coordinates.

We suppose that components of the velocity vector u and gravita-
tional potential Φ will be defined in all knots of the grid. The density
ρ, pressure p, components of magnetic field vector H will be defined in
the cells and in the boundary knots of the grid.

For the numerical simulation of the system of gravitational MHD
equations the following method has been used. Instead of differential
operators (div, grad, rot) we introduce their finite difference analogues.
On the base of such operators a completely conservative scheme has
been constructed. The scheme is implicit for all velocity components
vr, vϕ, vz and for the toroidal component of the magnetic field Hϕ. The
scheme is explicit for the poloidal magnetic field Hr,Hz. The explic-
itness of the scheme for Hr,Hz does not introduce strong restriction
on the time step, because during the evolution of the magnetic field its
poloidal values do not change strongly, while the toroidal component
appears and increases significantly with time. The scheme is explicit for
the gravitational potential, but it was shown in [2] that this explicitness
does not introduce significant restrictions on the time step.

3 Results of simulations

The method briefly described in the previous section was applied to
the calculations of the collapse of rapidly rotating gas cloud. The
problem with the same physical conditions have been investigated by
many authors. We have obtained the results for the stages of the
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collapse up to the secondary compression and discuss the reliability of
the results in comparison with previous authors [4]. Our results are
in qualitative accordance with other ones got by Lagrangian methods,
while we managed to prolong the calculations farther, and we do not
confirm the formation of the ring structure, obtained by using of the
Eulerian schemes.

We present the results of 2D simulations of the magnetorotational
model of the supernova explosion. The idea of the magnetorotational
mechanism of supernova explosion was suggested by G.S.Bisnovatyi-
Kogan in 1970 [5]. After the core collapse the core consists of rapidly
rotating proto-neutron star and differentially rotating envelope. The
generated by the differential rotation toroidal part of the magnetic
energy grows linearly with time at the initial stage of the evolution of
the magnetic field. The linear growth of the toroidal magnetic field is
terminated by the development of magnetohydrodynamic instability,
leading to the drastic acceleration of the growth of magnetic energy.
At the moment, when the the magnetic pressure becomes comparable
with the gas pressure at the periphery of the proto-neutron star ∼
10 − 15km from the star center, the MHD compression wave appears
and goes through the envelope of the collapsed iron core. It transforms
soon to the fast MHD shock and produces supernova explosion. Our
simulations give the energy of the explosion 0.6 ·1051 ergs. The amount
of the ejected by the explosion mass ∼ 0.14M¯ [6].

4 Conclusion

The completely conservative implicit operator-difference scheme was
successfully applied to the simulation of the problem of rapidly rotat-
ing cold protostellar cloud collapse and magnetorotational supernova
explosion. The simulations were made in 2D, while generalization of
the numerical method on 3D case can be done in a natural way [7].

Acknowledgments. The MSG and GSBK were supported in part
by RFBR grant No.14-02-00728, grant for leading scientific schools
No.NSH-261.2014.2 and Program of Russian Academy of Sciences P-21.
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Stochastic Modeling of Economic Growth
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Abstract

In this paper stochastic approach to the economic growth
modeling will be proposed.The problem of how government pol-
icy, especially in domain of corruption, influenced economic
growth will be examined. For this problem solving stochastic
maximum principle will be applied.

Keywords: economic growth, stohcastic modeling, stochas-
tic maximum principle, government policy, corruption.

1 Introduction

Economic growth is the basic component of the sustainable socio eco-
nomic development in any country, especially in the country in tran-
sition like Republic of Moldova. Therefore, optimal utilization of the
government expenditure in order to minimize individual theft from it
is a main problem to solve. In this direction some applications referred
to the Republic of Moldova economic growth were examined [1]. In
present paper the same problem at the branches level will be discussed,
and for its solving the method [3] will be applied.

2 Formulation of the problem

As in [2] the model of multiple equilibrium in corruption and economic
growth in stochastic formulation will be examined. Suppose that a N

c©2014 by E. Naval
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individuals denoted by i ∈ [0, N ] are aimed to maximize an objective
function

max
ci

L = E
[∫ ∞

0
e−ρt(

c1−σ
it

1− σ
)dt

]
, (1)

where E is an expectation operator, and ci is particular consumption
of the individual i, and σ is the value inverse to the intertemporal
elasticity of substitution. It is assumed that population is constant over
time and normalized to 1. At every moment of time one unit of labor
services of each individual are allocated between productive work, Lp,
and theft from the government, S: Lpi+Si = 1, Li ≥ 0, Si ≥ 0 ∀i.
Government expenditure takes part from production function as in [2]
and may be suited by rent seekers, who are able either to consume the
proceeds or to invest them in their own firms.

The total amount of resources that are extracted by individual i
is SiGφ(S̄), φ′(.) > 0, 0 < φ(S̄) < 1 ∀S̄ ∈ (0, 1), here S̄ =

∫ 1
0 Sidi.

So, this amount depends on the time that i spends stealing, Si, and
the amount of productive government expenditure available, G. φ(S̄)
represents the proportion of stolen resources actually kept by the rent
seeker. It is assumed that φ is a positive function in respect with S̄, the
total rent steeling activity in the economy. The production function
for firm i is

Yi = K1−α
i Lα

i {G[1− S̄φ(S̄)]},
where G is government expenditure, Ki is the capital stock belonging
to firm i, S̄φ(S̄) is the amount stolen that fails to reach the production
processes as an input. It is assumed [2] that τ = G/Y = constant,
where τ is the tax rate. In per capita indicators, production function
looks as:

yi = k1−α
i lαi g[1− S̄φ(S̄)].

So, capital per capita belonging to individual i in the stochastic case
evolves according to

dki = f(ki, ci)dt + qdz, (2)

where dz is a stochastic Wiener processes. Now, the stochastic opti-
mal control problem may be formulated as maximization of the objec-
tive function Eq. (1) subjected to the following restriction Eq. (2):
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f(ki, ci) = (1 − τ)wli + rki − ci + Sigiφ(S̄), and vector function u is
given. The corresponding optimality conditions are:

0 = max
ki

[u(k, c) +
1
dt

E(dL)], (3)

and the Hamton Jacoby Bellman (HJB) equation becomes:

0 = max
ki

[u(k, c) + Lt + Lkf +
1
2
q2Lkk]. (4)

The Hamiltonian function H, for the stochastic case is given as: H =
u + Lt + Lkf + 1

2q2Lkk. Taking derivatives from HJB equation with
respect to k we obtain

Lkt + Lkkf +
1
2
q2Lkkk = −uk − fkLk − 1

2
(q2)kLkk. (5)

Using chain rule and considering second order contributions of the
derivatives with respect to k (Ito‘s Lemma) reduces to:

dLk =
∂Lk

∂k

dk

dt
dt +

1
2
(q2)kLkk. (6)

Because from Ito‘s Lemma, E[d(k)2] = q2dt and substituting previous
equation in the last one we obtain

dLk

dt
= Lkt + Lkkf +

1
2
Lkkkq

2 (7)

is obtained:
dLk

dt
= −uk − fkLk − 1

2
(q2)kLkk. (8)

Deriving previous equation with respect to k, using chain rule and
considering second order contributions in the derivatives with respect
to k (Ito‘s Lemma) is obtained:

dLkk =
∂Lkk

∂t
dt +

∂

Lkk
∂k

dk

dt
dt +

1
2

∂2Lkk

(∂k)2
dk2. (9)

Then, Ito‘s Lemma, chain rule application and substituting Eq. (7) in
Eq. (9) get:

dLkk

dt
= −ukk − 2Lkkfk − Lkfkk − (q2)kLkkk − 1

2
(q2)kkLkk. (10)
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Equating adjoint variable, µ to the first derivatives of the objec-
tive function L with respect to state variable k and ω as the second
derivatives with respect to the state variable, the following is obtained:

dµ

dt
= −uk − fkµ− 1

2
(q2)kω, (11)

dω

dt
= −ukk − 2ωfk − µfkk − 1

2
(q2)kkω. (12)

Here µ = (µ1, µ2, ..., µn) and ω = (ω1, ω2, ..., ωn) are two n-
dimensional vectors. Notice that the resulting problem is a 2n point
boundary value problem. Summarizing for the stochastic case, the
Hamiltonian function and the adjoint equations to be solved are

H = u + Lkf +
1
2
(q2)Lkk, (13)

dµ

dt
= −uk − fkµ− 1

2
(q2)kω, (14)

dω

dt
= −ukk − 2ωfk − µfkk − 1

2
(q2)kkω. (15)
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Abstract

The paper describes the mathematical model and numerical
results of the study of seismic impact on the buried in the ground
projectile with fuse.

Keywords: mathematical modeling, High Performance Com-
puting, seismic effects modeling.

1 Introduction

Today the new knowledge retrieval in the area of technological risks
assessment and the creation of new technologies, services and prod-
ucts have directly related to the application of mathematical mod-
eling and use of multiprocessor computer systems. The creation of
high-performance computing environment and effective software appli-
cations are important scientific and practical results that allow high-
precision simulation and visualization of complex physical processes
and objects by mathematical modeling without full-scale experiments
[1]. It is fully applied to a wide range of problems of solid mechanics
with the influence of various physical effects and properties character-
istics of construction materials [2, 3, 4]. Modeling of such problems
is characterized by high demands to computing resources and requires
using of specialized HPC methods and technologies.

c©2014 by B. Rybakin, P. Bogatencov, G. Secrieru, E. Gutuleac
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2 Problem formulation and mathematical
model

The two-dimensional model of elastic-plastic medium has been cho-
sen to describe the behaviour of the structural material and explosive
substance (ES). The given model belongs to the class of models with
internal state parameters and bases on thermodynamic principles of
continuum mechanics. The equations of state of the medium allow
closing the system of determining equations of motion, then select the
numerical method for the developing of numerical solution algorithm.
The relevant equations of state have been chosen for description of
the structural material, explosive substance, detonation products and
ground [2, 4].

Seismic wave has generated as the function of pressure at the verti-
cal boundary of the computational domain: P (t) = (P0e

−αt+P0C)H(t),
where P0+P0C = P0S is peak impact pressure, P0C is constant pressure,
α is attenuation constant, H(t) is unit step function [4].

3 Numerical calculations and results

At the stage of computational experiment designing for solving such
problems it is necessary to specify the initial and boundary conditions,
as well as the values of various parameters and constants of materials
for realistic equations of state. At time t = 0 microseconds (µs) the
computational domain is a rectangular area in a two-dimensional La-
grangian coordinate system, where the initial state of relevant system
components is simulated. The projectile is modeled as aluminium con-
struction (width is R, length is 3R, wall thickness is R/10), filled with
explosive substance (TNT). In the end of the structure there is the
fuse (TNT with 4% higher sensitivity than the filler). The following
numerical values of the constants are used in the calculations:

structural parameters (aluminium) are ρ0 = 2.7g/cm3, µ0 =
0.276 Mbar, Y0 = 0.029 Mbar, Ymax = 0.068 Mbar, b = 3.0, n =
0.35, h = 0.62, k1 = 7.906 ·10−1, k2 = 1.325, k3 = 2.13, γ0 = 2.0, s =
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1.34, C = 0.525, β = 1.25 · 10−1;
explosive substance (TNT) parameters are ρ0 = 1.72 g/cm3, k =
0.123, n = 3.0, A = 0.0764, γ = 3.0.
The whole construction is surrounded by the water-saturated ground,
including 10% of air, 30% of water, 60% of quartz. Seismic parameters
are α = 0.02, P0C = 2.8 · 10−6 Mbar.

Two series of calculations for two values of the initial pressure
P0(17.0 · 10−4Mbar and 19.2 · 10−4Mbar) were conducted. The gen-
eral computation time was 180 µs. The plane wave from the verti-
cal boundary of the computational domain began propagation in time
t = 0 µs, reached the end of construction and partially reflected from
it. In both cases the shock wave came to the fuse in the same time
(t = 50 µs). The fuse did not blast out for the value of the initial
pressure P0 = 17.0 · 10−4Mbar, but it detonated in t = 51 µs for
P0 = 19.2 · 10−4Mbar). The numerical results show that minimum
pressure to initiate detonation of fuse is P = 0.0054 Mbar.

4 Conclusion

In the paper the examples of results of numerical calculations for solving
solid mechanics problems that consider physical effects and material
properties are presented. The numerical analysis shows that for the
given initial and boundary conditions projectile detonation primarily
depends on the initial pressure value in the seismic waves function. The
critical pressure to initiate fuse detonation is P = 0.0054 Mbar.

It should be noted that the proposed algorithm is quite effective
to be executed using HPC technology. Several international projects
contributed to the creation of the own high-performance computing
resources in Moldova. In particular, the computing clusters with par-
allel architecture were installed in the Moldova State University, and
in the Institute of Mathematics and Computer Science of the Academy
of Sciences of Moldova. Development of the HPC and distributed com-
puting infrastructure in Moldova at present is supported by European
Commission and by bilateral project STCU-ASM. Existing computer
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resources are used for testing technologies and development of parallel
applications of mathematical modeling, including modeling of seismic
effects on underground structures.
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Explicit Thermal Stresses Within a

Thermoelastic Half-Strip and Their Graphical

Presentation Using Maple – 15 Soft

Victor Şeremet, Ion Creţu, Dumitru Şeremet

Abstract

This article presents a closed form of new solution of a par-
ticular boundary value problem (BVP) of thermoelasticity for a
half-strip. The thermoelastic displacements and thermal stresses
are created by an interior temperature gradient given within a
rectangle of the thermoelastic half-strip. To solve this BVP we
use Maysel’s integral formula for thermoelastic displacements,
Duhamel-Neumann law for thermal stresses and the obtained be-
fore influence functions for volume dilatation Θ(i)(x, ξ); i = 1, 2.
Graphics of the derived in elementary functions thermal stresses
are plotted using soft Maple 15.

Keywords: Green’s functions, temperature gradient, ther-
mal stresses, volume dilatation.

1 Calculation of the thermal stresses σij

Suppose we want to determine the thermal stresses σij(ξ); i, j = 1, 2 in
the half-strip V ≡ (0 ≤ x1 < ∞, 0 ≤ x2 ≤ a2), caused by the follow-
ing interior temperature gradient ∆T (x) given within the rectangle
V p ≡ [a ≤ x1 ≤ b, c ≤ x2 ≤ d] ∈ V :

∆T (x) =





T0 = const., x ≡ (x1, x2) ∈ V p ∈ V,

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0;
0, x ≡ (x1, x2) ∈ Ω ≡ V \ V p.

(1)

c©2014 by V. Şeremet, I. Creţu, D. Şeremet
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at the homogeneous mechanical boundary conditions:

u1 = σ12 = 0; ξ1 = 0, 0 ≤ ξ2 ≤ a2;
σ22 = u1 = 0; ξ2 = 0, 0 ≤ ξ1 < ∞;
u2 = σ21 = 0; ξ2 = a2, 0 ≤ ξ1 < ∞.

(2)

To solve this BVP we have to use Maysel’s formula [2]:

ui(ξ) = γ

∫

V

∆T (x)Θ(i)(x, ξ)dx1dx2; i = 1, 2, (3)

where Θ(i)(x, ξ) are the influence functions of an inner unit point force
on the volume dilatation and γ = α(2µ + 3λ) is a thermoelastic con-
stant; α is coefficient of linear thermal expansion; λ, µ are Lame’s con-
stants of elasticity. Functions Θ(i)(x, ξ) were derived in the handbook
[1] (see problem 12.L. 8 and the answer to it).

So, Maysel’s formula (3) in our case can be rewritten as follows:

ui(ξ) = γT0

b∫

a

dx1

d∫

c

Θ(i)(x, ξ)dx2 =

= − γT0

4π(λ + 2µ)
∂

∂ξi

b∫

a

dx1

d∫

c

ln
ĒĒ1Ẽ2Ẽ12

ẼẼ1Ē2Ē12

dx2, (4)

where the functions Ē, Ē1, Ẽ2, Ẽ12, Ẽ, Ẽ1, Ē2, Ē12 are determined by
the expressions:

Ē = 1 + 2e(π/2a2)(x1−ξ1) cos(π/2a2)(x2 − ξ2) + e(π/a2)(x1−ξ1);
Ē1 = Ē(x;−ξ1, ξ2); Ē2 = Ē(x; ξ1,−ξ2); Ē12 = Ē(x;−ξ1,−ξ2);

Ẽ = 1− 2e(π/2a2)(x1−ξ1) cos(π/2a2)(x2 − ξ2) + e(π/a2)(x1−ξ1);

Ẽ1 = Ẽ(x;−ξ1, ξ2); Ẽ2 = Ẽ(x; ξ1,−ξ2); Ẽ12 = Ẽ(x;−ξ1,−ξ2).

Next, substituting in Duhamel-Neumann law [2]:

σij = µ(ui,j + uj,i) + δij(λuk,k − γT ); i, j = 1, 2, (5)
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Eq. (4) and taking the respective integrals, we obtain the final expres-
sions for thermal stresses:

σ11(ξ) =
µγT0

π(λ + 2µ)
F (ξ) +

{
−γT0; ξ ∈ V p

0, ξ ∈ Ω
; (6)

σ22(ξ) = − µγT0

π(λ + 2µ)
F (ξ) +

{
−γT0; ξ ∈ V p

0, ξ ∈ Ω
; (7)

σ12(ξ) = − µγT0

4π(λ + 2µ)
ln

ĒẼ1Ē2Ẽ12

ẼĒ1Ẽ2Ē12

∣∣∣∣∣
x2=d

x2=c

∣∣∣∣∣∣

x1=b

x1=a

. (8)

In Eqs. (6) and (7) the function F (ξ) is defined by the following
expression:

F (ξ) =
[
−f̄ + f̃1 + f̄2 − f̃12 − f̃ + f̄1 + f̃2 − f̄12

]x1=b;x2=d

x1=a;x2=c
, (9)

where the functions f̄ , f̃1, f̄2, f̃12, f̃ , f̄1, f̃2, f̄12 are determined as follows:

f̄ = arctan
e(π/2a2)(x1−ξ1) + cos(π/2a2)(x2 − ξ2)

sin(π/2a2)(x2 − ξ2)
;

f̄1 = f̄(x;−ξ1, ξ2); f̄2 = f̄(x; ξ1,−ξ2); f̄12 = f̄(x;−ξ1,−ξ2);

f̃ = arctan
e(π/2a2)(x1−ξ1) − cos(π/2a2)(x2 − ξ2)

sin(π/2a2)(x2 − ξ2)
;

f̃1 = f̃(x;−ξ1, ξ2); f̃2 = f̃(x; ξ1,−ξ2); f̃12 = f̃(x;−ξ1,−ξ2).

2 Graphical presentation of the thermal
stresses σij

Graphics of thermal stresses σ11, σ22, σ12 caused by the following in-
terior temperature gradient T0 = 50K given within the rectangle
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V p ≡ [6 ≤ x1 ≤ 10, 4 ≤ x2 ≤ 6] ∈ V were constructed at the follow-
ing values of elastic and thermal constants: Poisson ratio ν = 0.3, the
modulus of elasticity E = 2.1 · 105MPa and α = 1.2 · 10−5(K)−1.
The graphics constructed by using computer program Maple 15 are
presented in the Fig. 1.

Figure 1. Graphics of normal σ11, σ22 and tangential thermal stresses
σ12 (figures 1(a), 1(b)) and (figure 1(c))

3 Conclusion

Analyzing the graphics of the thermal stresses (see Fig. 1), it should
be noted that all boundary conditions are satisfied. Also, in the corner
points of the inner rectangle the thermal stresses have some jumps
(singularities).
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Email: ioncretu@mail.com

413



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

Queuing models in the port activity

Ionela Rodica Ţicu

Abstract

The methodological support of the research is based on some
concepts from the probability theory, queuing systems theory,
methods used in the theory of random processes used to get more
efficient the port activity.

Keywords: Polling systems, probability theory, mathemati-
cal model, random processes, port activity

1 Introduction

A class of models is represented by the priority queuing models, the
study of which is an important section of the theory of queuing sys-
tems that has developed intensively in recent years. In priority queu-
ing systems, the serving station often needs random time to change
the current orientation towards queues. Thus, a new class of queuing
systems called generalized systems appears; from mathematical point
of view, they are more advanced than the traditional models and more
appropriate to the real processes. The results obtained for generalized
models of priority queuing systems are extremely important both from
a theoretical and applicative point of view. These models play a crucial
role in the analysis and design of regional wireless broadband computer
networks.

2 Polling Systems

The Polling systems have been introduced in the early ’70s as time-
sharing models for computer systems.

c©2014 by I.R. Ţicu
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The Polling systems are queuing systems with a single server that
”scans” the various classes of requests (different queues of requests),
serving the requests of each class for a certain length of time, then
they reorient towards another class, doing so until the queue is empty,
or by another rule.

3 Polling Models

The Polling models are queuing models with a single node where there
are several waiting areas for different queues of messages, and a server
that serves each waiting queue based on a set rule (the so-called Polling
table). Queuing models with a single node are very important in the
queuing theory, as they offer very good prospects for the study of com-
plex queues with multiple nodes.

3.1 The General Type Polling Model

We shall consider the Polling queuing system with semi-Markov ex-
change. The mechanism of service is given by the Polling Table
f : {1, 2, k, n} → {1, 2, k, r}, where the function f indicates that in
the phase j, j = 1, n, user k, k = 1, r is served. The items (posts) of
user k arrive after the Poisson distribution law with the parameter λ̃k.
The serving time for the class item k is given by the random variable
Bk with the distribution function Bk(x) = P{Bk < x}.The guidance
duration from a user to user k is a random variable Bk(x) = P{Bk < x}
with the following distribution function Ck(x) = P{Ck < x}.

The main goal of studying the Polling system is to determine the
important characteristics of the system, for example: the busy period,
the probability of states, the queue length, etc. But not always analyt-
ical formulas can be directly used to determine these characteristics,
therefore, the development of new numerical methods and algorithms
based on these methods are very important.
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3.2 Research Methods and Algorithms of Polling sys-
tems

Currently, several methods are proposed for the research of Polling
systems. We shall briefly stop at some of them.

3.2.1 The method of semi-regenerate processes

The method of semi-regenerate processes was developed by the teach-
ers V. Rikov and Gh. Mishkcoy. This method supplemented by the
notion of generalized model allowed obtaining new analytical results
for a broad class of Polling models: models with nonzero exchange
(semi-Markov type) of states. A number of features were obtained, for
example: for k-busy period, the probabilities of states, the allocation
of the queue both for the stationary state and for the virtual state etc.

3.2.2 The averages method

The averages method is extensively described and is designed to calcu-
late the average length of the queues in an arbitrary time point from
systems, for which the average length of queues attendance, partic-
ularly in systems with M/G/1 cyclic survey and comprehensive and
access service can be obtained. Based on the average time of queue
attendance and of the average remaining value, the average number
of requests in the queues of systems is calculated, as solution of the
systems of linear equations. It is known that the averages method can
be extended for the following Polling systems: grouped Poisson flow
systems, systems with periodic survey, discrete-time systems, also the
application of the method to the approximate analysis of other Polling
models. The averages method is applied to calculate the approximate
average of the waiting time in systems with limited serving queues.
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4 Conclusion

In the theory of queuing systems, great attention is currently paid to
the development of numerical algorithms for finding basic probabilistic
characteristics of the investigated queuing systems. In order to numer-
ically solve one of these probabilistic features, numerical algorithms are
proposed in this paper and new results are presented; based on these
results, matrix algorithms are developed and justified in order to deter-
mine the distribution and the busy period in terms of Laplace-Stieltjes
transform, for Polling systems with semi-Markov delays, respectively
for generalized priority queuing systems.
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Iterative approach for solving fuzzy

multi-criteria transportation problem of

”bottleneck” type

Alexandra Tkacenko

Abstract

In the paper an iterative fuzzy programming approach is de-
veloped for solving the multi-objective transportation problem of
”bottleneck” type with some imprecise data. Minimizing itera-
tively the worst upper bound to obtain an efficient solution which
is close to the best lower bound for each objective function, we
find the set of efficient solutions for all time levels.

Keywords: fuzzy programming, fuzzy model, transportation
problem, efficient solution.

1 Introduction

It is well known, the increasing of criteria number and imposing of
minimal time to realize the model solution leads only to increasing of
solution accuracy for optimal decision making problems. There are
many efficient algorithms that solve such models with deterministic
data [2]. Since in real life, often some parameters are of fuzzy type, in
the proposed work this case is studied.

2 Problem formulation

Because in any optimization model, objective function coefficients have
the largest share in the objective function variations, we shall consider

c©2014 by A. Tkacenko

418



Iterative approach for solving fuzzy multi-criteria transportation ...

these of fuzzy type and develop the next multi- criteria transportation
problem of ”bottleneck” type with fuzzy costs coefficients:

minZ1 =
m∑

i=1

n∑

j=1

c̃1
ijxij minZ2 =

m∑

i=1

n∑

j=1

c̃2
ijxij

........

minZr =
m∑

i=1

n∑

j=1

c̃r
ijxij minZr+1 = max

i,j
{ ti,j |xi,j > 0} (1)

n∑

j=1

xij = ai, ∀i = 1,m,
m∑

i=1

xij = bj , ∀j = 1, n,

m∑

i=1

ai =
n∑

j=1

bj , xij ≥ 0 for all i and j,

where : c̃k
ij , k = 1, 2 . . . r, i = 1, 2, . . .m, j = 1, 2, . . . n are costs or other

amounts of fuzzy type, tij – necessary unit transportation time from
source i to destination j, ai – disposal at source i, bj – requirement of
destination j, xij – amount transported from source i to destination j.

In the model the criteria of maximum also may exist, which however
does not complicate it.

3 Theoretical analysis of fuzzy cost multi-
criteria transportation model

Since the parameters and coefficients of transportation multi-criteria
models have real practical significances such as unit prices, unit costs
and many other, all of them are interconnected with the same parame-
ter of variation, which can be calculated by applying various statistical
methods. We propose to calculate it using the following formula:

pk
ij =

ck
ij − ck

ij

c̄k
ij − ck

ij

, (2)
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where: ck
ij , c̄k

ij – are the limit values of variation interval for each cost
coefficient ck

ij , where: i = 1,m, j = 1, n, k = 1, r.
Agreeing to the formula (2), the parameters {pk

ij} can be consid-
ered as the probabilistic parameters of belonging for every value of
coefficients {ck

ij} from their corresponding variation intervals.
The main idea of the method that follows, is the simultaneously

and interconnected variation of objective functions coefficients. This
makes possible to reduce the model (1) to a set of deterministic models
that can be solved by applying the fuzzy techniques [1].

4 Some reasoning and algorithms

Seeing that the model (1) is of multi-criteria type, for its solving usu-
ally it builds a set of efficient solutions, known also as Pareto-optimal
solutions. Since solving model (1) involves its iterative reducing to
some deterministic we should propose firstly the following definitions.

Let us suppose that:
(
X̄, T̄

)
is one basic solution for the model (1),

where: T̄ =max
i,j

{t̄ij/x̄ij > 0} and X = {xij} , i = 1, m, j = 1, n is

one basic solution for the first r-criteria model (1).
Definition 1. The basic solution

(
X̄, T̄

)
of the model (1) is a basic

efficient one if and only if for any other basic solution (X, T ) 6= (
X̄, T̄

)
for which exists at least one index j1 ∈ (1, ...r) for which the relation
Zj1 (X) ≤ Zj1

(
X̄

)
is true, there immediately exists another, at least,

one index ∃j2 ∈ (1, ....r), where j2 6= j1, for which at least, one of the
both relations Zj2

(
X̄

)
< Zj2 (X) or T̄ < T is true. If all of these three

inequalities are verified simultaneously with the equal sign, it means
that the solution is not unique.

Definition 2. The basic solution
(
X̄, T̄

)
of the model (1) is one

of the optimal(best) compromise solution for a certain time T̄ , if the
solution X̄ is located closest to the optimal solutions of each criterion.

In order to solve deterministic model (1) we can use the fuzzy
technique [1] and iteratively solve the deterministic model (3) for the
best – Lk and the worst Uk values of k -criterion.
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Max λ in the same availability conditions as in (1) and:

m∑

i=1

n∑

j=1

ck
ijxij + λ · (Uk − Lk) ≤ Uk, k = 1, r, (3)

Applying iteratively the fuzzy technique for each increasing time
level, we could get the set of all its optimal compromise solutions.

5 Conclusions

By applying the hypothesis about the interconnection and similar varia-
tion of the model’s objective functions coefficients, we reduce the model
(1) to several models of deterministic type, each of which may be solved
using fuzzy technique.
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Optimal and Stackelberg controls of linear

discrete processes influenced by echoes

Valeriu Ungureanu, Dumitru Deveat̂ıi

Abstract

We develop mathematical models of Stackelberg control for
linear discrete-time processes influenced by echoes as the devel-
opment of Stackelberg control models and principles — particular
models and principles of the more general mathematical models
of Pareto-Nash-Stackelberg control introduced by V. Ungureanu
in [10]. Application of a straightforward method to solve inves-
tigated problems along with the Pontryagin’s principle produces
important theoretical and practical results. Software benchmarks
confirm and illustrate value of the results.

Keywords: linear discrete control problem, echo, Stackel-
berg control, Stackelberg equilibrium.

1 Introduction

Mathematical models of Stackelberg control are special models of con-
trol [10], which may be considered a particular case of more gen-
eral models of Pareto-Nash-Stackeberg control processes, based on
mixture of control and games of simultaneous and sequential types
[9, 10, 11, 6, 1, 8, 4, 5, 2]. A new kind of mathematical models appears
if the influence of the echoes of precedent stages phenomena occurs on
the system state and control. Such models need a definition of solution
concepts and the applying of straightforward principle or the maximum
principle of Pontryagin [6, 10] to obtain the solutions.
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2 Optimal control of linear discrete-time pro-
cesses with periodic echoes

Let us consider a dynamic system with a state evolution and control
described (governed) by the following mathematical model:

f(x, u) =
T∑

t=1

(ctxt + btut) → max,

xt =
{

At−1xt−1 + Btut, t /∈ [kτ, kτ + ω) ,
At−1xt−1 + Btut + Ct−γut−γ , t ∈ [kτ, kτ + ω) ,

Dtut ≤ dt,
t = 1, ..., T,

k = 1, 2, ...,
⌊

T
τ

⌋
,

(1)

where x0, xt ∈ Rn, ut ∈ Rm, ct ∈ Rn, bt ∈ Rm, At−1 ∈ Rn×n, Bt ∈
Rn×m, dt ∈ Rk, Dt ∈ Rk×n, t = 1, ..., T. Evolution parameters are fixed
and have obvious interpretation: τ ∈ N is a time period with which
echo start to be active and to influence on system, ω ∈ N is a length
of time interval for which echo is active, γ ∈ N is the length of time
between control applying and its echo producing. Some controls may
not have echoes. Without loss of generality, we can assume that γ, ω ≤
τ . Evidently, x0 is the initial state, x = (x0, ..., xT ) is the system’s
trajectory, u = (u1, ..., uT ) forms the system’s trajectory control.

Theorem 2.1. Let (1) be solvable. The control ū1, ū2, ..., ūT , is optimal
if and only if ūt is the solution of linear programming problem

ψt(ut) → max,
Dtut ≤ dt,

for t = 1, ..., T, where ψt(ut) is a linear function on ut obtained by
direct/forward substitution in (1).
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3 Stackelberg control of linear discrete-time
processes influenced by periodic echoes

Let us modify (1) by considering a dynamic system with a state evo-
lution and Stackelberg control described (governed) by the following
mathematical model [10]:

ft(x, ut) =
T∑

t=1

(ctxt + btut) → max,

xt =
{

At−1xt−1 + Btut, t /∈ [kτ, kτ + ω) ,
At−1xt−1 + Btut + Ct−γut−γ , t ∈ [kτ, kτ + ω) ,

Dtut ≤ dt,
t = 1, ..., T,

k = 1, 2, ...,
⌊

T
τ

⌋
,

(2)

where ft(x, ut) is the gain function of the tth player. At every stage t
the player t mooves.

Theorem 3.1. Let (2) be solvable. The control ū1, ū2, ..., ūT , is optimal
if and only if ūt is the solution of linear programming problem

ft(ut) → max,
Dtut ≤ dt,

for t = 1, ..., T, where ft(ut) is a linear function on ut obtained by
direct/forward substitution in (2).

4 Conclusion

We present seminal results from a more large work dedicated to PNS
control processes with echoes which will follow soon.

References

[1] R. Bellman. Dynamic Programming, Princeton, New Jersey,
Princeton University Press, 1957.

424



Optimal and Stackelberg controls of linear discrete processes...

[2] G. Leitmann. On Generalized Stackelberg Strategies, Journal of
Optimization Theory and Applications, Vol. 26, 1978, pp. 637–
648.

[3] R.E. Moore. Interval Analysis, Englewood Cliff, New Jersey:
Prentice-Hall, 1966.

[4] J.F. Nash. Noncooperative game, Annals of Mathematics, Volume
54, 1951, 280-295.

[5] J. Neumann, O. Morgenstern. Theory of Games and Economic
Behavior, Annals Princeton University Press, Princeton, NJ, 1944,
2nd ed. 1947.

[6] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F.
Mishchenko. Mathematical theory of optimal processes, Moscow,
Nauka, 1961 (in Russian).

[7] T. Rockafellar. Convex Analysis, Princeton University Press, 1970.

[8] H. Stackelberg. Marktform und Gleichgewicht (Market Structure
and Equilibrium), Springer Verlag, Vienna, 1934.

[9] V. Ungureanu. Solution principles for simultaneous and sequential
games mixture, ROMAI J., 4, 1(2008), pp. 225–242.

[10] V. Ungureanu. Linear discrete-time Pareto-Nash-Stackelberg con-
trol problem and principles for its solving, Computer Science Jour-
nal of Moldova, 2013, Vol. 21, No. 1 (61), pp. 65–85.

[11] V. Ungureanu, V. Lozan. Linear discrete-time set-valued Pareto-
Nash-Stackelberg control processes and their principles, ROMAI
J., 9, 1(2013), 185-198.

Valeriu Ungureanu1, Dumitru Deveat̂ıi2

1State University of Moldova Email: v.ungureanu@ymail.com

2State University of Moldova Email: dimadeveatii@gmail.com

425



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

A Hierarchical Approach to Multicriteria

Problems

Albert Voronin, Yuriy Ziatdinov

Abstract

It is shown, that any multicriteria problem can be represented
by a hierarchical system of criteria. Individual properties of the
object (alternative) are evaluated at the bottom level of the sys-
tem, using a criteria vector; and a composition mechanism is used
to evaluate the object as a whole at the top level. The problem
is solved by the method of nested scalar convolutions of vector-
valued criteria. The methodology of the problem solving is based
on the complementarity principle by N. Bohr and the theorem of
incompleteness by K. Gödel.

Keywords: hierarchical structure; nested scalar convolu-
tions; multicriteria approach; decomposition; composition.

1 Problem Description

The problem of decision making in general view can be represented by
the scheme

{{x}, Y } → x∗,

where {x} is a set of objects (alternatives); Y is the function of choice
(rule establishing a prefer ability on a set of alternatives); x∗ is the
chosen alternatives (one or more).

The functionY is used to solve the problem of analysis and evalua-
tion of alternatives.On results of estimation the choice of one or a few
best alternatives from the given set follows. In decision theory, there are
two different approaches to evaluating objects (alternatives) subject to

c©2014 by A. Voronin, Y. Ziatdinov
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choice. One of them is to evaluate an object as a whole and to choose
an alternative by comparing objects as gestalts (holistic images of ob-
jects without detailing their properties). The second approach is de-
tailed elaboration and assessment of various object vectors of properties
and making decisions after comparing these properties. If a holistic ap-
proach implies choosing x∗ directly using choice functionY , the vector
approach requires a mechanism to carry out decomposition ofY into a
set (vector) of the choice functions y. By decomposition of the choice
function Y is understood its equivalent representation by a certain set
of other functions y which composition is the initial choice function Y .

Separation of properties of alternatives on the basis of the analysis
is the decomposition leading to the hierarchical structure of properties.

Properties, for which there exist objective numerical characteristics,
are called criteria. The approach of comparison on separate properties,
at all its attraction, derivates a serious problem of return transition to
required comparison of alternatives as a whole.

2 Statement of the problem

Quality of an alternative is determined by hierarchical system of vectors

y(j−1) = {y(j−1)
i }n(j−1)

i=1 , j ∈ [2,m],

where y(j−1) is the vector of criteria on the (j−1)-th level of the hierar-
chy, by the components of which the quality of properties of alternatives
for the j-th level is assessed; m is the amount of levels of the hierarchy;
n(j−1) is the amount of estimated properties on (j − 1)-th level of the
hierarchy. The numerical values of n criteria y(1) = y of the first level
of the hierarchy for the alternative are given.

The same criterion on (j − 1)-th level can participate in the evalu-
ation of several properties of the j-th level, i.e. possible cross-links in

the hierarchy. It is clear that n(1) =
n1∑
i=1

ri = n and n(m) = 1.

Importance (significance) of each of the components of the criterion
of (j − 1)-th level in the evaluation of properties of k-th level is char-
acterized by a property coefficient of the priority, their set forming the
priority vectors system
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p
(j−1)
ik = {p(j−1)

ik }n(j)

k=1, j ∈ [2,m].

It is required to find an analytical evaluation y∗ and qualitative
evaluation of the effectiveness of this given alternative, and from the
alternatives available to choose the best.

3 The method of solution
At the study, the approach is used consisting in the creation and si-
multaneous co-existence of not one but many theoretical models of
the same phenomenon, and some of them conceptually contradict each
other. However, no one can be neglected, as each describes a property
of the phenomenon and none can be taken as a single because it does
not express the full range of its properties. Compare the said with the
principle of complementarity, introduced into science by Niles Bohr:“...
To reproduce the integrity of the phenomenon should be used mutually
exclusive ‘complementary’ classes of concepts, each of which can be used
in its own, special conditions, but only when taken together, exhaust the
definable information.” It is the principle of complementarity that al-
lows for separating and then linking these criteria in multicriteria eval-
uation.Only a full set of individual criteria (vector criterion) enables
an adequate assessment of the functioning of a complex system as a
manifestation of the contradictory unity of all its properties.

However, this possibility represents only necessary but not sufficient
condition for the vector evaluation of the entire alternative as a whole.

For a complete evaluation it is necessary to go out from the lower
level of the hierarchy and to rise on the following tier, i.e. to carry
out an act of criteria composition. Let’s compare this with the in-
completeness theorem of Kurt Gödel “... In every complex enough not
contradictory theory of the first order there is a statement, which by
means of the theory is impossible neither to prove, nor to deny. But
the self-consistency of a particular theory can be established by means
of another, more powerful formal theory of the second order. But then
the question of the self-consistency of this second theory arises, and so
forth.” We can say that Gödel’s theorem is a methodological basis for
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the study of hierarchical structures.
With reference to our problem it means that for an adequate es-

timation of an alternative as a whole we should solve a task of the
criteria composition on levels of hierarchy, consecutively passing from
the bottom level up to top.

A scalar convolution of criteria can serve as a tool for the act of com-
position. The scalar convolution – it is a mathematical technique for data
compressing and quantifying its integral properties by a single number.

A scalar convolution on nonlinear compromise scheme for the
criteria subject to be minimized is proposed

Y [y(x)] =
s∑

k=1

αkAk [Ak − yk (x)]−1,

applied in cases where the decision-maker considers as the preferred
those solutions in which the values of individual criteria yk(x) are far-
thest from their limit values, Ak. This convolution has a number of essen-
tial advantages, which include flexibility, universality and analyticity.

The choice of a compromises scheme is made by the DM and appears
as explicitly conceptual.

4 Nested scalar convolutions

It is proposed for analytical evaluation of hierarchical structures to
apply a method of nested scalar convolutions. The composition is per-
formed on the “matryoshka principle”: the scalar convolutions of the
weighted components of vector criteria of lower level serve as the com-
ponents of the vectors of higher level criteria. Scalar convolution of
criteria obtained at the uppermost level is automatically considered as
the expression for the analytical evaluation of effectiveness of the entire
hierarchical system.

The algorithm for nested scalar convolutions is represented by an
iterative sequence of operations of the weighed scalar convolutions of
criteria for each level of the hierarchy from the bottom up, taking into
account the priority vectors, based on the selected compromise scheme

{(y(j−1) , p(j−1)) → y(j)}j∈[2,m] (1)
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and the searching and evaluating of effectiveness of the entire hierarchical
system (alternative) as awhole is expressed by the problem of determi-
ning the scalar convolution of criteria on the top level of the hierarchy:

y∗ = y(m).

Whenusing the recurrent formula (1) important is the rational choice of
the compromise scheme. For the method of nested scalar convo-
lutions the adequate is a nonlinear compromise scheme. It is established
that, without loss of generality, a premise for its use is that all the partial
criteriawere non-negative, were subject to minimization andwere limited:

0 ≤ yi ≤ Ai, A = {Ai}n
i=1,

where A is the vector of restrictions on the criteria of the current level
of the hierarchy; n is the amount of them.

Proceeding from (1) the expression to evaluate k-th property of an
alternative for the j-th level of the hierarchy by using the nonlinear
compromise scheme looks like

y
(j)
k =

n
(j−1)
k∑

i=1

p
(j−1)
ik [1− y

(j−1)
0ik ]−1, k ∈ [1, n(j)], (2)

where criteria of the (j− 1)-th level are normalized (reduced to unity).
Thus, y

(j−1)
0ik are the normalized vector’s y

(j−1)
0 components involved in

the evaluation of properties of the k-th alternative on the j-th level of
the hierarchy; n

(j−1)
k is their amount; n(j) is the amount of evaluated

properties of the j-th level.
The structure of the nonlinear compromise scheme enables normal-

izing the convolution (2) not to the maximum (which in this case is
difficult), but to the minimum value of criteria convolution. Indeed,
the ideal values for the criteria that are subject to be minimized are
their zero points. Putting in (2)

y
(j−1)
0ik = 0, ∀i ∈ [1, n(j−1)

k ]
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and taking into account the normalization
n∑

i=1
pi = 1, we obtain

y
(j)
k min = 1. After calculations, the final expression for the recurrent

formula for calculating analytical assessments of the alternatives prop-
erties at all levels of the hierarchy becomes

y
(j)
0k = 1− {

n
(j−1)
k∑

i=1

p
(j−1)
ik [1− y

(j−1)
0ik ]−1}−1, k ∈ [1, n(j)], j ∈ [2,m]. (3)

5 Conclusion

The foregoing leads to the conclusion that any problem of vector assess-
ment of an alternative can be represented by a hierarchical system of
criteria, resulting from the decomposition of an alternative properties.
The lower level of the hierarchy is an object (alternative) assessment on
selected properties, using initial criteria vector, and the upper level is
obtained through the mechanism of the composition as a whole object
evaluation. Central here is the problem of the composition of criteria
for levels of the hierarchy to be solved by the method of nested scalar
convolutions.

The methodological basis of an alternative properties decomposi-
tion to obtain the initial criteria vector is the Bohr’s principle of com-
plementarity. This is a necessary condition for vector estimation of
alternatives.

The methodology of a criteria composition for levels of the hierarchy
is based on the Gödel’s theorem of incompleteness. This is a sufficient
condition for vector estimation of alternatives.

We dare to say that above inferences about notions of criteria de-
composition and composition can be extended on the more general
notions of analysis and synthesis.

Albert Voronin, Yuriy Ziatdinov

National Aviation University, Kiev, Ukraine Email: alnv@voliacable.com
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Optimization problems on graphs

and transport networks

Dumitru Zambitchi

Abstract

This paper examines the problems of determining the center,
the main center, the absolute main center on undirected graphs
and proposes the efficient algorithms to solve them.

Keywords: main center, absolute main center, median

1 Introduction

The necessity to determinate the location of service points in practical
problems, on transport networks, appears in order to minimize the
travel time to the farthest point (consumer), taking into account the
frequency displacements at each point, too.

The problems of determining the location points on the transmis-
sion network of the producers (deposits), so that transport costs related
to satisfying consumers to be minimal, are another type of problems.

Effective algorithms have been developed to solve such problems in
different metric spaces and transport networks.

2 The problems of absolute center and median on numerical
axis

Consider m points on numeric axis with coordinates a1 < a2 < . . . <
am. Let us associate with every point i a number (frequency) pi =
p (ai) > 0, i = 1 ; m. Consider functions F1 (x) = max

1≤i≤m
{pi · |x− ai|}

and F2 (x) =
m∑

i=1
p (ai)· |x− ai| . The absolute center for this system of

points is the point x∗1, for which: F1 (x∗1) = min
x

max
1≤i≤m

{pi · |x− ai|}.

c©2014 by D. Zambitchi
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The convexity of functions fi (x) = pi · |x− ai| , i = 1 ; m,
implies the convexity of F (x) = max

1≤i≤m
fi (x). So, the local minimum

of this function is global minimum, too. Different methods, based on
this property, are proposed for determining the absolute center of this
system of points on numeric axis.

The median of a system of points of numeric axis is the point x∗2,

for which: F2 (x∗2) = min
x

m∑
i=1

p (ai) · |x− ai| .
The function F2 (x) , for p (ai) > 0 , i = 1 ; m, as the finite sum

of convex functions, is a convex function and its local minimums are
global, too.

The function F2 (x) has a minimum in x∗2 = aq, if the inequality
q−1∑
i=1

p (ai) ≤ 1
2
Q ≤

q∑
i=1

p (ai) holds, where Q =
m∑

i=1
p (ai).

This inequality constitutes the basis of the algorithm for determin-
ing x∗2. The point x∗2 is named median, too, because this problem is
related to median problem of statistic series.

3 The problems of absolute center and median in R2
1

Consider m points Mi (ai , bi) , i = 1 ; m in space R2
1. Let us associate

with every point Mi (ai , bi) a number (frequency) pi = p (Mi) > 0.
The distance between two points M (x, y) and Mi (ai, bi) in R2

1 is
defined: d (M ; Mi) = |x− ai|+ |y − bi| , i = 1 ; m.

Consider the functions: ϕ1 (x, y) = max
1≤i≤m

fi (x, y), where fi (x, y) =

pi · (|x− ai|+ |y − bi|) and ϕ2 (x, y) =
m∑

i=1
pi · (|x− ai|+ |y − bi|) .

The problem of absolute center needs to determine a point P ∗
1 (x∗, y∗)

for which: ϕ1 (x∗, y∗) = min
(x,y)

max
1≤i≤m

{pi · (|x− ai|+ |y − bi|)} .

The function ϕ1 (x , y) is convex and its local minimums are global,
too. An efficient algorithm is proposed for determining the absolute
center in R2

1.
The median problem needs to determine a point P ∗

2 (x∗, y∗) for

which: ϕ2 (x∗, y∗) = min
(x, y)

m∑
i=1

pi · (|x− ai|+ |y − bi|) .
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The median location problem in R2
1 may be solved by reducing it

to two problems on respective axis.

The median problem in metric space Rn
1 with norm ‖X‖ =

n∑
i=1

∣∣x(i)
∣∣

is examined, too. It’s reduced to n problems on respective axis, too.

4 The problems of absolute center and median R2∞
The distance between two points M (x, y) and Mi (ai, bi) in metric space
R2∞ is defined by: d (M ; Mi) = max {|x− ai| ; |y − bi|} , i = 1;m.

We prove that the problem of absolute center and median determi-
nation in R2∞ with coordinates axes xOy are reduced to problems of
absolute center and median determination in R2

1 with coordinates axes
ξ1O ξ2, obtained by xOy rotation on 45◦.

5 The problems of absolute center, main center, main abso-
lute center and median on undirected graphs

Consider undirected graph G = (V, U), where V = (v1, v2, . . . , vn) is
the set of vertices, U = (u1, u2, . . . , um) is the set of edges. Let us
associate with every vertex vi a number (frequency) pi = p (vi) > 0,
and with every edge uk – a length l (uk).

The problem of absolute center on graphs needs to determine the
point x∗ on edges of G, for which: ψ1 (x∗) = min

x
max
1≤i≤n

{pi · d (x , vi )},
where d (x , vi ) is the minimal distance from the point x on edge to
vertex vi.

The absolute center on undirected graphs is determined by different
methods, such as Hachimi method and iterative method.

The problem of main center on undirected graphs needs to deter-
mine a vertex vi∗ , for which: ψ2 (vi∗) = min

x
max
1≤i≤n

{p (uk) · d (vi , uk)}
where p (uk) is the frequency on edge uk = (vr , vs), and

d (vi , uk) =
d (vi , vr) + d (vi , vs) + l (vr , vs)

2
.

The main absolute center method is related to the absolute center
method with a unique distinction as in first problem the distance point-
vertex is applied, and in a second problem – point-edge distance is
applied.
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The median problem on graphs consists in determination of points

x∗ on graph G edges, for which: ψ3 (x∗) = min
x

n∑
i=1

pi · d (x , vi ).

An efficient algorithm is proposed for solving the problem on tree
(undirected connected graph without cycles).

6 The Weber problem on spaces R2
1, R2∞, Rn

1 and on tree
The optimization practical problems solving on plane needs the mini-
mization of the sum of weighted distances between points, where the
manufacturers Xi , i = 1,M will be located and between these points
and Aj , j = 1, N , where the consumers are located, already.

A model of this type is the Weber problem, which needs to minimize
the function

F (X1, X2, . . . , XM ) =
M∑
i=1

N∑
j=1

αijd (Xi, Aj) +
M−1∑
i=1

M∑
k=i+1

βikd (Xi, Xk) ,

where αij and βik are positive numbers, d (Xi , Aj) and d (Xi , Xk) are
distances between respective points.

It is proved that the Weber problem solving in R2
1 is reduced to two

respective problems on each coordinate axes. Every such problem on
axes needs to solve no more than N − 1 problems of maximal flow de-
termination (a minimal section) in a network with M +2 vertices. The
Weber problem in R2∞ with coordinate axes xOy is reduced to Weber
problem in R2

1 with coordinate system ξ1O ξ2, which are obtained from
xOy by 45◦ rotation.

The Weber problem is considered in the metric space Rn
1 , too. It’s

proved that the solution of such problem in the metric space Rn
1 needs

the solution of n problems on the axis with respective coordinates.
The Weber problem on graphs has its interesting features. The

consumers Aj , j = 1 , N and manufactures Xi , i = 1 , M are located
on G = (V, U) vertices. An efficient algorithm for Weber problem
solving on tree is constructed. The complexity of such algorithm is
about O

(
n ·M3

)
.
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An Approach to Implementation of Hybrid

Computational Paradigm ∗

Artiom Alhazov, Lyudmila Burtseva, Svetlana Cojocaru,
Alexandru Colesnicov, Ludmila Malahov

Abstract

We present recent advances on hybrid computations within
the P systems framework with quantum functionalities. This
model benefits from both biomolecular and quantum paradigms
and is supposed to overcome some of their inherent limitations.
Keywords: Computational models, Parallelism and concur-
rency, Quantum computing, Biomolecular computing, P systems

Introduction In computability theory, a model defines feasible com-
putational operations with their execution time/space. This research
concerns the capability of membrane computing, see [5], to provide the
hybrid computing framework, enhanced with quantum functionality.

Among unconventional computing paradigms quantum and biolog-
ical ones were developed mostly in parallel; both are considered as
tools for solving hard tasks. However, some hard tasks could not be
efficiently solved by pure quantum or bioinspired methods, so efficient
solutions are searched in the hybrid model. We propose hybrid com-
putations, where classical P system formalism serves as the framework
providing computations by elements of other models and communica-
tions between them. Only classical scheme of quantum device, see [10],
is used for representation of quantum functionality incorporated in the
proposed hybrid. At the current stage, each problem solving employs
particular computation methods in the quantum part of hybrid model.
The main components of hybrid (P system with quantum functionality)

c©2014 by A. Alhazov et al.
∗Acklowledging project STCU5384 by the Science andTechnologyCenter inUkraine.
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computing model (HpqCM) are P system and quantum computation
parts and their intercommunication, implemented by P system objects
mapped to the base states of each initial and resulting qubit of the
quantum device. The appearance of such objects starts the quantum
computation. Based on implemented solutions of several problems, we
extract the common feature of the hybrid computation: solution has to
be based on generating of candidates lists, which are used for compar-
ison to pattern, e.g., applying Grover search, in the quantum device.

Membrane Level of the Hybrid Model Three problems were
solved in the hybrid framework, using, respectively, 1) transitional P
systems with inhibitors, 2) tissue P systems with symport/antiport,
and 3) P systems with active membranes. Lacking space, we only
illustrate the kinds of rules allowed by these models. 1) Rewrite a in
region i to u if inhibitor b is absent. 2) Move multiset u from region i
to region j and multiset v from region j to region i. 3) Evolution (a),
send-in (b), send-out (c), dissolution (d), division (e).

1) a → u|¬b ∈ Ri, a, b ∈ O, u ∈ (O × Tar)∗,
2) (i, u/v, j), i, j ∈ H ∪ {0}, u, v ∈ O∗,
3(a) [ a → u ]eh, a ∈ O, u ∈ O∗, h ∈ H, e ∈ E,

3(b) a[ ]eh → [ b ]e
′

h , a, b ∈ O, h ∈ H, e, e′ ∈ E,

3(c) [ a ]eh → [ ]e
′

h b, a, b ∈ O, h ∈ H, e, e′ ∈ E,
3(d) [ a ]eh → b, a, b ∈ O, h ∈ H, e ∈ E,

3(e) [ a ]eh → [ b ]e
′

h [ c ]e
′′

h , a, b, c ∈ O, h ∈ H, e, e′, e′′ ∈ E.

Membrane ↔ Quantum Communication We discuss the inter-
action between the biological sub-system and the quantum one(s). The
tuple β = (Π, T, T ′,HQ, QN , QM , Inp, Outp, t, qh1 , · · · , qhm) defines the
hybrid system, where Π is a P system, HQ = {h1, · · · , hm} is a subset
of membrane labels in Π used for quantum calculations, T is a trigger
and T ′ is the signal on obtaining the quantum result. For labels in
QH , the quantum sub-systems are qh1 , · · · , qhm . The rest of the tuple
components of β specify the interaction between Π and qhj , 1 ≤ j ≤ m.
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The input size for quantum systems is QN : HQ → N qubits. The
output size is QM : HQ → N bits. Function t defines the timing: t(hj)
is the number of membrane steps for the quantum calculation in device
qhj

, currently proposed to be 3 (initialize, transform, measure).
For the behavior of β to be well-defined (even for the situations

not used in our constructions), we introduce the trigger-object T ∈ O,
where O is the alphabet of Π. The work of a quantum sub-system of
type qhj starts when T appears in that membrane. The quantum state
is initialized by objects from Inp(hj) = {Ok,hj ,b | 1 ≤ k ≤ QN (hj), b ∈
{0, 1}} ∪ {T}, so Inp : HQ → 2O is a function describing the input
sub-alphabet for each quantum sub-system type, object Ok,hj ,b initial-
izing input qubit k by value b. Value |0〉 is assumed if qubit k is not
initialized. For multiple objects, say, (Ok,hj ,0)s(Ok,hj ,1)t, qubit k is set
to state s|0〉+t|1〉√

s2+t2
. The technique is restricted to non-entangled states.

We assume the input objects wait until the trigger appears.
The output of quantum sub-systems is returned to the P system as

objects from Outp(hj) = {Rk,hj ,b | 1 ≤ k ≤ QM (hj), b ∈ {0, 1}}∪{T ′},
object Rk,hj ,b meaning the output bit k is b. One-bit output is often
denoted by yes and no.

Problems Solved A well-known satisfiablily problem, SAT, is
solved in [8] by a transitional P system with inhibitors, and a quantum
sub-system doing Grover search. P system is given the input objects
coding occurrences of variables in clauses; it takes 3 steps to find vari-
ables missing in clauses, codes all in bits and calls the quantum system.

Image retrieval problem is solved in [8] by tissue P systems with
symport/antiport.

Finding the longest common subsequence (NP-complete) is
solved in [7] by P systems with active membranes and quantum sub-
systems. The P system performs division to consider possible subse-
quences of the first string, counts their lengths, builds the actual sub-
sequences, and calls the quantum sub-systems to check whether such
sub-sequences are found in other input strings; the search is done in
longer-first order.
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Conclusions We summarize advances of hybrid model of membrane
computing framework with other (now, quantum) approaches.

Hybrid character of computation is provided by mutual accepting
of input/output by computation models of different nature and even
macro/micro levels. P system formalism as the framework provides
procedure of converting multisets to quantum registers contents and
back. The returned registers content is prepared by measurement that
is final step of quantum computation.

Since the main reason of hybrid model was practical needs of several
domains delivering hard tasks, we tested our approach on problems
of different range: from theoretical computing to everyday practical
application. Besides being a testbed the sample problems solutions
enrich hybrid computational model with new features and methods.
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Just In Time Platform for weather forecast
and agrimarketing information and insurance

for Moldavian farmers

Ion Amarfii, Anatolie Fala, Sergiu Gafton

Abstract

The work deals with a subject characteristic for a rapid in-
formation dissemination process for specific segments of benefi-
ciaries. Because of the need of rapid informing of farmers about
agricultural sector threats, predicting hydro-weather phenomena
and agricultural market situation in Moldova, there was devel-
oped a software solution able to strengthen data collection using
automatic strategies, automated and manual, in order to rapidly
inform farmers.

Keywords: GSM, ATMOS-AMIS, SMS, IVR, Just In Time
Platform, Performing Agriculture, integration

1 Introduction

Recently appeared solutions, based on monitoring the evolution of
weather systems via satellite, radar and weather stations integrated
with specialized programs, allow one to forecast, anticipate and miti-
gate potential risks from natural hazards.

At the same time rapid development of communication technologies,
particularly global computer networks and cell phones, boosted creation
of effective channels for rapid dissemination of information. It is obvious
that agriculture is a sector sensitive to weather developments and it
would be imperative to develop solutions capable of providing timely

c©2014 by I. Amarfii et al.
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information to farmers on specific measures to prevent, mitigate and
overcome the negative effects of natural disasters.

For this purpose ATMOS-AMIS platform provides an operative tool
for rapid dissemination of critical weather information and agro-related
information for a large number of farmers and rural communities in the
Republic of Moldova.

2 Problem formulation
Severe damage of the agricultural sector by natural hazards in recent
decades imposed the necessity of development and implementation of an
information system in disaster management and climate risks, enabling
timely information for producers and rural entrepreneurs in order to
reduce the effects of phenomena generating risk in agriculture.

In response to these challenges, at the initiative of the Ministry
of Agriculture and Food Industry of Moldova within the World Bank
Management Disaster and Climate Risk Project implemented under the
agreement signed between the Government of Moldova and the Interna-
tional Development Association of World Bank, there was created the
ATMOS Platform, management being ensured by the National Agency
for Rural Development (ACSA).

3 ATMOS-AMIS Architecture
As it is shown in Figure 1 ATMOS-AMIS IT solution involves the in-
teraction of a number of subsystems for the implementation of the ob-
jectives.

In particular it is the interaction of the following components:

• ATMOS – represents the Alert Through Mobile Service platform
that is ensuring issuance and the sending of SMS;

• AMIS – Agricultural Marketing Information System that pro-
vides all marketing information for SMS and Newsletters;

• IVR – Interactive Voice Response, that processes ad hoc requests
for information seekers;
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Figure 1. ATMOS-AMIS Architecture

• www.acsa.md – ACSA web site that generates and sends
Newsletter’s;

• SHS – computer system of the State Hydrometeorological Service
providing weather forecasts and alerts.

• Emotion Trading – computerized system of the integrator
which ensures sending of SMS to Moldcell Unite subscribers;

• InterMobCom – computerized system of the integrator which
ensures sending of SMS to Orange subscribers;
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• Smartphone Application – information system designed for
ACSA operators for instant collecting of agricultural prices from
Moldovan markets.

At the basis of the information solution the SOA architecture stands so
that the interaction of these components is done through Web services
presented in Figure 1.

Therefore, although each computer subsystem operates and is ad-
ministered relatively independently, through these services, all the de-
scribed subsystems interact in order to implement the objectives of the
ATMOS-AMIS operation.

4 The basic functionalities of the information
system

To ensure functional objectives of ATMOS-AMIS platform 9 categories
of functionality available for different categories of information system
users have been implemented:

• Issuing and sending SMS messages automatically. Repre-
sents all functionalities for perfecting and automatic sending of
SMS messages with alerts, weather and marketing information as
requested.

• Processing untyped requests or erroneous SMS requests.
Represents all functionalities for manual processing of untyped
requests (which is not provided for automatic processing) or of
the erroneous SMS (which cannot be processed automatically)
received from customers or internet visitors.

• Managing subscribers. Represents all the functionalities for
creating customer profiles to ensure their access to the system.

• Interaction via IVR messages. Is an interactive mechanism
of interaction with information seekers regarding their delivery of
information required by an interactive audio menu application.

• Sending NewsLetter. Represents all functionalities designed
for content generation and automatic dispatch of newsletters to
ATMOS-AMIS subscribers.
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• Strengthen Knowledge Database. Represents flow used to
complement the contents of a Knowledge Database designed for
agricultural production processes.

• Payment processing. Represents all the functionalities for pro-
cessing payments made by customers to determine the period of
validity or automatic blocking access when subscription has ex-
pired.

• Data Aggregation. Represents all the functions designed for
extracting aggregate reports for operating ATMOS-AMIS used
to analyze market potential, agriculture information system audit
and supervision activities of subordinates.

• Exploring ATMOS-AMIS public resources. Represents all
functionality designed for Internet users regarding access to pub-
lic information related to ATMOS-AMIS available on the site
http://www.acsa.md.

5 ATMOS-AMIS development perspectives

Architecture based on which the ATMOS-AMIS platform is carried,
permits adding new information subsystems for widening its spectrum
of action.

In particular it is considered appropriate the integration with
systems of Service of Civil Protection and Emergency Situations of
Moldova (for automatic data taking over for natural disasters and
techno genic alerts) and National Agency for Food Safety of Moldova
(for automatic data taking over for alerts on plant pests and diseases).

Also service packages offered to customers must be diversified in
order to increase the number of subscribers, which will allow the ac-
cumulation of funds for the operation and further development of the
platform.
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6 Conclusion
ATMOS-AMIS currently has 1150 subscribers for SMS / Newsletter,
over 38 800 customers that access Internet services and more than
1000 unique daily visits of users from Republic of Moldova, Romania,
Ukraine, Russia and the European Union.

From the development, launching and operational development pe-
riod ATMOS-AMIS has:

• dispatched 101,5 thousand SMS with weather forecast, 35,9 thou-
sand SMS with prices, 66,2 thousand SMS with hydrological
alerts, 95,9 thousand SMS with weather alerts and 11,3 thousand
SMS with environmental quality alerts;

• dispatched 92,6 thousand News Letters, for 775 ATMOS-AMIS
subscribers having the placement of 1560 pieces of information
and news, 580 offers and requests of commercialization/purchase
of agricultural products and production means;

Since December 2013, ATMOS-AMIS in partnership with the com-
panies ТОВ “Фруктовий Проект” in Ukraine and DLV Plant from the
Netherlands has started a weekly survey of the fresh apple market from
Ukraine, Moldova, Poland, Germany, Italy, Russia and the Netherlands
markets, for ATMOS-AMIS subscribers: National Extension Service of
Moldova, Ministry of Agriculture and Food Industry an Association of
Producers and Exporters of Fruits fromMoldova. Apples is the most ex-
ported horticultural product, annual exports from Moldova being over
140 000 tones.
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Approaches to the ontology alignement and

identity resolution problems

Zinaida Apanovich, Alexander Marchuk

Abstract

This paper describes approaches to the vocabulary normal-
ization and identity resolution problems arising during the use of
the LOD datasets to enrich the content of scientific knowledge
bases. The dataset of the Open Archive of the Russian Academy
of Sciences, and several bibliographic datasets are used as test
examples.

Keywords: Linked Open Data, ontology, identity resolution

1 Introduction

One of the projects carried out at the A.P. Ershov Institute of Infor-
matics Systems SBRAS is aimed at enriching the SBRAS Open Archive
structured by the BONE ontology [1] with the data of the Open Linked
Data cloud [2]. A four-step strategy for the integration of Linked Data
into an application consists of access to linked data(1), vocabularies
(schema, ontology) normalization(2), identity resolution(3), and data
filtering(4). There exist specialized tools for solving separate problems
[3, 4]. We present in this paper a new pattern making possible auto-
matic generation of SPARQL queries and establishing correspondence
between the entities of two ontologies. As for the identity resolution
problem, we show that equivalence of strings that identify two persons
cannot guarantee the identity of these persons and propose additional
methods to solve this problem.

c©2014 by Z. Apanovich, A. Marchuk
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2 Vocabulary normalization

One specific feature of the BONE ontology is using the “qualified re-
lation” modeling pattern: entities usually described by means of rela-
tionships in other ontologies are described as instances of classes in the
BONE ontology. This feature compensates the absence of attributes of
the RDF predicates. For example, using the “from-date” and “to-date”
properties of the bone:participation class, we are able to specify facts
such as “Academician A.P. Ershov was the head of a department at
the IM SB AS from 1959 to 1964 and the head of a department at the
CC SB USSR AS from 1964 to 1988”.

This additional capability makes necessary to establish correspon-
dence between one or several groups of the form “Class1–relation1–
Class2” of the first ontology and one or several groups of the form
“Class3–relation2–Class4–relation3–Class5” of the second ontology. In
particular, a new instance of the Class4 for every triple <Class1:ins-
tance1, relation 1, Class2:instance2> should be created. This kind of
translation can be carried out by an appropriate SPARQL-query. Since
the needed SPARQL-queries are rather tedious, we have created a pro-
gram that can generate this kind of queries using the visualization of
two ontologies.

An example generating instances of the bone:participation class
with respect to the akt:has-affiliation relation is shown in Fig. 1.

3 The identity resolution problem

Let us consider an instance of the bone:person class describing Aca-
demician A.P. Ershov. We can find 18 persons with distinct iden-
tifiers whose akt:full-name is “Andrei P. Ershov” at the biblio-
graphic portal http://dblp.rkbexplorer.com. A person identified by the
http://dblp.rkbexplorer.com/id/people-e1ac8593dbc7db6ec5766ea313914be4-
1211d4d9974a0a977bd166da859d928f identifier is the author of the “Mixed
computation in the class of recursive program schemata”. Another per-
son identified as
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Figure 1. Interactive matching between two groups of classes and relations 2

http://dblp.rkbexplorer.com/id/people-e1ac8593dbc7db6ec5766ea313914be4-
2fd1e3b39206345ab05fd9be97bc0d00 has a publication entitled “Time
sharing: the need for re-orientation.” In addition, there exist other
persons with akt:full-name attributes such as “A. P. Yershóv”, “A. Yer-
shov” and even “Andrew Ershov”. All of them have their own lists of
publications. Which of these identifiers correspond to the same physical
object, and, therefore, can be connected by the relation owl: sameAs
and which of them describe different physical objects? Whether all
publications attributed to a person do belong to this person?

Obviously, the answers to these questions have a significant impact
on the calculation of various characteristics, such as citation index. We
are trying to answer these questions by checking full-text versions of
the publications.

1. Check the workplace. Publication date and authors’ affiliation
are extracted from the textual version of the publication and
compared with the person’s list of jobs of the Open Archive.

2. Check the reference list. The name of the author of each
publication is compared with the names of the authors of cited
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in them publications. If coincidence of names is found, the cited
publication of the same author is combined into one set with the
current publication. Then, the same procedure is applied to the
added publications.

Conclusion

In this paper we have considered an unusual pattern arising during
the ontology normalization step and created a program generating the
appropriate SPARQL- queries based on the visualization of ontologies.
We have also demonstrated that the conventional tools used for iden-
tity resolution are not suitable for clear identifying the authors of pub-
lications. Alternative approaches to solving this problem have been
proposed.
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Automation Development in e-Learning of

Personalized Tasks of “Problem Solving” Type

Maria Beldiga, Tudor Bragaru, Gheorghe Căpăţână

Abstract

Were developed new methodologies and technologies to assist
professors in developing necessary numbers of individual tasks
of “problem solving” type for such activities as (self) training
and / or evaluation and uploading the elaborated tasks to an
e-Learning/e-testing platform with aim to perform multiple ses-
sions of e-training/e-testing.

Keywords: family problems, generic model, individual
tasks, e-Learning/e-testing platforms, distance learning, assess-
ment.

1 Introduction

Investigated problem. The following challenges of the Modern So-
ciety regarding:
– integration of the Information and Communication Technologies
(ICT) in education;
– continuous lifetime training, especially in open form, remotely acces-
sible to anyone, anytime and anywhere;
– directing modern training not only to obtain knowledge, but mainly
to get skills;
– placing trainees in the center of the educational system;
and many other challenges, require composing and checking a large
number of individual tasks with open response of “problem solving”
type. Manual checking under limited time available to professors is
almost impossible.

c©2014 by M. Beldiga, T. Bragaru, Gh. Căpăţână
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Individual tasks make use of more objective evaluation results in
achieving educational outcomes, to exclude fraud of cribbing or Inter-
net retrieval of answers prepared beforehand, keep learners’ motivation,
competitive spirit etc. On the other hand, automat generation and
checking of tasks enable more efficient (self) training opened remotely
to anyone, anywhere and anytime, these being the main requirements
and the most relevant trend outlined by the current educational system
reform. A set of research was performed regarding mathematical mod-
eling of generic and specific families of problems, generation
(according to models), solving (as formalized knowledge), automatic
verification of individual tasks with open response type of problem
solving in educational activities laboratory and / or (self-) evaluation.

Individual tasks with open response of “problem solving” type have
enormous potential in the educational process, but cannot be used
because of the large time frame needed to compile / solving which
professors do not have.

Necessary time for professors for developing a number of tasks K,
can be deduced from:

T = K ∗ (A + R + N + C), (1)

TSSI = S, (2)

where:
• T – the summary time, necessary for performing all operations

to solve and check the tasks for K respondents,
• K – the required number of parallel tasks (non-faceted), same

statements, goals etc., each with its response, calculated from
individual values of problem’s parameters,

• A – the necessary time for elaboration of the task,
• R – the necessary time to solve the task,
• N – the necessary time to check/evaluate the task,
• C – the dependent time on the complexity of the task,
• TSSI – the required time for specifying a set of tasks in the process

of automation,
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• S – the required time for individual specification of a set of indi-
vidual parallel tasks.

2 Results

It was developed an information support system (ISS ) for profes-
sors intended for processes of individual specification, automatic gen-
eration, solving and checking of individual tasks that have the aim to
reduce essentially the professor’s time and effort required for devel-
oping individual tasks for formative evaluation, formative and / or final
summarized.

The developed system can be regarded as a set of computational
tools of tasks specification according to some generic and specific mod-
els, problem solving methods and techniques, which ensures automatic
generation, solving and checking.

In order to illustrate basic components and functions of the new
technology it was chosen the discipline ”Decision Support Systems
(DSS )”. The result can be used directly by: (1) professors in the pro-
cesses of development and exploitation of digital educational content,
(2) students in traditional training and/or open distance and (3) en-
terprise managers as decision support system.

At the stage I it was performed the analysis of types of decision
problems from curriculum and grouping them into families of decision
problems that cover curriculum objectives discipline DSS. The decision
problems (DP) treated by DSS curriculum were grouped into two fam-
ilies, which have been developed to solve specific models with different
methods and techniques:

1. mono-criteria DP family;
2. multi-criteria DP family.
At the stage II there were designed and built the following com-

ponents of the system:
1. Knowledge Base. The SSI knowledge representation is per-

formed through knowledge frames (for simplicity frames). A frame is a
hierarchical structure that describes procedural concept and objective
of the scope of authority of the discipline taught.
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2. Composer of custom tasks illustrated in ISS allows automatic
generation of a set of custom mono-criteria and multi-criteria tasks
FPD from generic model.

3. Solver of the personalized tasks. The role of the solver is to
find solutions for sets of individual tasks generated by Composer. The
solution maker employs for this aim the procedural knowledge base of
the ISS, which make a link between personified specification of the user
and the procedural knowledge, necessary to solve these problems.

4. Database of SSI keeps the personalized tasks generated by
composer. Also it keeps the DB solutions, customized tasks generated
by composer and DP formulated by the decision maker – solution found
by Solver.

5. User Interface of ISS is a mechanism of interaction between
the user and SSI. It allows the user to make more operations.

3 Conclusion

The main original performances for the SSI are: automated genera-
tions of individual tasks according to professors specification, auto-
matic solving of individual tasks, uploading in the EC environment the
SSD personalized tasks, checking and automatic evaluation of respon-
dents’ answers during the activities of practice/training and/or (self)
evaluation.
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1Department of Informatics, Moldova State University,
A. Mateevici str. 60, Chisinau MD-2009, Republic of Moldova
Email: vasilache m@mail.ru

454



Proceedings of the Third Conference of Mathematical Society of Moldova

IMCS-50, August 19-23, 2014, Chisinau, Republic of Moldova

On Using Mersenne Primes in the Public-key

Encryption

A.N. Berezin, A.A. Moldovyan, D.N. Moldovyan

Abstract

The paper considers design of the public-key encryption al-
gorithm providing security against known decryption text. The
algorithm is based on computational difficulty of discrete loga-
rithm problem in multiplicative group of the binary finite field
GF (2s), where s is a Mersenn exponent (s = 1279, s = 2203 and
s = 4253).

Keywords: Mersenne primes, discrete logarithm problem,
binary polynomials, finite fields, public-key encryption

1 Introduction

The discrete logarithm problem (DLP) in the finite fields is used as the
difficult computational problem put into the base of many public-key
cryptoschemes [1]. The binary fields GF (2n) have significant advantage
for designing encryption algorithms, since computational difficulty of
the exponentiation operation in GF (2n) is comparatively low. The mul-
tiplication operation in such fields is performed as multiplying binary
polynomials modulo an irreducible binary polynomial of the degree n.
This operation is especially fast in the case of using irreducible trino-
mials xn + xk + 1, where k < n/2. In this paper it is justified using
DLP, that in the binary fields GF (2s), where s is a Mersenn exponent,
the multiplicative group of GF (2s) has prime order 2s−1. This fact is
used by designing public-key encryption algorithms, like the ElGamal
algorithm.

c©2014 by A.N. Berezin, A.A. Moldovyan, D.N. Moldovyan
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2 The Public-key encryption by ElGamal

The ElGamal public-key encryption algorithm [2] uses the difficulty
of the DLP in the fields GF (p) and can be used for sending a secret
message via a public channel to the owner of the public key y = ak mod
p, where k is private key; p is a large prime; a is a primitive element
mod p. The algorithm performs as follows:

1. The sender generates the single-use private key u and com-
putes the single-use public key R = au mod p. Then he computes
the single-use secret key Z = yu mod p and encrypts the message M :
C = MZ mod p, where C is the produced ciphertext.

2. Then the values C and R are sent to the owner of public key y.
The decryption procedure is performed by receiver, using his private

key k, as follows:
1. Using the single-use public key R the receiver computes the

single-use secret key Z = Rk mod p.
2. Then he decrypts the ciphertext C and obtains the message

M = CZ−1 mod p.
Suppose that except large prime q, some small primes ri (i=1, 2,...,

g) divide the number p − 1. Then an adversary can implement some
potentially known decrypted text attack on the ElGamal algorithm
that relates to the following scenario.

The attacker selects a value R′ < p having composite order ω′ =∏g
i=1 ri modulo p, generates a random value C < p, and then sends the

values R′ and C to the owner of the public key y.
The receiver computes the value M ′ = (CZ ′−1 mod p) =

= (CR′−k mod p) that becomes some way known to the attacker. The
last one computes the value Z ′ = (CM ′−1 mod p) = (R′k mod p).
Then, using the baby-step-giant-step algorithm [5], the attacker ob-
tains the value k ≡ k mod ω′. If ω′ > q > k, then k′ = k. If ω′ < k,
then k = k′ + ηω′, where η is a natural number such that η < k. Evi-
dently, finding η is easier than finding the private key k, therefore one
can claim that the known decrypted text attack provides computing
of at least part of the private key. The highest security of the ElGa-
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mal algorithm is provided in the case of using the prime values p such
that p = 2q + 1, where q is also a prime. In the last case the consid-
ered attack outputs only one bit of the information about the private
key k. Next section proposes a modification of the ElGamal algorithm
against which the known decrypted text attack outputs no information
about k.

3 Implementation over binary finite fields

Full security against the known decrypted text attack can be provided
with using binary finite fields GF (2s), the multiplicative group of which
has prime order 2s− 1, to construct a public-key encryption algorithm
like the ElGamal algorithm. This case corresponds to the Mersenn
exponents s and Mersenn primes 2s − 1 as well as to interpreting the
message M as a binary polynomial M(x) of the degree m < s and using
an irreducible binary polynomial π(x) having the degree s. Instead of
an integer a of the ElGamal algorithm one can use any non-zero polyno-
mial α(x) in the public-key encryption algorithm defined over GF (2s).
Indeed, each non-zero element in GF (2s), where s is a Mersenn ex-
ponent, has order 2s − 1. Thus, the public key is computed as the
polynomial χ(x) = (α(x))k mod π(x), where k is the private key.

The public-key encryption is performed as follows:
1. The sender generates at random the single-use private key

u < p− 1 and computes the single-use public key ρ(x) = (α(x))u mod
π(x). Then he computes the single-use secret key as the polynomial
λ(x) = (χ(x))u mod π(x) and encrypts the message M(x) : C(x) =
M(x)λ(x) mod π(x), where C(x) is the ciphertext.

2. Then the values C(x) and ρ(x) are send to the owner of public
key y, i.e. to the receiver of the message M(x).

The decryption procedure is performed as follows:
1. Using the single-use public key ρ(x), the receiver computes the

single-use secret key λ(x) = (ρ(x))k mod π(x).
2. Then he decrypts the ciphertext C(x) and obtains the message

M(x) = C(x)(λ(x))−1 mod π(x).
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There are known the following values s to which correspond
Mersenne primes: s=1279; 2203; 2281; 3217; 4253; 4423; 9689; 9941;
11213 [http://oeis.org/A000043] which are appropriate for applica-
tion in the proposed modification of the ElGamal public-key encryp-
tion method. Besides, to provide higher performance one can use
the irreducible binary trinomials as polynomial π(x), for example
x1279 + x216 + 1; x2281 + x715 + 1; and x3217 + x67 + 1 [3]. Earlier
the application of the Mersenn primes was proposed for designing the
commutative ciphers and zero-knowledge protocols [4].
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The research of order tables as algebraic

structures

Lucia Bitcovschi

Abstract

The purpose of the paper is research the order tables of al-
gebraic structures. The order tables with operations union, in-
tersection and difference will be researched. Algebraic properties
of tables and operations on them were investigated. It was pro-
posed in C ++ a generic parameterized class with abstract class
records tabular representation which allows modeling work with
order table in terms of algebraic structures [1,2].

Keywords: key, algebraic structure, generic class, union, in-
tersection.

1 Introduction

In what follows we will try to study the order tables with different
operations in terms of algebraic structures. There will be considered
the most important operations on the order tables, such as adding an
item in the table tidy, orderly linking two tables difference.

We investigate which of these operations form a lot of order tables
monoid.

Table is a set of elements, each of which has a special indicator
called key property that elements are added to the table and looking
for the key. Besides key element, table (also called a registration table)
typically contains data, carrying some information.

We say that the table is sorted by the key element that facilitates
the retrieval of information it contains.

c©2014 by L. Bitcovschi
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2 Algebraic structure of the ordered tables

Let E = {e1, e2, ..., en} be the set of all tabulated records by the same
key structure highlighted. For serial keys, a relationship that allows
us to order the tabulated records after key is established. Key is de-
termined by the relationship of the order allowing us ordering tabular
entries after key.

Definition 1. Through ordered tables the crowd E is denoted
T (ei1 , ei2 , ..., eik), we understand the crowd orderly of {ei1 , ei2 , ..., eik},
where eij ∈ E, j = 1, 2, ..., κ, as k – is a number of elements in tables
T (ei1 , ei2 , ..., eik), and element ei1– it’s called the first element in the
table T , eik– it’s called the last element of the table T .

Notice 1. The table can also be ordered blank, if it has no element.
We denote the empty ordered table by ”∅”, so T = ∅. Ordered tables
T (e) are composed of a single element e ∈ E.

We denote by < = {T1, T2, ...,Tm, ...} – the crowd of all possible
ordered tables on crowd E. Add a set of operations for ordered tables
similar to those described in [2, 3].

2.1 Difference ordered tables
We will introduce the operation of difference that will give us the

opportunity to extract records from the ordered tables and we will note
the sign ”-”.

Definition 1. The operation “-” that extracts of the ordered ta-
bles T1 = T (ei1 , ei2 , ..., eiki

), ordered tables T2 = T (ej1 , ej2 , ..., ejki
), is

operation T1(ei1 , ei2 , ..., eiki
)− T2(ej1 , ej2 , ..., ejki

), that results in table
T (ei1 , ei2 , ..., eiki

−ej1 , ej2 , ..., ejki
) with elements that are in T1, and are

not T2 for other Ti, TJ ∈ <. Thus the set of all tables ordered the lot
E with operation “-” is a couple denoted (<,−).

2.2 Intersection ordered tables
The intersection of two tables T = T1

⋂
T2 means the lot that

contains the common elements of T1 and T2 with equal keys.
Definition 1. The operation “

⋂
” that intersects order tables

T1 = T (er1 , er2 , ..., erki
), with order tables T2 = T (el1 , el2 , ..., elki

), is
operation (T1(er1 , er2 , ..., erki

)
⋂

T2(el1 , el2 , ..., elki
)), that results in or-
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der tables T (ej1 , ej2 , ..., ejki
), so every element belongs to the order ta-

bles T1 = T (er1 , er2 , ..., erki
), and order tables T2 = T (el1 , el2 , ..., elki

),
for other Tr, Tl ∈ <. Thus the set of all tables ordered the lot E with
operation “

⋂
” is a couple denoted (<,

⋂
).

Notice 1. If the key in both tables is different (does not intersect),
then you get blank crowd T1

⋂
T2 = ∅.

Teorema 1. Couple (<,
⋂

) has identity record.
Demonstration: As a neutral element will get an empty table T ().

We take any arbitrary table Ti ∈ <. Let Tr = T (er1 , er2 , ..., erki
), then

Ti
⋂ ∅ = T (ei1 , ei2

, ..., eik)
⋂ ∅ = ∅⋂

T (ei1 , ei2
, ..., eik) = T (ei1 , ei2 , ..., eik) =

Ti.
The theorem is proved.
Teorem 2. Couple (<,

⋂
) forms a semigroup.

Demonstration: Let Ti, Tj , Tr be three arbitrary tables in <. We
prove that (Ti

⋂
Tj)

⋂
Tr = Ti

⋂
(Ti

⋂
Tr).

Let Ti = T (ei1 , ei2 , ..., eik), , Tj = T (ej1 , ej2 , ..., ejk
), Tr =

T (er1 , er2 , ..., erk
). Then

(Ti

⋂
Tj)

⋂
Tr = (T (ei1 , ei2 , ..., eiki

)
⋂

T (ej1 , ej2 , ..., ejki
))

⋂

⋂
T (er1 , er2 , ..., erki

) = T (ei1 , ei2 , ..., eiki
)
⋂

(T (ej1 , ej2 , ..., ejki
)
⋂

⋂
T (er1 , er2 , ..., erki

)) = Ti

⋂
(Tj

⋂
Tr)

for other Ti, Tj , Tr ∈ <.
The theorem is proved.
Theorem 3. Couple (<,

⋂
) forms a monoid.

The Theorem 1 shows that couple (<,
⋂

) possesses identity element,
the Theorem 2 shows that couple (<,

⋂
) is a semigroup. So, couple

(<,
⋂

) is a monoid.
Theorem 4. Couple (<,

⋂
) forms a commutative monoid.

Demonstration: Let Ti, Tj be two arbitrary tables in <. We prove
that Ti

⋂
Tj = Tj

⋂
Ti .

Let Ti = T (ei1 , ei2 , ..., eiki
), Tj = T (ej1 , ej2 , ..., ejkj

). Then

Ti

⋂
Tj = T (ei1 , ei2 , ..., eiki

)
⋂

T (ej1 , ej2 , ..., ejkj
) =
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= T (ej1 , ej2 , ..., ejkj
)
⋂

T (ei1 , ei2 , ..., eiki
) = Tj

⋂
Ti.

for other Ti, Tj ∈ <.
The theorem is proved.

3 Conclusions

The purpose of the article was to demonstrate that the order tables
can be algebraic structure. It has been shown that order tables T with
concatenation operation is commutative monoid. It is proved that the
set of common and uncommon records from two tables where keys are
unique can be reunited. Difference is the set of all records belonging
to the first table and the second table does not belong, that are equal
key records.
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Implementation of Scientific Cloud Testing

Infrastructure in Moldova

Peter Bogatencov, Nicolai Iliuha, Nichita Degteariov,
Pavel Vaseanovici

Abstract

Development of scientific computing infrastructure signifi-
cantly influences on various fields of science that require solv-
ing complex computational problems. In Moldova over last years
modern computing infrastructures (Grid, HPC) were deployed,
but new technologies and new applications domains have led to
new approached of computational resources and services offer-
ing. Service oriented infrastructures based on Cloud paradigm
simplify use of distributed computing infrastructure, wider users
community and applications areas. In the paper the approach of
federated cloud infrastructure deployment in Moldova is briefly
described.

Keywords: Federated Cloud infrastructure, on-demand ser-
vices, integrated Grid and Cloud infrastructure.

1 Introduction

Cloud computing – data processing technology in which distributed
computer resources and capacity are provided to the user as a ser-
vice available over the Internet. Although there are many commercial
realizations of cloud infrastructures that are widely used for provid-
ing various services of common use, scientific cloud infrastructures for
supporting of research activities are only at the initial stage of develop-
ment. It is explained by specific requirements of complex applications

c©2014 by P. Bogatencov, N. Iliuha, N. Degteariov, P. Vaseanovici
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used for research purposes, relatively large amount of testing and de-
bugging procedures, necessity permanently adopt computing resources
to needs of complex applications and in many cases a short lifetime of
scientific applications that cannot be used as reusable services.

The mentioned above pushed away new initiatives in this area that
are mainly base on open source software platforms.

2 Regional federated cloud infrastructure de-
ployment

One of the regional initiatives implemented in Moldova was the project
Experimental Deployment of an Integrated Grid and Cloud Enabled
Environment in BSEC Countries on the Base of g-Eclipse (BSEC
gEclipseGrid). The g-Eclipse framework provides a middleware inde-
pendent distributed computing model implemented for different Grid
and Cloud middleware. The main purpose of the Project is to deploy
a regional integrated Grid and Cloud enabled environment based on g-
Eclipse for the South-East Europe region including Armenia, Georgia,
Moldova and Romania.

In order to find out which cloud middleware better suits the project
needs, two main open source platforms OpenStack and OpenNebula
were implemented and analyzed. Although OpenStack seemed to have
more built in features, we choose OpenNebula as a cloud middleware,
because it had oZones module, which is especially designed to create
federated cloud infrastructure. Unlike other open source alternatives,
OpenNebula does not embrace a particular hypervisor. It also does
not have any specific infrastructure requirements, fitting well into any
pre-existing environment, storage, network, or user-management poli-
cies. The deployed suggested platform is based on OpenNebula Cloud
Management Platform. The first level of the platform consists of re-
sources provided by each partner of Cloud infrastructures. The national
cloud resources have been joined together using the OpenNebula Zones
(oZones) approach, which allows centralized management of multiple
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instances of OpenNebula (zones), managing in turn potentially differ-
ent administrative domains.

3 Approaches of cloud infrastructure imple-
mentation

For realization of basic elements of scientific cloud infrastructure in
Moldova, we examined different software products, its specifications
and infrastructure realization approaches. After examination and anal-
ysis of available resources, we elaborated implementation plan, which
specifies ways of computational resources allocation for the experimen-
tal cloud segment. Now this experimental Cloud infrastructure con-
sists of one virtual machine as a master node that holds OpenNebula
Sunstone GUI for easily infrastructure management through graphical
web interface and one worker node based on a physical server with four
computational cores, 8 Gb RAM and 500 Gb of hard disk space. This
infrastructure interconnected via 1Gbit is dedicated to private man-
agement network that ensures better performance of deploying virtual
machines, snapshotting and live migration features. In addition, it has
a public network connection on a separate physical interface, which
provides connectivity to virtual machines over Internet. Resources of
this infrastructure are enough for various testing purposes and can be
easily scaled up in the future by adding if required more worker nodes,
networks, data storage devices, etc. to the existing infrastructure.

Due to good security options and our previous experience, Cen-
tOS was selected as a basic operating system for our experimental
Cloud segment and OpenNebula 4.4.1 was installed with using KVM
as hypervisor. We also selected SharedFS file system for data sharing
between worker nodes and master node, and 802.1Q network driver,
which allows flexible network management, dividing virtual machines
to separate virtual networks (VLANs) for security purposes or unite
them together to satisfy any users community specific communication
capacity needs.

The main approach prosed for implementation in the BSEC
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gEclipseGrid project is ability of realization in perspective joint com-
putational environment that will combine Grid and Cloud resources to
offer the united enhanced computational power that can adaptively, on
demand allocate computational resources depending on workflow re-
quirements. As an example, if the user requires parallel computational
resources, he will submit a job on the Grid, but if the user needs any
specific software or environment to solve some special problem, he can
use a dedicated Cloud service or virtual image for that purpose.

4 Conclusion

The created regional cloud testing infrastructure, although it has lim-
ited computational resources, is the successful example of adaptation
of new technologies and open source software platforms for providing
computational resources to scientific community.

There are perspectives to continue development of the scientific
cloud infrastructure and technologies at national and regional levels.
We intend together with BSEC gEclipseGrid project partners to ex-
ploit BSEC Programme funding in future and submit new proposal
focused on adaptation and implementation new open source tools for
creation federated infrastructures. Other perspective direction is coop-
eration with partners within new projects initiating by European Grid
Initiative and comprises integration of the national Grid and cloud
computing infrastructures.

Acknowledgments. BSEC gEclipseGrid and European Commis-
sion EGI-Inspire projects have supported part of the research for this
paper.
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Complex applications porting to HPC

infrastructure

P. Bogatencov, N. Iliuha, G. Secrieru,
B. Hancu, V. Patiuc, E. Calmis

Abstract

In this article the development of programming environment
for integrating individual cluster systems of the IMCS of ASM
and the cluster of the SUM in a single, integrate parallel HPC
systems is described. The elaborated applications can be ported
to the resources of the integrated HPC system.

Keywords: computer science, HPC system, mathematical
model of semiconductor diode, informational extended games.

1. Adapting the local HPC systems for execution par-
allel applications

For ensuring various parallel applications development and execu-
tion there were adopted the local HPC systems of the Faculty of Math-
ematics and Computer Science of USM and IMI ASM for use of open
source software that is needed to implement execution of the parallel
applications. The works included:
1. Analysis requirements of the elaborated algorithms and determine
comprehensive set of basic open source software for support of the elab-
orating parallel programs execution.
2. Adapting the local HPC systems and installing basic software and
open source software packages that needed to form effective run time
environment for elaboration and execution of wide set of parallel ap-
plications.

To achieve formulated objectives we realized the following ap-
proaches:

c©2014 by P.Bogatencov, N.Iliuha, G.Secrieru, B.Hancu, V.Patiuc,
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a) The existing technical basis for providing necessary resources for
development and execution of the parallel applications were improved;
b) There were analyzed requirements and provided ability and con-
ditions of wide usage of the existing HPC parallel clusters in different
fields of science, technology and economic activities;
c) Software environment was developed for extending the possibil-
ity of multiprocessor cluster’s systems usage for solving wide range of
complex problems;

Creation of integrated system at national level as a part of regional
HPC and distributed computing infrastructures and use it for various
complex applications porting and execution is an important outcome
of these activities.

2. Interactive Training Course “Parallel programming
models on clusters”

To acquire the necessary theoretical and practical skills on us-
ing regional and European HPC clusters, it was proposed an online
course available to learners through Sakai CLE and BigBlueButton
open source software. To support the video conferencing, in Sakai was
integrated the BigBlueButton plugin that supports sharing of slides,
webcams, whiteboard, chat, voice over IP, and presenter’s desktop.

The content of the online course is focused on 2 main chapters.
The first chapter provides learners with information on parallel com-
puting systems and models, Rocks type clusters and basic commands,
Grid computing elements, the models of shared memory (OpenMP)
and distributed memory (MPI) parallel programming. In the second
chapter learners will study the parallel software packages like ScaLA-
PACK and PETSc, and use these libraries in developing and launching
their application on the cluster.

3. Finite volume method for semiconductor device
problem.

Let’s consider the mathematical model of semiconductor diode. Its
mathematical formulation is based on Drift-Diffusion model. We de-
note by ΓD the part of the boundary of domain where the Dirichlet
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boundary conditions are specified. The remaining part of the bound-
ary we denote by ΓN and we require the flow normal to the boundary
to be equal to zero, so we get the Neumann boundary conditions on
ΓN . Unknown functions ϕ, ϕn, ϕp are to satisfy the following system
of nonlinear differential equations:

−∇ · (ε∇ϕ) = q (p− n + N) ; (1)
−∇ · (Jn) = −q (RSRH + RAUG) ; Jn = −qnµn∇ϕn; (2)

n = niexp

(
ϕ−ϕn

ϕT

)
; p = niexp

(
ϕp−ϕ

ϕT

)
. (3)

As the equations are strongly nonlinear, then in order to obtain the
convergent solution we apply the iterative procedure of gradually in-
creasing of the input voltage Va with small step. The obtaining so-
lutions are used for equation linearization. To solve numerically the
system of equation we apply the generalization of Gauss-Seidel it-
erative procedure (in the specialized literature method is called the
Gummel’s algorithm). According to this algorithm we set the ini-
tial iteration ϕ(0), ϕ

(0)
n , ϕ

(0)
p , then solve quasi-linear Poisson equation

−∇ · (ε∇ϕ) = q
(
p(0)−n(0) + N

)
; n(0) = niexp

(
ϕ−ϕ

(0)
n

ϕT

)
;

p(0) = niexp

(
ϕ

(0)
p −ϕ
ϕT

)
and obtain the function ϕ(1). Then ex-

cluding Jn in (2) we obtain the equation ∇ · (
qn(01)µn∇ϕn

)
=

−q
(
RSRH

(
n(01), p(01)

)
+ RAUG

(
n(01), p(01)

))
; n(01) = niexp

(
ϕ(1)−ϕn

ϕT

)
;

p(01) = niexp

(
ϕ

(0)
p −ϕ(1)

ϕT

)
for determining the function ϕ

(1)
n . Next we

exclude Jp in (3) in order to obtain the equation −∇·(qp(10)µp∇ϕp

)
=

−q
(
RSRH

(
n(10), p(10)

)
+ RAUG

(
n(10), p(10)

))
for determining the func-

tion ϕ
(1)
p .

4. Parallel algorithm to find the set of all equilibrium
profiles in the lot of bimatrix games

Let be given a lot of matrices {(Ap ; Bp)}p = 1, k ,were p denotes the

node of the parallel cluster, and A = ||aij ||j∈J(p)
i∈I(p) , B = ||bij ||j∈J(p)

i∈I(p) . Con-
sider the bimatrix game Γp = 〈I(p), J(p), Ap, Bp〉, where I(p), J(p) is
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the set of pure strategies of the player 1, player 2 and Ap, Bp are the pay-
off matrices of the player 1 and 2 respectively. Denote by NE(Ap, Bp)
the all Nash equilibrium profiles in the bimatrix game (Ap ; Bp). The
parallel algorithm to find the set of all equilibrium profiles (i∗(p), j∗(p))
consists of the following steps.
1. Using the MPI programming model and open source library
ScaLAPACK-BLACS, the matrices (Ap; Bp) are scattered through the
MPI process p = 1, k;
2. MPI process, p = 1, k, using the OpenMP and ScaLAPACK, elim-
inates from matrix Ap and Bp the lines that are strictly dominated
in matrix Ap and columns that are strictly dominated in matrix Bp.
Finally we obtain the matrices

(
A′p ; B′

p

)
, where A′p = ||a′ij ||j∈J ′(p)

i∈I′(p) ,

B = ||bij ||j∈J ′(p)
i∈I′(p) and cardinals |I(p)| ≥ |I ′(p)|, |J(p)| ≥ |J ′(p)|.

3. MPI process, p = 1, k, using the OpenMP and ScaLAPACK, deter-
mines all strategy profiles from NE(A′p, B′

p) and constructs all strategy
profiles from NE(Ap, Bp).
4. Using ScaLAPACK-BLACS, the root MPI process is gathering the
strategy profiles (i∗(p), j∗(p)) from MPI process, p = 1, k.

For this algorithm a C++ program has been developed using MPI
functions, OpenMP directives and ScaLAPACK routines. Program has
been tested on the control examples. The test results were consistent
with theoretical results.
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Disproportionality of Multi-optional PR Voting

Systems

Ion Bolun

Abstract

Results on qualitative and quantitative comparison of Hamil-
ton, d’Hondt, Sainte-Laguë, Huntington-Hill and Mixed “votes-
decisions” methods for multi-optional PR voting systems are sys-
temized. By simulation it is shown that Mixed method is better
in majority of cases than the d’Hondt one.

Keywords: disproportion, index, votes-decision method, op-
timization, proportional representation, voting system.

1 Introduction

Multi-optional voting systems with proportional representation (PR)
are widely used in practice. An example would be the election of Mem-
bers of Parliament on party lists. A major requirement to such systems
is the equal representation, as far as possible, in the decision of each of
the voters’ will. However, because of nature in integers of the problem,
such representation usually fails. Various ”votes-decision” (VD) meth-
ods of minimizing the disparity in question are proposed and used,
including [1]: Hamilton (Hare), Jefferson, Webster, d’Hondt, Sainte-
Laguë and Huntington-Hill.

In [2], the opportunity of using the Average relative deviation
(ARD) index (Id) to estimate the disproportionality of PR voting sys-
tems is argued. Index Id conveys the average relative deviation of the
representation in the decision of electors will from the mean value of
these wills. Studies [1-5] show that in different situations VD methods
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behave differently. The known theoretical results do not show unequiv-
ocally which VD method to use in a specific situation. Therefore it is
appropriate the comparative analyses of these methods by simulation,
partly carried out and described in this paper.

2 Qualitative comparisons of some VD meth-
ods

Let: M – number of seats in the elective body; n – number of parties
that have reached or exceeded the representation threshold; V – total
valid votes cast for the n parties; d = M/V – rights of each elector; Vi,
vi – number and percentage of valid votes cast for party i, respectively;
xi, mi – number and percentage of seats to be allocated to party i,
respectively; Id – value of ARD index.

It has been proved [1, 2], that the minimum value of ARD index is
obtained using Hamilton method. However, its use can lead, in some
cases, to paradoxes “Alabama”, “of Population” or “of the New state”
[1]. The d’Hondt, Sainte-Laguë, Huntington-Hill [1] and Mixed meth-
ods [3] are immune to these paradoxes. These methods are compared
using such indices as: disproportionality by Id; quota rule; immunity to
paradoxes; non-favoring large parties and non-favoring small parties.

The “quota rule” is satisfied for party i, if bdVic ≤ xi ≤ ddVie,
i = 1, 2, . . . , n [3]. A method is called non-favoring parties, when it
doesn’t allocate seats to one party, exceeding its upper quota (ddVie),
at the expense of small ones, non-assuring their lower quota (bdVjc),
and vice versa.

Comparative characteristics of the five VD methods by the nomi-
nated above criteria, basing on results from [1, 3-5], are summarized in
Table 1.

According to Table 1, none of the five compared methods does not
prevail completely to the other, excepting the Mixed one to Sainte-
Laguë. Although, the d’Hondt method fails only three parameters to
Hamilton method, one can not, however, say that this is preferable to
Sainte-Laguë one, which fails to Hamilton method by four parameters

472



Disproportionality of Multi-optional PR Voting Systems

Table 1. Comparative characteristics of the five VD methods

VD method Minimal Satisfying Immune Non-favoring
dispro-
portion

lower
quota

upper
quota

to para-
doxes

small
par-
ties

large
parties

Hamilton yes [1,4] yes [1] yes [1] no [1] yes [1] yes [1]

Huntington-
Hill

no [1,4] no [5] no [5] yes [1] no [5] no [5]

D’Hondt no [1,4] yes [1,4] no [5] yes [1] yes [5] no [1,5]

Sainte-Laguë no [1,4] yes [1,4] no [5] yes [1] no [5] no [5]

Mixed
(at c = 2)

no [3] yes [3] yes [3] yes [3] no [3] no [3]

and even the Huntington-Hill method that fails to Hamilton one by
five parameters.

3 Quantitative comparisons of some VD meth-
ods

Quantitative comparisons of some VD methods for particular cases
were done in [1, 3, etc.]. A specific case is shown in Table 2.

From Table 2 one can see that Huntington-Hill method prefers small
parties at the expense of the largest party – party 1 (∆x1 = −2), when
d’Hondt method, on contrary, prefers the party 1 (∆x1 = 3). Here
∆xi = xi − bdVic.

Note also that the average disproportionate representation of elec-
tors’ will on five ballots investigated in [3] are: the Hamilton method
– 6.84%, the Mixed method – 7.09%, the Huntington-Hill method –
7.90%, the Sainte-Laguë method – 8.42% and the d’Hondt method –
10.89%. So, from four monotone methods, the Mixed one shows, for
examined cases, the best result.
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Table 2. Distribution of seats for the ballot: M = 98; n = 10; V1 =
11600; Vi = 1000− i + 2, i = 2, 10

VD method ∆x1 > 1 Favoring Id, %
∆x1 < 0 parties xi, i = 1, 10

Hamilton - - x1 = 55; xi = 5,
i = 2, 8;
xi = 4, i = 9, 10

3.55

Huntington-Hill −2 small x1 = 53; xi = 5,
i = 2, 10

4.66

d’Hondt 3 large x1 = 58; xi = 5,
i = 2, 5;
xi = 4, i = 6, 10

7.52

Sainte-Laguë - - x1 = 55; xi = 5,
i = 2, 8;
xi = 4, i = 9, 10

3.55

Mixed
(at c = 2)

- - x1 = 55; xi = 5,
i = 2, 8;
xi = 4, i = 9, 10

3.55

4 Comparison of some VD methods by simu-
lation

The methodology and the software application SIMRP for multi op-
tional PR voting systems simulation are described in [6]. Subject to
simulation are only quantities Vi, i = 1, n. Basic criterion for compar-
ison of VD methods is index Id. By Id criterion the best is Hamilton
method; also [3] Id(Mixed) ≤ Id(Sainte-Laguë).

Some results of calculations using SIMRP, at normal distribution
of quantities Vi, i = 1, n and initial data: M = 20, 100; n = 4, 6, 8, 10;
V = 108; sample size of 20000 ballots for each pair M, n, are pre-
sented in Table 3. Here P is the percentage of ballots, for which
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Id(Mixed) = Id(Hamilton), and R is the ratio of the percentage of
ballots, for which Id(d’Hondt) > Id(Mixed), to the percentage of bal-
lots, for which Id(d’Hondt) < Id(Mixed).

From Table 3 one can see that for more than 80% of ballots Mixed
method gives the same distribution of seats as Hamilton one does. Also,
Mixed method gives a better distribution of seats for a number of polls
at least 10-30 times higher than the d’Hondt one does. Elsewhere, P
index is decreasing and R index is increasing with the increasing of the
number n of parties. So, the more parties, the less efficient is the Mixed
method in comparison with the Hamilton one and d’Hondt method in
comparison with the Mixed one.

Table 3. Some results of calculations using SIMRP

M = 20 M = 100
n = 4 n = 6 n = 8 n = 10 n = 4 n = 6 n = 8 n = 10

P , % 91,56 87,62 84,54 82,68 91,34 87,66 83,97 81,52

R,
times

12,86 17,19 24,01 33,44 14,50 20,53 27,19 37,02

5 Conclusions

From the three monotone methods, d’Hondt, Sainte-Laguë and Mixed
ones, the Mixed method is better, by the minimum of ARD index, than
Sainte-Laguë one and, in majority of cases, is better than the d’Hondt
one.
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Fuzzy logic in automatic analysis of Google

Analytics data

Sergiu Chilat

Abstract

This article presents a method for automation of the process
of data analysis generated from Google Analytics, using fuzzy
logic. After the method implementation, the user will get the
most useful and suitable content depending on the age he/she
has. Since Google Analytics doesn’t provide any automatic anal-
ysis tools, implementing this model would bring an appreciable
number of advantages, like time saving.

Keywords: Fuzzy logic, web analytics, automatization, self-
tuning, fuzzyfication.

1 Introduction

One of the most popular search engines – Google, provides specialized
tools – Google Analytics(GA). It allows the storage of the data about
the website users, such as: geographic location, age, preferences and
interests, etc. [1]. This information is used to optimize the website, but
at the moment there are no available methods or tools for automat-
ing the decision-making process, so this responsibility is taken by the
SEO (Search Engine Optimization) administrator. There are frequent
instances when the SEO performs the same routine of operations re-
peatedly, leading to a decrease in yield and productiveness and also to
the adoption of poor quality decisions. In this article, the possibility
of implementing fuzzy logic to automate the decision making process
in order to save time and free the administrator of such routine activ-
ities, will be investigated. One of the GA compartments is the users
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age, which will be used in this research and based on it, a method of
automatic data analysis and optimal decision making will be proposed,
using the maximization function in the defuzzyfication process.

2 The fuzzyfication process

In the section bellow, Google Analytics gathered the collected data into
6 groups, G1–G6 (input variables):

• G1 – from 18 to 24 years old;
• G2 – from 25 to 34 years old;
• G3 – from 35 to 44 years old;
• G4 – from 45 to 54 years old;
• G5 – from 55 to 64 years old;
• G6 – above 65 years old.

But, the information on the site is divided into 3 groups [2]:

• FGY – for young people;
• FGM – for middle-age people;
• FGO – for old people.

Since there are no clear criterias of division between these age cat-
egories, the dividing into 6 groups (G1 – G6) which Google Analytics
offers, can’t be used directly, being necessary to implement an algo-
rithm that could determine to which group of those 3 (FGY , FGM ,
FGO) does the user belong (Table 1).

Table 1. The representation of fuzzy age distribution

18 24 34 44 54 64 65+
Young 1 0.75 0.25 0 0 0 0
Midle 0 0.25 1 1 0.25 0 0
Old 0 0 0 0.25 0.75 1 1

Here we can apply the Fuzzy logic [3] to present a specific content
depending on the group of users. This will define the linguistic variable
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age, that can receive one of the following values: young, middle-aged,
elderly (Table 1). Basing on the data from the Table 1, the diagram of
fuzzy age distribution is proposed (Fig. 1).
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Figure 1. Fuzzy age distribution diagram.

3 Rule base definition

As it can be seen from Fig. 1, a user is “very” young if he is 18 years old
(maximum value 1), “still” young at the age of 24 (value 0.8), “quite”
young (value 0.2) at age 34 years and at the age of 44 years not young
anymore (value 0). The same approach will be applied to the other
two groups: middle-aged and elderly. Hereby, a rule can be created [3],
which will transform the input data into output data as follows:
IF age = young THEN content = for young
IF age = medium THEN content = for medium
IF age = old THEN content = for old

In this way, the system receives at the input – numerical age of the
user and using the rule base created earlier will determine the category
(group) of the users and which content should be submitted.

4 The defuzzyfication process

At this stage, the linguistic variable content will indicate to system
from which group should be the content presented. If the content of
the website is intended for middle age people, it will be very useful
(maximum usefulness will be 1) for the 34-44 aged users. For users
which age is 24-34 and 44-54 it will have a medium usefulness (0.2 and
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0.8) and for the users younger than 24 years and older than 54 years,
this content will have a lower usefulness, so will present no interest.
For this reason the maximization function will be used [4]
optimalContent = Max(content)
because the aim is to present the most relevant content for the corre-
sponding user age. So, if the value of the affiliation function would be
1, the best suitable content would be presented.

5 Conclusion

The proposed method allows the automatic selection of the most op-
timal and suitable content to be presented to the website users. The
main advantage is that if the user is 25-34 years old (the affiliation
function of GM will have the maximal value – 1), and if the content for
this group of user is available, it will be displayed. Otherwise the best
suitable content will be displayed.
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challenges and technologies

S. Cojocaru, E. Boian, C. Ciubotaru,
A. Colesnicov, V. Demidova, L. Malahov

Abstract

The paper is concerned to techniques for creation and use
linguistic resources for historical Romanian, departing from ex-
isting documents of the corresponding periods. Problems related
to Moldavian Cyrillic alphabet for 1951–1991 in Bessarabia (Mol-
davian SSR) are discussed in details. Descyrillization of the liter-
ature from this period would permit to inject the most valuable
parts of this heritage in the cultural life. A textbook by Victor
Ufnarovski «Аквариу математик» (“The Mathematical Aquar-
ium”) is used as an illustration.

Keywords: OCR, recognition of historical printed text,
transliteration, electronic lexicography, language development,
preparation of historical texts to re-edition.

Restoration of Romanian Cyrillic texts. We present a
methodology to restore Romanian texts printed in Cyrillic scripts. His-
torically, three types of Romanian Cyrillic scripts were used [1]. Ro-
manian Cyrillic in 47 letters existed in Romania (including Bassarabia)
till the middle of 19th century. Bassarabians used Cyrillic script based
on Russian civil script till the 1st quarter of the 20th century. Then
Moldavian Cyrillic script was used in Bassarabia (Moldavian ASSR,
Moldavian SSR) till 1989. The latest variant is used till present in
Transnistria.

We take 1951–1989, and restrict ourselves by the scientific and tech-
nical texts. We are interested in preparation of manuals, textbooks,
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and monographs for their re-edition. Electronic linguistic resources
created for the said task can be used at research on development of the
Romanian language.

We selected for our experiment a popular science textbook [2]. Its
Russian variant [3] was in great demand, and was re-edited in Russia
three times in 2010, 2011, and 2014. The edition of 2014 was the
extended one1. The Romanian edition in the Latin script may therefore
be of interest for specialized publishing houses.

Regeneration of Romanian Latin text of the book consists of the
following stages:

• scan and image preprocessing;
• recognition (OCR);
• manual correction of recognition errors in the Cyrillic text;
• transliteration of Romanian text from Cyrillic to Latin script;
• editing of transliterated text;
• preparation of camera ready manuscript in LATEX.
Scan and image preprocessing. The print quality was quite

satisfactory. There were no special difficulties during scan. Before the
OCR stage, the images were preprocessed by the ScanTailor program2.

OCR. We used the FineReader OCR engine to recognize Roma-
nian Cyrillic text of the said book. FineReader recognizes all Unicode
characters in many typefaces. We defined the corresponding subset of
Unicode as a new “user language”. We took the Russian alphabet as
the base, deleted letters ё, щ, ъ, and added letter ӂ. The last letter
was introduced in 1967 for sound [dZ].

FineReader may be provided with a lexicon (word list). Lexicon is
used at recognition of poorly printed words, and at the hyphenation
processing. We had not any list of Romanian words in the Cyrillic
script during our experiment.

Manual correction of recognition errors. The print qual-
ity was good so the hyphens elimination was mainly necessary on
this stage. The following statistics of the text in Moldavian Cyrillic

1http://www.ozon.ru/context/detail/id/5021600/
2http://scantailor.org/
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script was obtained: 244 pages; approx. 364,000 characters (incl. blank
spaces); approx. 61,300 words; approx. 8,050 different words.

Transliteration of text. Transliteration between Cyrillic and
Latin scripts for Romanian is a complicated process due to irregularities
of the Moldavian Cyrillic writing. For example, the letter я can be
mapped to Latin ia, ea, and a (функция = funcţia). A special program
is necessary for the process.

Editing of transliterated text. It was noted that the text does
not fully correspond to the modern standard norms of the Romanian
language. Therefore the additional lexical and stylistic editing is nec-
essary after transliteration.

Preparation of camera ready manuscript. This includes in-
sertion of formulas and diagrams, adaptation and insertion of artistic
graphics, and LATEX processing.

The book contains a lot of equations and drawings. They should
be retyped manually in LATEX. The problem of equations recognition
is not solved till now.

We should convert graphical items to formats suitable for LATEX
processing (EPS of PDF). Several pictures include inscriptions that
should be transliterated by manual correction of the image. The corre-
sponding LATEX packages should be used to integrate pictures into the
text.

LATEX processing, with the necessary editing of the LATEX source,
should be performed repeatedly till obtaining the camera ready result.

Other problems and approaches. To obtain Moldavian Cyrillic
lexicon transliterating the modern Romanian word list from the Latin
script is possible but equally difficult. For example, there are approx.
20 rules for letter i that can be mapped to и, й, ь, ю, я, ы, or deleted.
We are developing the corresponding software.

The paper [4] describes an experiment with creation of a parallel
Romanian corpus at the automated alignment when both Cyrillic and
Latin variants of a text are available. Some additional peculiarities
of the descyrillization process were unveiled. The pure transliteration
“letter to letter”, “letter to letter combination”, and “letter combina-
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tion to letter” for the text used in [4] covers 98.2% of words. The
remaining 1.8% of words were edited as “word to word”, “word to
word combination” and “word combination to word”. The following
differences in the orthographic rules were noted: use of hyphen instead
of apostrophe (ынтр’о = ı̂ntr-o); elimination of hyphen (вре-ун =
vreun).

Conclusion. We see that the restoration of printed book from Mol-
davian Cyrillic script is complicated even for a relatively near period.
The first task is to develop a transliteration program and to obtain
the corresponding lexicon. It would permit to inject into the cultural
context the texts. The developed linguistic resources and obtained de-
scyrillized texts could be used to study development of the Romanian
language in the corresponding period and place.

References

[1] E. Boian, C. Ciubotaru, S. Cojocaru, A. Colesnicov, L. Malahov.
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Managing for knowledge through the quality

management of information systems

Ilie Costas

Abstract

In this article quality management (QM) is presented as an
efficient link between information management (IM) and knowl-
edge management (KM), and the main condition of the alignment
of IM to the enterprise’s business objectives. IM is discussed as
a foundation for KM. It is argued that significant benefits can be
achieved from the integration of IM, KM and QM in the form of
improved profitability and customer satisfaction.

Keywords: integrated information system, information man-
agement, knowledge management, quality management.

1 Introduction
The experience accumulated in the field of informatization until present
leads to a conclusion, that despite the importance of information tech-
nologies (IT) for the organizations success, they are still not sufficient to
guarantee the success of the main organization’s activity. The question
is how to manage and use the information and IT to help organizations
take best advantage of it.

In the past the main focus was concentrated on the development
of IT infrastructure (networks, information systems, etc.). Now we
reached the level of IT, when we can process huge amounts of data
and obtain enormous volumes of information. But sometimes the sur-
plus of information (impossible to be assimilated) causes more prob-
lems than the lack of it. At present we need instruments to obtain only
the information, that corresponds to special requirements of users: to

c©2014 by I. Costas
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be relevant to specific decision situations, to be understood by users
according to their experience, and being taken as a base for decisions
they have a positive impact on the main activities efficiency. In other
words, users need only the information, corresponding to the defi-
nition of knowledge. That’s why it is very important to focus on the de-
velopment of mechanisms for improving quantitative and qualitative as-
pects of information infrastructure and services.

2 Main directions of research and practice

In the context of the development of Information society, among the
most frequently used concepts and, respectively, the main directions of
research and practice, oriented to ensure effectiveness of informatiza-
tion, the following ones are considered: Information Management (IM),
Knowledge Management (KM), Quality Management (QM) of Infor-
mation Systems (IS). In the increasing amount of publications in these
fields we see that they are developed mostly as independent domains
of science and practice. Nevertheless, we can observe that during the
latest period of time more and more different interdependencies among
these directions of science are discussed.

A clear relationship between KM and IS was mentioned in [1], where
it was argued that IS, which has traditionally primarily operated in
technical domain and has been pulled ”kicking and screaming” into
developing complementary people skills and organizational skills, must
move yet another major step in the same direction if it is to play an
important, integrative role in KM. The idea that Information Resource
Management should be a Foundation for Knowledge Management has
been discussed in [2]. The necessity of implementation of principles
of Total Quality Management (TQM) in IS management has been ex-
amined in [3] as useful techniques for effective management of the IS
function and, we would add, to the IM in general. An extensive liter-
ature exists on this domain but it is based on fragmented research.

In [4, 5] we made an attempt to do a systemic analysis of literature
specialized in this area, which allowed to identify mutual interdepen-
dencies (relationships) among all these types of management (IM, KM,
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QM). They appeared to be highly correlated, and being realized in par-
allel in the process of development of IS, provide an essential synergistic
effect of all information and knowledge activities.

3 Quality management of IS and IM
The relationships between IM, KM and QM should be taken into con-
sideration by IS designers and IM practitioners. Analyzing the men-
tioned relationships we can identify the role of each type of management
in order to integrate them into the system, helping organizations take
best advantage of it. For example, IM is an essential factor support-
ing the implementation of such an information-intensive management
system as QM. On the other hand, QM in the field of IS and IM could
be a mechanism that, improving the quality of data, soft, information,
etc., according to the requirements of users of the given enterprise,
can become an effective mechanism of achieving a good level of KM.
Thus, assessing the quality of the received information and ensuring
a permanent feedback in the framework of QM ensure the relevance
of accumulated data, information and knowledge in accordance with
real needs of users and with their experience. In this case knowledge
management (at least in the framework of explicit knowledge) will be
based on the QM, implemented in IM.

The feedback mentioned above supposes an intensive user involve-
ment that improves IS, IM and KM common success in complex de-
velopment projects. It is not enough to involve users at the beginning
of IS project, at the stage of elaboration of new IS concept. It is im-
possible to define final requirements to the system quality (software
and hardware quality) and information quality in a very dynamic en-
vironment. Thus, it is necessary to build a mechanism which ensures
a permanent monitoring of user’s satisfaction by information results
provided by IS. This information should be used for relevant and per-
manent improvement of the system. That mechanism should be based
on implementation and utilization of QM techniques to IM and KM.

Integration of KM (at least in the framework of explicit knowl-
edge) into the strategy of IS development is an efficient way of the
IS development. KM for explicit knowledge (documented and orga-
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nized on supporters) has many common features with IM. Based on
permanent feedback between users of the information and information
managers,QM in IS provides data on the quality of the information in re-
lation to the area of interest of the users (influenced by their experience,
etc.), necessary for permanent improvement of IM.

The QM in IS links the IM with the general management and, in ad-
dition, with KM. Thus, information system, specialized databases, doc-
umentmanagement, other components of ITmust be designed and deve-
loped under a general concept of the integrated IS, in order to ensure in-
formational reflection of all real processes, facts in their dynamic in time.

4 Conclusion

While the three types of management (IM, KM,QM) are developed
as the independent ones, the results of the study found them highly
correlated, and being realized in parallel in the process of development
of IS, provide an essential synergistic effect.

Significant benefits can be achieved from the integration of IM, KM
and QM in the form of improved profitability and improved customer
satisfaction. Quality management of IS, when permanently should be
collected the information about the user’s satisfaction on the quality
(usefulness, relevance, timelines, etc.), can be an efficient subsystem,
transforming IM in a good foundation for KM.
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Contrastive Focus in Romanian
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Abstract

We investigate the issue of Information Structure (IS) and
attempt to provide solutions to the prosody prediction problem
of the Implicit Contrastive Focus (ICF) concept. Explicit Con-
trastive Focus (ECF) is the intonationally F marked entity intro-
duced by overt lexical contrastive markers; ICF occurs without
the lexical presence of the contrastive Focus markers. The ICF
problem means to obtain reliable algorithms and procedures on
the Discourse-Prosody interface in order to accurately predict the
contrastive Focus distribution within the Romanian ICF-type af-
firmative finite clause. We describe algorithms for solving the
ICF problem for Romanian, using dislocated constituents in the
finite clause to predict Prosodic Prominence (PP).

Keywords: prosody prediction for the Romanian clause,
Communicative Dynamism degrees; Systemic Ordering, Implicit
Contrastive Focus in Romanian.

1 Systemic Ordering and Communicative Dy-
namism for Prosody Prediction

Information Structure (IS) and Intonation are seen as two autonomous
and independent components of grammar, closely related to each other:
intonational phrasing and patterns express informational structure,
while a great part of IS is linguistically conveyed by prosody. The inter-
action between IS and intonation is studied on the following grammar
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interfaces: ”intonation and phonology, Focus and phonological phras-
ing, intonation (focus) and syntax, IS and discourse analysis”[5].

The Systemic Ordering (SO) refers to a pre-established linear order
of the clause constituents (syntactic-semantic roles) in a finite clause.
SO is the statistical result of the most frequent linear ordering of the
semantic roles in a finite clause, for all the predicates in the active
diathesis of a certain language. For a specific predicate (or predication)
p, the SO for p is denoted with SOp. Thus SO can be understood as
the corresponding p-free, statistical ordering, of all the SOp-orders. SO
and SOp notions are language-dependent, possibly with strong similar-
ities for sibling natural languages. For the Romanian language there
are not reliable results on the SO and SOp orderings, supported by
computational linguistic consistent studies.

When referring to SOp (statistically p-depending) or SO (statis-
tically p free) order of the semantic roles in a specific clause, within
a certain language, we can have the SOp-disorder, respectively SO-
disorder that may occur on a particular clause [4], [2]. The SO for
Czech and English is given in [3].

2 Explicit and Implicit Contrastive Foci

Explicit Contrastive Focus (ECF) and Implicit Contrastive Focus (ICF)
phrases should be used with the following meanings [1]: ECF describes
those categories of contrastive Focus introduced by specific lexical
markers, while ICF designates the situations where contrastive into-
national focusation is covered by dislocation / disorder of the semantic
roles within the finite clause, but without the lexical presence of the
contrastive Focus markers. The only device to introduce the contrastive
focusation on certain constituents is the syntactic dislocation from their
standard position in the Systemic Ordering (SO) of syntactic-semantic
roles for the Romanian finite clause. The ICF problem consists in ob-
taining reliable algorithms and procedures on the Discourse-Prosody
interface in order to predict realistically the contrastive Focus distri-
bution in the Romanian ICF-type affirmative finite clause.

490



Recognition and Prediction for Implicit Contrastive Focus in . . .

3 Algorithms for ICF Prosody Prediction

Our purpose is to estimate the Focus categories in a finite-clause of ICF
affirmative type. Two positions of a syntactic-semantic role within a
finite clause are important: (1) The position of the corresponding con-
stituent in the Systemic Ordering (SO). The constituent first position is
naturally denoted as its place into the SO-order. (2) The position of a
constituent as syntactic-semantic role within a finite affirmative clause
to be analysed. The measure of SO-disorder is proposed to be the dis-
tance between the CD-order and SO-order positions, and computed as
the number of permutations necessary to remove the dislocated con-
stituent from its CD-order and to reposition to its location in the SO
order. Conventionally, the predicate does not change its position rela-
tive to the SO-order in the clause.

For the textual SO-order of an affirmative finite clause, we estab-
lished experimentally an ordering for the PP (Prosodic Prominence)
values of the SO-ordered constituents. This order is represented as
Focus weights taking values in the interval [0, 1], assigned to each
syntactic-semantic role in the clause, for the SO-ordered constituents.
The SO-coefficients are used for the estimation of PP values on the
basis of the CD-degrees computed for the constituents in CD order
(thus SO-disorder) in an affirmative ICF-type finite clause using an
algorithm we have designed.

4 Conclusion

In this paper we have presented a method for determining Prosodic
Prominence of constituents in Romanian affirmative clauses on the ba-
sis of Systemic Ordering and Communicative Dynamism.

The current approach we proposed is to compute the distance of
a CD-dislocated constituent compared to the SO-position of the con-
stituent, for the SO-order of the constituents in the ICF-type affirma-
tive finite clause at-hand.
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Email: cecilia.bolea@iit.academiaromana-is.ro

2Institute of Computer Science, Romanian Academy, Iaşi Branch, and Faculty of
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Particular Aspects of the Cyrillization Problem

Valentina Demidova

Abstract
We study the problem of converting Romanian words from

Latin to Cyrillic alphabet. A case study of letter i, which could
be translated to either one of и, й, ь, ё, ю, я, or nothing, depend-
ing on the context and some non-trivial factors is presented.

Introduction Why is cyrillization problem actual? Currently there
is a huge heritage of texts written in Romanian in Cyrillic script. For
making them usable they should be accessible to all. A good solution
is digitizing texts of this heritage. Digitization process consists of two
stages:

1. Scanning texts written in Cyrillic script.
2. OCR scanned text.
For implementation of the second stage, OCR program, one needs

to train a lexicon of words written in Cyrillic, spelled according to the
historical period. Moreover, the obtained text should be spell checked.
So, the need for a corrector of the Romanian language words written
in Cyrillic script arises. Such a corrector does not exist yet, it would
have to rely on the linguistic resources of Romanian words in Cyrillics.
A database of about 1 million of annotated Romanian words in Latin
alphabet was developed [2, 3]. The cyrillization problem becomes very
important for obtaining a corresponding database in Cyrillics.

We continued developing and describing the algorithm [1] of translit-
erating words of Romanian language written in Latin script to its equiv-
alent written in Cyrillic script, according to grammatical rules stated
by MSSR in the period 1967–1989. Below we give the elementary rules.

The following letters are translated independently of others:
©2014 by V. Demidova ∗Acklowledging Artiom Alhazov for assistance in article
preparation.
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Latin ă â b d f ı̂ j k l m n o p r s ş t ţ v z
Cyrillic э ы б д ф ы ж к л м н о п р с ш т ц в з

The rest of conversion depends on the context, e.g.,

Latin a c g h u
Cyrillic а к г х у
If not in ia,ea c(e),c(i) g(e),g(i) (c,g)h(e,i) iu
Cyrillic я ч ӂ - ю

Some cases were presented in [1], it remains to discuss the behavior of
letters e, i, q, w, x, y, as well as the subsequences in the last row of the
table above.

In a natural and efficient solution of the problem, the translation
should be performed left-to-right. The rules in any group are sorted
lexicographically. We look at the first untranslated symbol. The words
with letters q, w, y are borrowed from other languages, sometimes reducing
the problem to the language of the origin; a dictionary of exceptions is needed
where a systematic approach fails. The letter x is translated as either кс
or кз. All other cases contain at least one of letters e, h, i.

A special case presents the transliteration of words containing the
letter i. Further processing is a study of letter i in different cases, the
algorithm was implemented.

Main contextual rules In transliteration algorithm we used the fol-
lowing rules. Symbol “-” means no letters. Word boundaries are de-
noted by $. Capital symbols C/V indicate consonant/vowel, respec-
tively. Sign ¬ negates a condition. Symbol ’ represents palatalization.

Left Latin Right Cyril- Condition
context context lic

(c) i (o,u) -
(c) i (a) и
(c) i $ - Singular noun

(c,g) i $ ь Unstressed (e.g., plural noun
or imperative verb)
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C i C и
V i $ и if it forms a syllable
V i $ й if it does not form a syllable
C i $ ь to indicate palatalization

$|V ia я
i a я e.g., România-Ромыния,teoria-теория
i a а in borrowed/internat. words

ia ья in roots of domestic words
$|V i e -

i e и e.g., теорие
iii $ ии

¬(i) ii $ ий
C ii C ии
$ i o й rarely и instead of й
V i o й
C i o и

i u и e.g., in suffix -циуне
$|V iu ю
C iu ю only if read as ’u

e.g., ochiul-окюл

More complicated rules When developing our algorithm the rules
described above were maximally taken into consideration. However, the
specific character of Romanian language does not permit completely for-
malize them. It should be noted that we process words in Romanian
language basis of language resources [2, 3]. This allows us to use ad-
ditional information about the word, such as the part of speech (noun,
verb, adjective), singular/plural, etc.

Letter i in the end of a word Nouns ending in consonant+i. If
the word ends with i, preceded by one of groups (bl, dr, cp, pl, fl,
ştr, tr) in plural, rule i→и applies, e.g., codri⇒кодри. The same
rule applies for specific words of other parts of speech:
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noştri ноштри voştri воштри muţunachi муцунаки
simpli симпли umpli ымпли umfli ынфли
intri ынтри umbli ымбли iluştri илуштри
umpli ымпли afli афли scaraoţchi скараоцки
culi кули maori маори efendi ефенди

henri хенри hicori хикори bengali бенгали
lori лори peni пени

In the nouns ending with ci, chi, gi, ghi, if the plural ends with uri,
rules ci→ч, gi→ӂ, chi→кь, ghi→гь are applied, e.g., ochi⇒окь.
The same rule also applies for other parts of speech:

aici аич atunci атунч deci деч
nici нич cinci чинч

Rule i→й is applied to the nouns ending in ei, ai, ui, ı̂i, oi, ăi,
e.g, pui⇒пуй.

In the end of the following words after ş, rule i→- is applied:
acuşi акуш acelaşi ачелаш aceluiaşi ачелуяш

aceiaşi ачеяш cı̂tuşi кытуш sieşi сиеш
totuşi тотуш ı̂nsuşi ынсуш iarăşi ярэш

However, ı̂şi ышь
For 2nd person verbs, singular and plural, in imperative and in

present conjunctive, rule i→ь is applied, e.g., cı̂nţi⇒кынць.
Exceptions, for which rule i→и applies:
intri ынтри umbli ымбли umpli ымпли afli афли
For the verbs whose 1st person singular ends with n, rule i→й is

applied, e.g., (spun) spui⇒спуй.

Letter i in the beginning of a word Rule i→ы applies for the
verbs starting with i and their derivatives. Examples:

introduce ынтродуче intitula ынтитула insera ынсера
incontinuu ынконтинуу investi ынвести intona ынтона
invedera ынведера intrare ынтраре implica ымплика

investiţie ынвестицие inserat ынсерат intra ынтра
introductiv ытродуктив
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For the following words, the starting diphtong ie changes to ие:

ie ие iezuit иезуит iezuitic иезуитик

Yet, for the following words, the starting diphtong ie changes to е:

ied ед ieduţ едуц iei ей
iele еле ieri ерь ierna ерна

ierta ерта iete ете

The starting diphtong ia changes to я. Examples:

iarăşi ярэш iad яд iarbă ярбэ ia я

Letter i inside a word Diphtong ie not in the beginning of a word
is replaced by letter e. Example: taie⇒тае.

Exception (ie→ие applies instead): ijienă⇒ижиенэ

In the following words, diphtong io is replaced by йо:

iobag йобаг iod йод iordan йорган
iotaciza йотачиза bălăior бэлэйор voios войос

maior майор ploios плойос raion район

In words allowing root alternations, rules ia→я and ie→e are ap-
plied after consonants b, r, m, p, t. Examples:

amiază амязэ amiezi амезь biată бятэ
biete бете viaţă вяцэ vieţi вець

dezmiardă дезмярдэ dezmierd дезмерд piardă пярдэ
pierd перд piatră пятрэ pietre петре
fiarbă фярбэ fierbe фербе

In the words without above mentioned alternations the rule ie→е
is also applied. Examples:

viespe веспе miel мел miercuri меркурь
mierlă мерлэ piedică педикэ piele пеле
piept пепт piersic персик fiere фере
vier вер

Rule io→ьо is applied in the middle of a syllable. Examples:
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ghiol гьол chiomb кьомб chioşc кьошк
mintios минтьос miorlăi мьорлэи ştiolnă штьолнэ
Rule iei→ей is applied in old words after a vowel:

apăraiei апэраей ghionaei гионаей
droaiei дроаей zgripţuroaiei згрипцуроаей

Exceptions, using iei→ией:
bogăţiei богэцией bărbăţiei бэрбэцией

ı̂mpărăţiei ымпэрэцией tăriei тэрией

Conclusions Thus, the algoritm of converting Romanian words from
Latin to Cyrillic alphabets is obtained. Certainly, we have not preten-
sions to the completeness. The algorithm will be developed further.
We should especially note that the Reusable Resources for Romanian
[3] were very useful for us because they contain the morphological in-
formation about words.
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This article describes results of preliminary analysis of im-
plementation of reporting support and testing for Information
Analytical System for Research Institution – IAS IMCS.

Keywords: reporting indicators, Information Analytical
System, research institution.

1 Introduction

In recent decades, the number of different kinds of reports, documen-
tation on projects preparation, and other materials for presentation of
research institution (RI), its departments and individual researchers
has significantly increased. Preparation of such documentation takes
considerable time, which a researcher initially prefers to spend directly
on scientific activities. As a result, representatives of RI, in particular
those related to information systems development, have found them-
selves in the role of a shoemaker without shoes: it turned out that
there does not exist an information system to support the activities of
RI from the standpoint of a researcher and RI’ administration.

Experience in the development of such systems, when representa-
tives of institutions who administer research activities from outside,
act as a customer [1], or experience in scientific activity and its admin-
istration are not united, showed lack of effectiveness of these systems.
There are quite powerful and useful systems of information character
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which do not provide analytic functions [2]. Also there are various
types of bibliographic and other systems aimed at one side of the RI’
activity. But they do not support the process of RI’ reporting. Speci-
ficity of RIs requires that demands for information analytical system
(IAS) were advanced by group of persons including researchers, admin-
istrators of the RI itself, and, which is especially desirable, by persons,
possessing both, scientific and administrative experience.

This article describes results of preliminary analysis of implemen-
tation of reporting support and testing of IAS for RI – IAS IMCS [3].
The system is still under development; in parallel its database (DB) is
filled with data of the Institute of Mathematics and Computer Science
(IMCS) of Academy of Sciences of Moldova and is tested on the input
data for obtaining values of certain reporting indicators.

2 Reporting support
What is “reporting indicators”? As a rule, it is a list and/or a
number of objects with certain properties at definite moment/period
of time (Figure 1). E.g., one needs to get in a report the following:

• number of monographs, published by RI researchers in 2005-2010;

• number of researchers younger than 35 years at January 1, 2010.

For reporting, these indicators usually are calculated manually,
which takes a lot of time and brings a lot of inconvenience. It is signif-
icant that all the data required for calculation are time-related, e.g.:

• publication – with a year of publishing;
• age of the employee – with the birth date and the date on which

the information is requested;
• number of researchers – with the date on which the data is re-

quested and the period of time when an employee holds a post.

Factor of time representation in IAS IMCS. 1) In most DB ta-
bles of IAS IMCS each record contains moment or period of time to
which the stored data are attached. 2) On forms for sampling data
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Figure 1. One of the forms (with the list of indicators) in the annual
report both for each subdivision and the institution as a whole.

for reporting indicators calculation, field(s) for indicating respective
moment/period of time, is/are present.

Sampling data in accordance with the right balance of time ranges
in the items 1) and 2) gives the desired result (list) for the indicator.
The difficulty is that most of the indicators are often based on several
tables, each containing its own time slot. E.g., when counting the num-
ber of articles published by researchers of some laboratory in a specified
year, you need to consider publication date and periods of researchers
work in this laboratory. This information is in several tables.
DB of the system “IAS IMCS” filling. Since this is not just the
system for reporting, but for reports creation support, the issue of the
amount of relevant objects, accompanied by a list of the objects helps
to take control of data reliability. For example, one of the staff, looking
the report materials, notes that in the list of publications there is no
monograph, about which he knows exactly that it has been already
appeared. So information is not input into the system DB or it is
input incorrectly, or the report is incorrectly made.
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In the “proper” scientific institutions there is a motivation of re-
searchers in publications and other evidences of their scientific achieve-
ments. Having IAS RI, information about these evidences have to be
selected from the IAS DB. Consequently, the researchers are interested
in relevant data input into the IAS RI database correctly, as early
as possible, and also in their validation by the respective officials [3].
Naturally, that better and earlier than the researcher himself, this in-
formation no one will input. In addition, they can also use this data,
such as information on publications, in preparation of individual, in-
stitutional, laboratory reports, project reports, and in preparation of
new projects, new publications, CV. Thereby, taking into account the
specificity of scientific institutions, the problem of the database filling
is being resolved.
Representation form for reports being generated in the IAS
IMCS. The IAS IMCS generates reports in format of Excel table. It
permits not overloading the system by details in the data representation
mode, especially of graphical nature, and to use varied widely known
and widely applicable arsenal of Excel. So, having the report generated
in the Excel format, one can build demonstrative charts.

Another handy feature of Excel – the use of formulas for cell con-
tents construction – is being used in IAS IMCS for concatenation of
separate cells of the generated report with information about publica-
tions. This allows one to create lists of publications and adapt them
to different standards of publications lists representation. For this pur-
pose the generated report contains an additional column “Summary”.
In this column the information about publication, which is contained
in other columns, is “stuck” together as it looks in usual publications
lists. The reports generation tools constructs formula for column “Sum-
mary”. Changing this formula by means of Excel allows approximating
to the desired standard much closer.
The system is being developed and transferred into operation
step by step. At first, the part of the system responsible for the most
labour intensive and often used indicators, is implemented and became
available for use: publications, participation in forums and staff of the

502



Preliminary analysis of the reporting support implementation and . . .

institution (age, gender, scientific title etc.).
The system IAS IMCS testing from the very beginning is carried
out on real data. At the step of designing, the analysis of the au-
thors’ experience when elaborating the system “Scientific Potential of
Moldova” (elaborated by the order of Supreme Council for Science and
Technological Development) [1] was conducted. The real data from this
system were extracted and input into IAS IMCS. This, to some extent,
guaranteed the accuracy of the data. Since the concept and objectives
of IAS IMCS are substantially richer than of the system “Scientific Po-
tential of Moldova”, the extracted data were adapted and new parts
are started to be input.

At the first step, the system was tested by the developers directly
and updated with new valid data by the necessity, and not always
through the user interface.

At the step, when the interface began to function for data input and
editing, for the purpose of testing the system by the potential users,
a group of researchers-nondevelopers was involved in the system DB
replenishment. The system developers periodically analyze and “clean”
the input data. Revealing “typical” errors of data input and problems
of this group of researchers permit improving the system interface.

To date, the system DB contains information about 660 publica-
tions of the IMCS researchers, while table for authors contains 1820
records, table for collections of publications – 260 records, table for
publishers – 164 records, table for persons – 138 records, participation
in the forums – about 252 records, table for projects – 62 records, table
for researchers participation in projects – 119 records.

3 Conclusion

– At the beginning, input of inquiry information (dictionaries) takes a
lot of time: titles of journals, publishers, scientific specialities etc. But
such information is input just once when used for the first time, but is
used repeatedly. The positive effect of the system usage increases as
its database is replenished.
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– The dictionaries content, classification of scientific papers, confer-
ences, etc. depend on the internal needs of the institution, on the
reporting that is required.
– Usage of the system, and in particular, of DB dictionaries, facilitates
self-discipline in the RI and enhancement of documentation, as well as
self-discipline of major users – researchers.
– Advantage of the system is DB completion by the institution re-
searchers, who are the authors of publications, executors of projects,
participants of scientific forums etc. As direct players, they know bet-
ter than anyone the titles of publishers, forums, projects ciphers and
other components of the complete information. In addition, they are
more interested in the presence of correct information about their re-
search activities in the DB, and more than others will actively use it
for periodic reporting, list of publications and CV writing.

References
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1 Exploratory Data Analysis

EDA (Exploratory Data Analysis) was created and named by the
American statistician John Tukey.

EDA is approach analysis that is focused on identifying patterns in
the data, and identifying features of the data. EDA is the first step in
data analysis [1].

Methods of analysis generally fall under the following categories:

1. Univariate data analysis. There exist several ways to summarize
a univariate distribution. Often, simple descriptive statistics is
computed and plotted on a corresponding histogram; however,
such univariate statistics is very sensitive to extreme values and,
which is possibly more important, does not provide any spatial
information [2].

2. Multivariate data analysis. Working with multiple variables re-
quires the use of multivariate data statistics. If we want to express
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the relationships between two variables, we do so through the re-
gression study and correlation analysis. In a regression study,
we estimate the relationship between two variables by expressing
one as a linear (or nonlinear) function of the other. In correlation
analysis we estimate how strongly two variables vary together [3].

3. Normal-score transform. Many statistical techniques suppose
that the data have an underlying Gaussian distribution. The
transformed data are used for some geostatistical analyses and
can be reconfigured to their original state in a back transform,
when correctly executed. Thus, it is a temporary state and is
used for the convenience of satisfying the Gaussian assumption,
when necessary [2].

2 Correlation Analysis

Correlation analysis represents a method for measuring the covariance
of two random variables in a matched data set. Covariance is usually
expressed as the correlation coefficient of two variables X and Y . The
correlation coefficient presents a unitless number that changes from −1
to +1. Value of this coefficient is the standardized degree of association
between X and Y . The sign is the direction of the association, which
can be positive or negative [4].

3 Multiple linear regression analysis

A multiple linear regression analysis is carried out to predict the val-
ues of a dependent variable, Y , given a set of p explanatory variables
(x1,x2,. . . ,xp).

As in the case with simple linear regression and correlation, this
analysis does not allow us to make causal inferences, but it does allow
us to investigate how a set of explanatory variables is associated with
a dependent variable of interest [5].
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4 Data analysis methods used in tools for ex-
ploratory data analysis in ultrasound domain

Ultrasound investigation is one of the most widespread diagnostic
methods of medical imaging.

Ultrasound is easy-to-use paraclinical investigation method, non-
invasive and highly effective. It is very accurate in its application area
and is easy to be realized by a well-trained specialist [6].

On the other hand, the operator dependency problem is known,
which implies a degree of subjectivism in description of organs and for-
mulation of conclusions. To reduce this dependency and obtain qual-
itative standardized conclusions the SonaRes decision support system
was developed. It is aimed at using it for diagnostics of abdominal
region organs.

The SonaRes system helps doctor to obtain quickly correct infor-
mation about a specific pathology. It is not the case that the system
replaces the doctor, it just proposes conclusions, which do not contra-
dict the data introduced by the doctor, and, more importantly, gives
an explanation about the process of their obtaining.

As a result of ultrasound investigation the SonaRes system accu-
mulates a considerable data stock, which presents an inestimable value
for research and improvement of diagnostics methods and treatment.

The knowledge base serves for storing the data accumulated in the
process of knowledge acquisition and formalization.

The user database serves for storing the data, accumulated in the
process of collecting information about patient and his diagnostics: per-
sonal data, investigation sessions history and results, generated reports,
etc.

Diagnostics module serves for carrying out the investigation pro-
cess. The doctor has possibility to interact directly with the system
through the interface block, which ensures dialogue between the user
and the system. Diagnostics module realizes diagnostics deduction
based on data obtained from the user, the knowledge base and the
inference engine (Fig. 1).
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Figure 1. Components of the SonaRes system

To create tools for exploratory data analysis (EDA) we use the
database of the SonaRes system, namely: patient personal data (first
name, last name, age, contacts, rural or urban environment) and in-
vestigations data. In addition, for EDA purposes we will request ac-
cumulation of the data about living and working conditions (degree of
environmental pollution in a certain locality, nutrition, harmful factors
in working conditions, etc.).

To realize data analysis two additional modules were included in the
functional scheme of the SonaRes system, namely, ”Correlation anal-
ysis” and ”Multiple regression analysis” (Fig. 1). These two methods
will be used to analyze the relationships between some pathologies and
action of the living environment or of some harmful factors, which can
influence the evolution of pathologies.

From Fig. 1 we can observe that the patient data and investigation
results are stored in the knowledge base, and the conclusion of process
of ultrasound investigation is obtained through the logical inference.
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All data from the component ”Solution” go to the components ”Corre-
lation analysis” and ”Multiple regression analysis”, where the analysis
of relationships between pathologies and factors that lead to their evo-
lution is performed.

To perform the analysis of pathologies evolution two types of multi-
variate analysis correlation and multiple regression were selected. The
choice is motivated by the fact that these techniques focus more on in-
tensity of dependencies between the variables, less on their distribution
levels.

In our case we investigate a series of correlations, which establish
both, the dependence between some pathologies and factors, which may
determine their evolution, and dependence between some pathologies.

For example, it is known that an excessive use of pesticides leads
to the development of toxic hepatitis and cirrhosis. It is necessary to
establish the correlation between degree of pollution with pesticides in
certain areas and existence of people with mentioned pathologies, to
estimate the severity of diseases, dependence on workplace, age, etc.

5 Conclusion

Analysis of relationships between pathologies and harmful factors,
which lead to their development, allow reducing risks of pathologies
progression.
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Abstract

The paper presents two sentiment analysis classifiers in order
to configure a tool for automatic sentiment analysis to respond
optimally in this important issue of the natural language process-
ing. A huge amount of texts on topics of public interest, especially
on forums, was annotated morpho-syntactically and semantically,
manually and automatically. The statistics are relevant for de-
veloping the EAT tool, i.e. with more features than opinions
extraction (as age and gender of writer, topics, tonality, etc.).
This study is intending to help direct beneficiaries (public con-
sumer, marketing managers, PR firms, politicians, journalists),
but, also, specialists and researchers in the NLP, linguists, soci-
ologists, etc.

Keywords: sentiment analysis, classifier, semantics, statis-
tics.

1 Introduction

The option for this topic of sentiment analysis (SA), known as opinion
mining, encountered in texts exposed in Forums, relies on the need
to clarify the descriptive behavior of commentators, affected by the
amount of different approaches of articles from online print press, es-
pecially in the crisis communication, regardless of their nature and
purpose. Part of this research was reported already (Gı̂fu, 2012, 2014)
and it concerned this issue, aiming to improve and validate the Roma-
nian tools.

The question is: How much a computational tool can capture the
nature and the intensity of sentiment in a text?
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The paper is structured in five sections. The section 2 mentions
some important works focused on sentiment analysis. The section 3
describes two sentiment analysis classifiers used in this research, the
section 4 presents statistics, and finally, the section 5 depicts some
conclusions and discussions.

2 Background

The extracting emotional orientation from a text is assimilated as sub-
jectivity analysis [Dave et al., 2003], evaluating affection [Gı̂fu & Cioca,
2014] or objectivity analysis [Mihalcea et al., 2007]. SA defines the
processing search results from a text, generating a list of qualities and
aggregating opinions for each of them. Moreover, SA has been inter-
preted as including various types of analysis and evaluation [Liu, 2010],
[Pang and Lee, 2008]. The approaches take in consideration two classes
(positive and negative), sometimes three (e.g. the neutral class with
value 0), assigning each word with one value of a scale of values (shorter
or longer) [Gı̂fu, 2012].

3 Text classifiers

SAT (Sentiment Analysis Tool) was created using an API1. This classi-
fier determines if a text is positive or negative, and was based on 40000
Amazon product reviews and mood training data. Moreover, the tool
can measure the state of mind of the user (Mood classifier), the gen-
der of the user (Gender Analyzer Classifier), which age group the user
belongs (Age Analyzer Classifier), the tonality of a message (Tonality
Classifier).

EAT (Emotional Analysis Tool) is a tool able to detect and to
explain the appreciations about some entities (persons, products, or-
ganizations, etc.). EAT is based on information like labeling of parts

1http://www.uclassify.com/
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Figure 1. The SAT interface

of speech (e.g. Example 1), extraction of interest nominal groups, au-
tomatic extraction of entities and anaphoric connections. Moreover it
was developed an important ontology of entities, categories and values.

Example 1

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<DOCUMENT>
<P ID="1">
<S ID="1">
<W EXTRA="intranzitiv" ID="11.1" LEMMA="fi"
MSD="Vmip3s" Mood="indicative" Number="singular"
POS="VERB" Person="third" Tense="present"
Type="predicative" offset="0">Este</W>
<NP HEADID="11.3" ID="0" ref="0">
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<W Case="direct" Gender="feminine" ID="11.2"
LEMMA="un" MSD="Tifsr" Number="singular"
POS="ARTICLE" Type="indefinite" offset="5">o</W>
<W Case="direct" Definiteness="no"
Gender="feminine" ID="11.3" LEMMA="situa?ie"
MSD="Ncfsrn" Number="singular" POS="NOUN"
Type="common" offset="7">situa?ie</W>
<W ID="11.4" LEMMA="extrem~de" MSD="Rg"
POS="ADVERB" offset="16">extrem de</W>
<W Case="direct" Definiteness="no"
Gender="feminine" ID="11.5" LEMMA="grav"
MSD="Afpfsrn" Number="singular" POS="ADJECTIVE"
offset="26">grav?</W>

</DOCUMENT>

Figure 2. The EAT interface
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4 Statistics

For the elaboration of preliminary conclusions over the efficiency of the
two instruments, a manual and automatic analysis was performed on
a corpus of 121 texts (7448 words), starting from the comments on the
Romanian forums in first week of May. The topic was the crisis from
Ukraine.

Table 1. Statistical results for the emotion detection
Precision Recall F-measure

SAT 61% 72 % 66%
EAT 87% 81% 84%

5 Conclusions and discussions

The statistical results show that a classifier based on Romanian lan-
guage, does not preserve the semantics of API standards. In addition,
the previously analyzed texts reflected the users’ opinions on products
and companies and not on political crises. The communication context
requires the diversification of the corpus and the improvement of the
rules set for values. Furthermore, the EAT algorithm will be improved
by calculating the distances between categories and entities found in
the same sentence.

Acknowledgments. I express my appreciation to all colleagues
from NLP-Group@UAIC-FII who developed the tools for natural lan-
guage processing used in this research.
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A syntactic-semantic analysis system

Veronica Gı̂sca

Abstract

This paper presents a formal representation of natural lan-
guage, taking account of the syntactic and semantic information
simultaneously. The grammatical formalism used is that of at-
tribute grammars, and representation knowledge is provided by
formal logic.

Keywords: natural language processing, parser, syntax, se-
mantics, attribute grammars.

1 Introduction

A natural language processing (NLP) system consists of at least several
components including syntactic and semantic analyzers. A common as-
sumption in the design of an NLP system is that these components are
separate and independent. This allows researchers an abstraction nec-
essary to promote substantial steps forward in each task, plus such
a separation permits for more convenient, modular software develop-
ment. However constraints from higher level processes are frequently
needed to disambiguate lower level processes. Thus, an approach that
integrates syntactic and semantic processing is essential for proper anal-
ysis of sentences.

In this paper we present a system for natural language parsing
that targets a tight integration of syntax and semantics using attribute
grammars.

c©2014 by V. Gı̂sca
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2 System description

The system consists of the following parts: a lexical analyzer, a syn-
tactic parser, a semantic interpreter.

A lexical entry consists of a word and a set of codes that are neces-
sary for subsequent analysis. In fact, it is in the lexical entry that basic
morphological, syntactic, and semantic information is stored. From the
point of view of syntax, the lexicon helps the parser assign a token to
a particular word. The semantic information contained in the entry is
the basic synthetized attribute underlying the final process of analysis.

To implement the described process within attribute grammars ap-
proach, we first manually specify a dictionary that contains seman-
tic information sufficient for annotating leaf nodes stemming from the
words in an input sentence. We then use logic rules to define annota-
tions for non-leaf nodes of parse trees and restrict the produced parse
trees only to those that are semantically coherent.

The input to the syntactic parser is a string of tokens and terminals
to be processed into a sentence with some syntactic structure. The
syntactic rules represent a context-free grammar description. As form
the type of look-ahead, the syntax is basically of the top-down type.

Components of a top-down process can be easily added or edited
without affecting the rest of the system. In this way, the top-down
parser can be constructed piecewise [1]. In our top-down system, a new
component consisting of syntactic and the related semantic rules can be
developed and tested separately and then added as a new alternative
[3].

Our system is ideally suited to incorporate compositional seman-
tics that have correspondence between the rules defining syntactic con-
structs and the rules stating how the meaning of phrases are con-
structed from the meanings of their constituents.

Alongside with piecewise syntactic extension, we can glue together
semantics rules for corresponding syntax rules to compute meanings of
a larger set of languages.
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3 Analysing a sentence

The process of analysis from sentence to semantic representation can
be separated into three sub-processes. After the sentence has been
segmented, we obtain the lexical items in XML format.

We used POS Tagger [2] – a web service developed by the Faculty of
Computer Science from Iasi, Romania, and the WordNet for Romanian
to obtain lexical items.

After parsing, we obtain the syntactic structures of the sentence.
For example, consider the syntactically ambiguous sentence: Omul
priveşte o pasăre cu telescopul.

Its verb phrase allows for two syntactic structures under the figure
(see Fig.1).

Figure 1. Syntactic structures.

In a prepositional phrase PP, a preposition demonstrates an adjec-
tival or adverbial property by quantifying either the noun phrase NP
or the verb phrase VP. According to the second parse, the NP’s head
noun pasarea is quantified by the preposition ”cu”, which can be mis-
interpreted as ”o pasăre cu telescopul”. But in the second parse, the
preposition ”cu” quantifies the verb ”priveste” from the VP, which is
semantically more meaningful. Based on this argument, we can make
sure that the second parse is discarded while generating only the first
parse by using the attribute grammar.

In order to assign the proper syntactic structure to each of these
sentences one has to take into account selectional restrictions, i.e., the
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semantic restrictions that a word imposes on the environment in which
it occurs.

4 Conclusion

In this paper we presented a syntax-semantic analysis system for natu-
ral language processing. For integration of syntax and semantics anal-
yses we used the notation of attribute grammars. In contrast to purely
syntactic grammars, attribute grammars are capable of describing fea-
tures in natural language. Attributes are associated with each symbol
occuring in the production rule.

In the future we plan to investigate further incorporating depen-
dencies involving inherited attributes along with synthesized attributes
used for the natural language disambiguation.
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Diversification in an image retrieval system

Adrian Iftene, Lenuta Alboaie

Abstract

In this paper we present an image retrieval system created
within the research project MUCKE (Multimedia and User Cred-
ibility Knowledge Extraction). Our discussion in this work will
focus mainly on components that are part of our image retrieval
system proposed in MUCKE. One of the problems addressed by
our system is related to search diversification. In order to solve
this problem, we used text processing on user query and image
processing to create clusters with similar images.

Keywords: image retrieval, search diversification.

1 Introduction

In last years, the web has become a support for social media where users
of social networks are pushing multimedia data directly from cameras,
phones, etc. MUCKE project addresses this stream of multimedia so-
cial data with new and reliable knowledge extraction models designed
for multilingual and multimodal data shared on social networks. One
of the aims of this project is related to give a high importance to the
quality of the processed data, in order to protect the user from an
avalanche of equally topically relevant data. In this context we built a
novel image retrieval framework which perform a semantic interpreta-
tion of user queries and return diversified and accurate results.

Over time, various theories involving search results diversification
have been developed, theories that have been taken into consideration
[1]: (i) content [2], i.e. how different are the results to each other, (ii)
novelty [3], [4], i.e. what does the new result offer in addition to the

c©2014 by A. Iftene, L. Alboaie
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previous ones, and (iii) semantic coverage [5], i.e. how well covered are
the different interpretations of the user query. In the MUCKE project,
we create a collection with over 80 millions images with their associ-
ated metadata, mainly extracted from Flickr1. Over this collection we
perform processing at text level (on associated metadata) and at image
level. These processing modules help the information retrieval system
to retrieve images and to offer results in a diversification way.

2 Text processing module

The text processing module is used to process the associated metadata
and to process the user query. For text processing standard tools are
used for POS-tagging, lemma identification and named entity identifi-
cation. After text processing of associated metadata, the collection is
indexed with Lucene. Then, the diversification is made on user query
with: Yago ontology and a special module for query expansion.

Yago ontology comprises well known knowledge about the world
[6]. It contains information extracted from Wikipedia and other sources
like WorldNet and GeoNames and it is structured in elements called
entities (persons, cities, etc.) and facts about these entities (which
person worked in which domain, etc.). For example, with Yago we
are able to replace in a query like ”tennis player on court”, the entity
”tennis player” with instances like ”Roger Federer”, ”Rafael Nadal”,
etc. Thus, instead to perform a single search with initial query, we
perform more searches with new queries, and in the end we combine
the obtained partial results in a final result.

Query expansion module uses a technique of processing a given
query in order to obtain new ones that are both more efficient and more
relevant in the context of information retrieval operations. In this case,
we faced with two major issues that occur when the end user enters the
query: it is not precise enough, meaning that there are too many results
returned, most of them being irrelevant or it is not abstract enough,

1Flickr: http://www.flickr.com
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meaning that the search does not return any results at all. Here, we
applied two approaches: (1) a global technique, which analyses the
body of the query in order to discover word relationships (synonyms,
homonyms or other morphological forms from WordNet2), to remove
stop words (the, a, such, at) and to correct any spelling errors; (2) local
feedback which implies the analysis of the results returned by the initial
query, leading to re-weighting the terms of the query and relating it
with entities and relationships originating from the target ontology.

3 Image processing module

The information retrieval system searches in its collection with the
new obtained queries and returns a collection of relevant metadata
with their associated images. The image processing module performs
diversification on these returned results. The main aim of this module
is to create clusters with similar images and instead offer to user all
obtained results, the system will offer only one representative image
from every cluster. In this way the similar images are hidden, the user
will not be overwhelmed and will be able to see all the pictures on
request.

For that, with the help of Mathlab and its predefined functions
we extracted visual characteristics such as shape, color, texture, etc.
Also, a naive algorithm that calculates an euclidean distance between
the average color of the two images was implemented. Then, the clus-
tering module organizes in clusters the images, according to certain
metrics conducted from their features and based on the distances be-
tween them. For the clustering process the DBSCAN algorithm is used
[7] and the resulting clusters represent the application’s output.

2WordNet: http://wordnet.princeton.edu/
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4 Conclusions

In this paper we present our current work in MUCKE project. The
paper addresses the diversification aspects that can be useful for an
image retrieval system. For that we perform text processing on user
query with Yago and WordNet resources and image processing in order
to create clusters with similar images.

Acknowledgments. The research presented in this paper was
funded by the project MUCKE, number 2 CHIST-ERA/01.10.2012.
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A Universal Generalized Register Machine with

Seven States

Sergiu Ivanov, Sergey Verlan

Abstract

It is known that there exists a universal register machine with
32 instructions (states) allowed to either increment a register,
decrement a register, or check a register for zero. In this paper, we
consider more powerful instructions capable of checking multiple
registers for zero, as well modifying multiple registers, and we
construct a universal generalized register machine with only seven
states.

Keywords: generalized register machine, universality, encoding.

1 Introduction

The concept of universality dates back to the paper [4] by A. Turing, in
which he constructs a universal Turing machine capable of simulating
any other Turing machine. In general, the universality problem for a
class of computing devices C consists in finding a fixed element M∈ C
capable of simulating the computation of any other element M′ ∈ C.

Register machines represent a class of computing devices having a
finite number of registers storing integer numbers and a finite number
of states, with which instructions are associated [2]. In the most basic
versions of register machines, the allowed instructions are incrementing
a register, decrementing a register, and checking if a register is zero. It
is known (e.g. [3]) that such register machines can compute any partial
recursive function. In [2], I. Korec constructed a universal register
machine with 8 registers and 32 instructions of this kind.

c©2014 by S. Ivanov, S. Verlan
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In this paper we consider more powerful instructions capable of
checking multiple registers for zero, as well modifying multiple registers,
and we construct a universal generalized register machine with only
seven states.

2 Preliminaries

A deterministic register machine is defined as a 5-tuple (Q,R, q0, qf , P ),
where Q is a set of states, R = {R1, . . . , Rk} is the set of registers,
q0 ∈ Q is the initial state, qf ∈ Q is the final state and P is a set
of instructions of the following form: (p,RiPq) – in state p, increment
register Ri and go to state q; (p,RiM, q) – in state p, decrement register
Ri and go to state q; and (p,Ri, q, s) – in state p, go to q if register Ri

is not zero or to s otherwise. We remark that for each state p there
is only one instruction of one of these types above. It is habitual to
consider register machines in which instructions “decrement and zero
check” are used instead of the latter two types [1].

3 A Universal Generalized Register Machine

We will rely on a different representation of register machines as graphs.
We label the nodes of the graph with states, while the operations and
conditions are attached to the arcs. In our notation, the symbols RiP
and RiM stand for the operations of incrementing and decrementing
Ri. Such a construct is more general than a register machine, because
more than one operation or condition may be attached to an arc. A
transition along an arc may happen only when all conditions associated
with the arc are satisfied. It is therefore possible to “compress” the
states of the universal register machine with 32 instructions from [2],
for example, to obtain a generalized universal register machine with
fewer states. Note that an arc cannot repeatedly check and modify the
same register in one step, which essentially means that some states of
the cited universal machine cannot be merged with other states.
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Table 1. The universal generalized register machine with seven states
qi qj Conditions Operations

1 1 R1 6= 0 R1M , R7P
1 2 R1 = 0 R6P , R7P
2 2 R5 = 0, R6 = 0
2 2 R5 6= 0 R5M , R6P
2 3 R5 = 0, R6 6= 0 R5P , R6M
3 1 R1 6= 0, R6 = 0, R7 = 0 R1M
3 1 R1 6= 0, R4 6= 0, R6 6= 0, R7 = 0 R1M , R4M
3 2 R6 = 0, R7 6= 0 R1P , R7M
3 2 R1 = 0, R4 6= 0, R6 6= 0, R7 = 0 R4M , R6P
3 2 R1 = 0, R6 = 0, R7 = 0 R6P
3 3 R6 6= 0, R7 6= 0 R1P , R5P , R6M , R7M
3 4 R4 = 0, R6 6= 0, R7 = 0
4 1 R0 6= 0, R1 6= 0, R2 = 0, R5 = 0 R0M , R1M
4 1 R1 6= 0, R2 6= 0, R4 6= 0, R5 = 0 R1M , R2M , R4M
4 1 R0 = 0, R1 6= 0, R2 = 0, R4 6= 0, R5 = 0 R1M , R4M
4 2 R0 6= 0, R1 = 0, R2 = 0, R5 = 0 R0M , R6P
4 2 R1 = 0, R2 6= 0, R4 6= 0, R5 = 0 R2M , R4M , R6P
4 2 R0 = 0, R1 = 0, R2 = 0, R4 6= 0, R5 = 0 R4M , R6P
4 5 R5 6= 0 R5M
4 7 R0 = 0, R2 = 0, R4 = 0, R5 = 0
4 7 R2 6= 0, R4 = 0, R5 = 0 R2M
5 1 R1 6= 0, R3 = 0, R5 = 0 R0P , R1M
5 1 R1 6= 0, R3 6= 0, R4 6= 0, R5 = 0 R1M , R3M , R4M
5 2 R1 = 0, R3 = 0, R5 = 0 R0P , R6P
5 2 R1 = 0, R3 6= 0, R4 6= 0, R5 = 0 R3M , R4M , R6P
5 6 R5 6= 0 R5M
5 7 R3 6= 0, R4 = 0, R5 = 0 R3M
6 1 R1 6= 0, R4 6= 0, R5 = 0 R1M , R2P , R3P , R4M
6 2 R1 = 0, R4 6= 0, R5 = 0 R2P , R3P , R4M , R6P
6 4 R5 6= 0 R4P , R5M
6 7 R4 = 0, R5 = 0 R2P , R3P
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We will now briefly describe a universal generalized register machine
with seven states by listing its arcs in Table 1. Each line in this table
corresponds to a transition from the state qi to state qj , checking the
conditions listed in the “Conditions” column, and performing those
operations on registers which are given in the “Operations” column.

4 Conclusion

In this paper, we considered generalized register machines, which are
oriented graphs of states, in which the arcs have (multiple) conditions
and (multiple) operations assigned. We constructed a universal gener-
alized register machine with seven states. Such a construction may be
useful in finding the universal elements of certain classes of computing
devices (for the case of Petri nets with inhibitor arcs, see [1]).
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Stroke Volume Equation Validation: Impedance

Cardiography vs. Ultra-sonography in Humans

Exposed to Earth, Moon, Mars and Zero-gravity

Conditions

Vladimir I. Kostas, Michael B. Stenger, Charles F. Knapp,
Robert Shapiro, Siqi Wang, Joyce M. Evans

Abstract

We hypothesized that stroke volume (SV) values obtained
from thoracic impedance (Sramek-Bernstein equation) would be
similar to those obtained from ultra-sonography and that indexes
of human segmental fluid volume shifts as well as regulatory re-
sponses would be similar at Earth and under simulated Mars and
Moon gravities produced by Lower Body Positive Pressure and
Head Up-Tilt models. SV comparisons indicated that impedance
cardiography provided a legitimate estimate of SV. Even though
the impedance formula generated higher absolute values for SV
than did the ultrasound technique, percentage changes in re-
sponse to matched levels of orthostatic stress were similar for
both techniques.

Keywords: Impedance Cardiography, Ultra-Sonography,
Stroke Volume, Sramek-Bernstein Equation, Gravity.

1 Introduction

In today’s era of space exploration, models of activity in reduced and
increased gravity are needed to predict human cardiovascular responses
to short and long duration space flight, from liftoff to landing on other
surfaces, like Earth’s Moon, Mars, or an asteroid and to safe return of
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crew to Earth. Currently, there are a variety of human models used in
simulating reduced or increased gravity conditions, like water immer-
sion, centrifugation [1], parabolic flight, body suspension, head up tilt,
head down tilt and bed rest. In all of these models, a common problem
is accurate, noninvasive measurement of stroke volume (SV). This vari-
able is also the one most likely to provide insights into the effectiveness
of reproducing the effects of reduced gravity fields [2]. Use of lower body
positive pressure (LBPP) to control stroke volume in upright subjects
shows great potential as an approach for reliably simulating cardiovas-
cular changes similar to those that occur in reduced gravity. In this
study we compare head-up tilt (HUT) vs. body un-weighting using
LBPP for simulating responses to standing on the Moon (20% Body
Weight (BW) vs. 10◦ HUT), on Mars (40% BW vs. 20◦ HUT) and on
Earth (100% BW vs. 80◦ HUT). We hypothesized that stroke volume
values for each subject obtained from the thoracic impedance equation
(Sramek-Bernstein) would be similar to the one obtained from ultra-
sonography and that the indexes of healthy human segmental fluid
volume shifts (thorax (THX), abdomen (ABD), upper (UL) and lower
(LL) leg), and cardiac output, as well as regulatory [MAP, HR, total
peripheral resistance (TPR)] responses to standing would be similarly
affected by LBPP and HUT models.

2 Methods

2.1 Subjects / Protocol

Cardiovascular responses of healthy, young men (n = 12, Mean ±
S.E.M., Age = 26.1±1.5 yr, Ht = 178.7±3.1cm, Wt = 79.9±5.2kg ) and
women (n = 9, Mean± S.E.M., Age = 26.2±1.5 yr, Ht = 164.5±0.9cm,
Wt = 64.1± 4.6kg) to lying supine followed by standing on Earth and
in simulated reduced gravity were measured using an Alter-G device
(Mfg. G Trainer, Alter-G, Inc) at 20%BW, 40%BW and 100%BW.
The Alter-G device is a computerized treadmill enclosed in the Alter-
G LBPP chamber. The use of this treadmill requires the subject to
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wear special neoprene shorts which zip into the opening at the top of
the pressure chamber in a special collar. The pressure inside the Alter-
G chamber can be adjusted and can reduce the subject’s body weight
from 0 to 80% of original weight by pushing the body upwards. This
allows for simulation of various gravity environments while the sub-
ject stands passively or exercises (the treadmill can be set for walking,
running or climbing). The same data were also acquired during HUT
(Bailey Mfg. 9505 Tilt Table) at tilt angles modeling Moon (10◦) Mars
(20◦) Earth (80◦) and space flight (0◦) body weights. Subjects were
non-smokers and not suffering from hypo- or hypertension. Data col-
lection lasted a total of 4 hrs for each subject. Subjects were randomly
assigned to an evenly distributed matrix by treatment type (Alter-G
or HUT) and treatment level (Alter-G ctrl, Alter-G 20%BW, Alter-
G 40%BW, Alter-G 100%BW, HUT0◦, HUT10◦, HUT20◦, HUT80◦).
Subjects were fitted with Alter-G shorts, worn for all activities, during
both AG and HUT conditions. They were then instrumented for mea-
surements of ECG (3-lead “UFI -2121/1”), beat-to-beat blood pressure
of the finger (“Portapres”, Finapres Medical Systems), oscillometric
brachial blood pressure every 3 min (AND – UA – 767) and segmental
impedance/fluid shifts (10-lead “Thrim Tetrapolar –UFI 2994”). The
ECG and segmental impedance leads used monitoring electrodes (3M
“Red Dot” 2560). The tilt table was equipped with an accelerometer,
while the Alter-G device had a force platform and an LBPP pressure
sensor (“CyberSense Cy Q 301”)

Prior to testing, subjects were weighed (“Taylor Professional”
Scale), their height measured (“American Std”) and the distance be-
tween impedance leads recorded. Following this, 10 min of supine
(HUT0◦) data were collected. The HUT table activities consisted of
tilting the subject to one of the required angles (HUT0◦ – for Space
/ weightlessness, HUT10◦ for Moon gravity, HUT20◦ for Mars gravity
and HUT80◦ for passive response to Earth gravity). Data collection
consisted of 10-15 min of echocardiography, followed by three minutes
of cardiovascular data collection (SBP, DBP, MAP, HR, SV, CO, TPR,
segmental impedance [THX RO, ABD RO, UL RO, LL RO]) at each
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stress level. Alter-G activities consisted of adjusting chamber pressure
to obtain the ground reaction force required to yield the desired body-
weight of the subject (Alt-G ctrl was taken in a second supine session
conducted to simulate Space/ weightlessness, Alt-G 20%BW for Moon
gravity, Alt-G 40%BW for Mars gravity, Alt-G 100% BW for Earth
gravity). Data collection consisted of 10-15 min of echocardiography,
followed by three minutes of cardiovascular data gathering for each of
the body weight levels in Alter-G.

Two-dimensional echocardiography (ultra-sonography) for deter-
mining stroke volume, heart rate and cardiac output was administered.
Aortic blood velocity time integral was acquired by sonography dur-
ing the last minute of each HUT or LBPP level from continuous wave
Doppler measurements made at the apical window using a 2 to 4 MHz
phase array probe with a standard ultrasound machine (CX-50, Philips
Healthcare, Andover, MA). Images were stored digitally for offline anal-
ysis (ProSolv w 3.0, Problem Solving Concepts, Inc., Indianapolis, IN).
Doppler images from at least three cardiac cycles for each minute were
independently analyzed by two experienced, registered sonographers.
Stroke volume (annulus cross sectional area x velocity time integral),
cardiac output (stroke volume x heart rate), and total peripheral re-
sistance (mean arterial pressure/cardiac output) were calculated. In
addition to the ultra-sonography method, above, SV was determined
using thoracic impedance (Sramek-Bernstein impedance formula, [3]):

SV = δ · (0.17 ·H)3

4.25
· dZ/dtmax

Z0
· LV ET (1)

Eq. (1). Sramek-Bernstein Stroke Volume Equation, where δ
= weight correction factor, H = subject height (cm), dZ/dtmax

= maximal impedance change (Ω/s), Z0 = basic Thoracic
impedance (Ω), LV ET = Left Ventricular Ejection Time (s)

Sramek-Bernstein developed this equation based on original Ku-
bicek’s equation, Eq. (2), who assumed that the estimated volume of
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the electrically participating tissue in the thorax is modeled as a cylin-
der instead of a truncated cone as in the Sramek-Bernstein version.

SV = p · L2

Z2
0

· dZ/dtmax · LV ET (2)

Eq. (2). Kubicek’s Equation, where SV is stroke volume
(ml), p the resistivity of blood (Q cm), L the distance be-
tween the voltage measuring electrodes (cm), Z0 the basic tho-
racic impedance (Q), dZ/dtmax the maximal impedance change
(Q/s) and LV ET the left ventricular ejection time (s).

A typical impedance signal (dZ), its first derivative (dZ/dt) with
marks on the important points of the wave form, and the ECG are
shown in Fig. 1. Since Kubicek et al. introduced their methodol-
ogy for stroke volume calculation, the first derivative of the impedance
signal has extensively been studied by many investigators to discover
its physiological correlates and origin. Karnegis et al. first showed
that the A-wave follows the P wave of the ECG, and the C-wave is
associated with ventricular contraction. During diastole, they noticed
another upward deflection of the dZ/dt signal: the O-wave. Lababidi et
al. compared the dZ/dt signal with simultaneously performed phono-
cardiography in 91 subjects. They found that the B-point coincides
with the aortic valve opening and the X-point with aortic valve clo-
sure. These observations have been confirmed by several investigators
using echocardiography and aortic pressure recordings. Using today’s
technology, the dZ/dt signal has been determined to be highly sensi-
tive for systolic time intervals. The origin of the impedance cardio-
graphic signal appears to be complex [3] and the exact physiological
and anatomical basis still needs further explanation. Many investiga-
tors have dealt with this subject in the past. In general, evidence to
support the origin of the impedance cardiographic signal has been de-
rived from studies, which tried to correlate physiological parameters to
the dZ/dt signal, modelling studies and studies performed in animals.
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Figure 1. Characteristic dZ, dZ/dt and ECG signal

2.2 Validation

In the past 30 years many validation studies have been performed [3]
comparing the impedance cardiographic method according to Kubicek
et al and according to Sramek and Bernstein, with other methods to as-
sess stroke volume. Sramek and Bernstein’s method is by far the most
frequently used impedance cardiographic method since 1986. This is
the result of the implication of this method in a practical, commer-
cially available set-up (the NCCOM, BoMed Medical Manufacturing
Ltd., Irvine, CA, U.S.A.). Most investigators found a significant corre-
lation between stroke volume measured with impedance cardiography
and stroke volume measured with other methods. However, various
investigators also reported a wide dispersion of the impedance stroke
volume data. This has especially been reported by investigators us-
ing Sramek-Bernstein’s method. It also appears from these studies
that the impedance method is not equally valid under all physiologi-
cal conditions. Aortic valvular pathology, the first 12 h after coronary
artery surgery and sepsis appear to be less favourable conditions for
impedance cardiography. Studies using Kubicek’s method show better
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correlations with the reference method. Pickett et al. and Woltjer et
al. seem to confirm this observation. Nevertheless, Kubicek’s method
is far less standardized. A critical element of this method is the re-
sistivity of blood (p). In recent studies of Demeter et al it was found
that the best results are obtained when p is calculated dependent on
the patient’s haematocrit. No consensus can be reached on the accu-
racy of impedance cardiography in the measurement of stroke volume
based on the present studies. In some studies, the method is evaluated
as highly accurate, in others more dispersion between the two meth-
ods is found. In most studies however, the mean difference between
the two methods and its standard deviation are not shown. In order
to establish the validity of impedance cardiography, more research is
needed on the latter, and more studies need to be performed comparing
both impedance cardiographic methods with each other and other non-
impedance methods. In this study we validated the Sramek-Bernstein
method against ultra-sonography method, which in the last decade is
considered to be the gold standard.

2.3 Data Analysis

All signals were acquired at a sample rate of 1000 Hz using Data Ac-
quisition Software (“Windaq Pro 2.59, DI-7x0 USB0, “DATAQ Instru-
ments”). Subsequent analysis was performed using “Windaq Browser”,
“Physiowave 6.21, Visual Numerics” and Microsoft Excel 2003 software
installed on a “Dell Latitude D-600” laptop. A mixed effects model
ANOVA (one between factor, gender, and two within factors, treat-
ment model (AG vs HUT), and treatment level, four levels of gravity
stress) was performed using SAS Enterprize Guide 4.2 (SAS Institute).
A p value of < 0.05 was considered statistically significant. Data are
presented as means ± S.E.M.
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3 Results

Data were collected and results obtained for cardiovascular variables:
SV, HR, CO, SBP, DBP, THX, ABD, UL and LL impedances. The
Stroke Volume Results are shown in Fig.2.

Figure 2. Mean Stroke Volume from ultrasound/sonography (SV1, left)
and from impedance equation (SV2, right)

During HUT, SV determined by ultrasound, declined at 80 degrees,
Fig. 2, left panel, solid line. During Alter-G, SV was decreased (from
supine) at Alter-G 20% BW and again at 100% BW, left panel, dashed
line. Tilt-induced changes in SV calculated from impedance, Fig. 2,
right panel, were similar to ultrasound results, SV was smaller at 80
degrees and Alter-G values declined at 20% BW and again at 100%
BW. Percentage changes in response to matched levels of orthostatic
stress were similar for both SV techniques: ∆ (HUT0 vs. HUT80) ∼
30% difference in relative terms. As far as other cardiovascular vari-
ables, compared to supine: fluid shifts from the chest to the abdomen,
increases in HR and decreases in stroke volume were greater at 100%
body weight than at reduced weights, in response to both LBPP and
HUT. Differences between the two models (Alter-G and HUT) were
found for systolic BP, diastolic BP, mean arterial BP, stroke volume,
total peripheral resistance, thorax and abdomen impedances, while HR,
cardiac output, upper and lower leg impedances were similar.
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4 Discussion / Conclusion

Stroke volume comparisons between ultrasound and impedance tech-
niques indicate that impedance cardiography [3] provides a legitimate
estimate of this important variable. Even though the impedance for-
mula generated higher absolute values for SV than did the ultrasound
technique, percentage changes in response to matched levels of ortho-
static stress were similar for both techniques: ∆ (HUT0 vs. HUT80)
∼ 30% difference in relative terms for both (Fig. 2). That implies
that our initial hypothesis about similarities between the two stroke
volume techniques should be rejected, however, due to similarities in
relative terms, the stroke volume obtained from impedance cardiogra-
phy could be used as a cheap, fairly accurate (in percentage change)
and non-invasive alternative to ultra-sonography.

In addition to SV changes, when compared to normal weight stand-
ing, HR was lower with unloading (HUT80◦ vs. HUT0◦ or Alt-G 100%
vs. Alt-G ctrl), CO and SV were greater, and fluids were shifted from
lower leg to upper leg, to abdomen and less fluid was shifted from the
thoracic cavity. From this study we found that body weight unloading
via both LBPP and HUT resulted in cardiovascular changes similar to
those anticipated in actual reduced gravity environments. The LBPP
model/Alter-G had the advantage of providing an environment that
allowed dynamic activity at reduced body weight, however, the signif-
icant increase in blood pressures in the Alter-G may favor the HUT
model.
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Abstract

We discuss the usefulness of and suggest several elements for
a fuzzy ontology for describing the human walk.

Keywords: fuzzy ontology, web ontology language, human
movements, robotics

1 Introduction

Human movement may be described with linguistic terms that are dif-
ficult to interpret because their values are imprecise or vague, as in the
linguistic representation of the parameters in the ontology proposed in
[1], based on [2]. Fuzzy ontologies were introduced by [3] to represent
knowledge in domains in which the concepts have imprecise definitions.
In this paper, we propose a fuzzy extension for the ontology of human
movements, from [1], [2]. After recalling in the next section the main
concepts and axioms defined in the ontology [1], we discuss in the third
section fuzzy concepts and fuzzy datatypes of the fuzzy ontology for
human movements. A brief conclusive section ends the paper.

2 Ontology for Human Movements

The ontology of human movements described in [1] uses the main con-
cepts recalled below.

• BodyParts – contains concepts about joints and segments of the
human body, which are used in human action.

c©2014 by R. Luca, H.-N. Teodorescu, S.-I. Bejinariu
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• ReferencePlanes – are used to describe the relative position of
a body part and has the following elements FrontalPlane, Sagit-
talPlane and Transversal - Plane (see [2]).

• RelativePosition – is defined by reference planes and contains
the following elements: Upper, Lower, Left, Right, Front and
Back [1,2].

• Parameters – describe a human action; include Postural (Angle,
StepLength, Size), Frequential, and Cinematic parameters [2].

• ParameterRepresentation – representation with linguistic
terms (Small, Medium and Large), or numerical values (Mul-
tipleValues, SingleValues in Ptrotegé [4] terminology).

• HumanAction – describes the actions: Standing, Walking,
Running.

• HumanCondition – describes the condition of the human:
physical status (normal, disabled) and age (child, young, mature,
old) [2].

The ontology was implemented in Protégé 4.3 [4]. An exam-
ple of linguistic representation of a parameter is small/medium/large
KneeAngle. As reference values, we consider 120◦ as the maximum
value for small, 150◦ the maximum value for medium and 180◦ the
maximum value for large. The KneeAngle parameter is used in axioms
to define some HumanAction concepts. For example, the description
for Running class is [1] presented in Table 1.

A fuzzy extension of the proposed ontology for human movement
is described in the next section.

3 Fuzzy Parameters and Rules in the Proposed
Ontology

Some concepts and parameters in the human movement ontology [1] are
imprecisely and vague defined. For these, we propose fuzzy concepts
and fuzzy datatypes using Protégé FuzzyOWL Plugin [5]. Aggressive
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Table 1.
Class: Running

SubClassOf:
HumanAction,
((hasAngle some Angle)
and (hasJointAngle value KneeAngle)
and (hasLinguisticRepresentation some Medium))
and ((hasFrequency some Frequency)
and (hasLinguisticRepresentation some Large))
and ((hasStepLength some StepLength)
and (hasLinguisticRepresentation some (Medium OR Large)))

and slow walking are examples of fuzzy concepts that can be defined
based on velocity and postural parameters. These, in turn, are fre-
quently defined using linguistic attributes. For example, for velocity,
we define Small, Medium and HighVelocity as fuzzy datatypes using
triangular membership functions. In this setting, HighVelocity fuzzy
datatype has the membership function (m.f.) everywhere null, except

µ(v) =
{

v − 2 for v ∈ [2, 3]
1− (v − 3) for v ∈ [3, 4].

Postural parameters are imprecise because of the limits of technical
process of determining them from images (visually) – limited image
resolution, limited ability of correct segmentation of the image, and
imperfect shape boundary detection; also, errors due to the change of
the shape of the clothes and changing orientation of the person with
respect to the camera limit the precision. Hence, a fuzzy representa-
tion may be more suitable. KneeAngle is a parameter we define by a
fuzzy datatype. For interval-type m.f.s, we use trapezoidal m.f.s, e.g.,
(0◦, 0◦, 120◦, 120◦) for SmallKneeAngle, (120◦, 120◦, 150◦, 150◦) for
MediumKneeAngle, and (150◦, 150◦, 180◦, 180◦) for HighKneeAngle,
as in Table 2.
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Table 2.
Declaration(Datatype(:HighKneeAngle))
AnnotationAssertion(:fuzzyLabel :HighKneeAngle

“ <fuzzyOwl2 fuzzyType= \“datatype\“ >
<Datatype type= \“trapezoidal\“a = \“150\“ b = \“150\“

c = \“180\“d = \“180\“/ >
< /fuzzyOwl2> “)

DatatypeDefinition
(:HighKneeAngle DataIntersectionOf(DatatypeRestriction

(xsd:double xsd:maxInclusive “180.0“ˆˆxsd:double)
DatatypeRestriction(xsd:double xsd:minInclusive

“0.0“ˆˆxsd:double)))

The following rule, which describes HurriedWalk [1], is completed
with fuzzy sets (denoted by ¤̃), Ã1, Ã2, Ã3, B̃1, C̃1, D̃1, and Ẽ1, as in
Table 3.

Therefore, the HurriedWalk rule reads as:

((Ã1) ∪ (Ã2)) ∩ ¬Ã3 ∩ B̃1 ∩ C̃1 ∩ D̃1 ∩ Ẽ1

and the membership function is computed (in min-max fuzzy logic) as:

µH̃w
= min(µẼ1

, min(µD̃1
, min(µC̃1

,min(µB̃1
,min(1− µÃ3

,

max(µÃ1
, µÃ2

))))))

The fuzzy concept assertion of HurriedWalk is represented by an-
notating the concept assertion with a degree ≥ 0.5. Notice that a
membership value less than 0.5 still means that the concept cannot be
firmly asserted and the related rules must be dealt with as fuzzy rules.
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Table 3.
If

[postural]
(average length of step medium ( Ã1) or high (Ã2)

but NOT very high (Ã3) ) and
(maximum angle at knee medium (B̃1) ) and
( foot angle medium (C̃1) ) and
(height of leg hoisting average ( D̃1) ) and
[frequential]
( step frequency average (Ẽ1) )
Then

Hurried walk

4 Conclusions

Because there are numerous sources of imprecision and ambiguity (un-
certainty) in visually determining the postural and cinematic param-
eters of the human movement, we suggested a fuzzy extension of the
ontology of human movement to define fuzzy datatype for linguistic
representation of parameters. An implementation based on Protegé
was sketched. This ontology is still a work in progress.
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Abstract

A system strategy to estimation of guaranteed survivability
and safety for operation of complex engineering objects (CEO) is
proposed. The principles that underlie the strategy of the guar-
anteed safety of CEO operation provide a flexible approach to
timely detection, recognition, forecast, and system diagnostic of
risk factors and situations, to formulation and implementation
of a rational decision in a practicable time within an unremov-
able time constraint. Implementation of the proposed strategy
is shown on example of diagnostics of electromobile-refrigerator
functioning in real mode.

Keywords: risks, abnormal mode, safety, information plat-
form for engineering diagnostics.

1 Introduction

Creation of modern technology defines a new requirement to ensure
their technological and environmental safety. To improve the quality
control of complex objects the reasons and the factors should be found
out, that can not provide the agreed level of survivability and safety
of complex engineering objects operation. One of these reasons is the
peculiarities of diagnostic systems, focused on identifying failures and
malfunctions. This approach to security eliminates the possibility of
a priori prevent abnormal regime and, as a consequence, there is a
possibility of its subsequent transition into an accident or disaster.

c©2014 N.D. Pankratova
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Here the system strategy to estimation of guarantee of survivable
and safe operation of complex engineering objects on the basis of mul-
tifactor risks and principle of timely detection of reasons of abnormal
situations and prevention of transition of normal situations into abnor-
mal is proposed.

2 Mathematical Formulation of Complex Ob-
ject System Control Problem

Let us show the mathematical formulation of this problem with a priori
set variation intervals of main indicators of the system in the normal
mode and predefined permissible boundes of the influence of external
factors [1].

It is known that system functioning is characterized by the fol-
lowing sequence of complex system states: E1, E2, ..., Ek. Every state
E is characterized by specified indicators of system function processes
(Yk, Xk, Uk) and specified indicators of external environmental influ-
ence and risk factors Ξ:

Ek = {(Yk ∈ Y ) ∧ (Xk ∈ X) ∧ (Uk ∈ U) ∧ (Ξk ∈ Ξ)},
where the meaning of indicators at the moment Tk ∈ T± is defined by
the following relations:

Yk = Ŷ [Tk]; Xk = X̂[Tk]; Uk = Û [Tk]; Ξk = Ξ̂[Tk];

Tk = {tk|tk > tk−1}; Tk ∈ T±;

T± = {t|t− ≤ t ≤ t+}; Y = (Yi|i = 1,m);

X = (Xj |j = 1, n); U = (Uq|q = 1, Q); Ξ = (Ξp|p = 1, P ).

Here Y is a set of external parameters Yi that includes technical, eco-
nomic, and other indicators of system-function quality; X is a set of
internal parameters Xj that includes constructional, technological, and
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other indicators; U is a set of control parameters Uq; Ξ is a set of ex-
ternal environmental influence parameters and parameters of risk fac-
tor influence Ξp; Ŷ [Tk], X̂[Tk], Û [Tk] and Ξ̂[Tk] are sets of meanings of
appropriate parameters at the moment Tk; and T± is a specified or
predicted complex object functioning period.

Required : determine in the moment Ti ∈ T± such values of degrees
ηi and levels Wi of risk, as well as a margin of permissible risk Tar, which
provides, during the abnormal mode, the possibility of transition from

the mode R̃
+

tr during the period Ť±tr to the normal mode till the critical
moment Tcr of transition of abnormal mode becomes an accident or
catastrophe.

3 Strategy for Solving the Problem of System
Control of Complex Objects

The main goal of the proposed strategy is to guarantee a rationally
justified reserve of survivability of a complex system in real conditions
of fundamentally irremovable information and time restrictions.

The main idea of the strategy is to ensure the timely and credi-
ble detection, recognition, and estimation of risk factors, forecasting
their development during a definite period of operation in real condi-
tions of a complex objects operation, and on this basis ensuring timely
elimination of risk causes before the occurrence of failures and other
undesirable consequences.

The main approaches and principles of the strategy for providing
guaranteed safety of complex systems should be formed on the basis of
the following principles [2]:

• timely detection, guaranteed recognition, and system diagnosis
of factors and situations of risk;

• efficient forecasting and credible estimation of abnormal and crit-
ical situations;
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• timely formation and efficient realization of decisions of safety
control in the process of prevention of abnormal and critical sit-
uations.

The diagnostic unit, which is the basis of a safety control algo-
rithm for complex objects in abnormal situations, is developed as an
information platform.

Diagnostics of electromobile-refrigerator functioning in real mode
is considered.

4 Conclusion

A system strategy to estimation of guaranteed survivability and safety
for operation of CEO allows preventing the inoperativeness and abnor-
mal situations. The principles that underlie the strategy of the guar-
anteed safety of CEO operation provide a flexible approach to timely
detection, recognition, prediction, and system diagnostic of risk fac-
tors and situations, to formulation and implementation of a rational
decision in a practicable time within an unremovable time constraint.
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intramolecular operations
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Abstract

Here we tackle a problem from biology in terms of discrete
mathematics. We are interested in a complex DNA manipula-
tion process happening in eukariotic organisms of a subclass of
ciliate species called Stichotrichia during so-called gene assembly.
This process is in particular interesting since one can interpret
gene assembly in ciliates as sorting of permutations. We survey
here results related to studies on sorting permutations with some
specific rewriting rules that formalize elementary intramolecular
gene assembly operations. The research question is “what per-
mutation may be sorted with our operations?”

Keywords: ciliates, gene assembly, elementary operations,
combinatorics, molecular computing

1 Introduction

Ciliates posses two types of nuclei called micronucleus and macronu-
cleus. A macronucleus contains short gene-sized DNA molecules, where
each molecule stores a single gene represented as a contiguous sequence
of nucleotides. Meanwhile, a micronucleus contains long DNA orga-
nized on chromosomes, where each DNA contains many genes, each
gene is broken into fragments (called MDSs), those fragments are sep-
arated by non-genetic nucleotide sequences (called IESs), MDSs are
shuffled throughout the molecule, and some of the MDSs may be even
inverted (for example we refer to Fig.1).

c©2014 by V. Rogojin
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During gene assembly, the micronuclear DNA molecules get trans-
formed into the macronuclear form. During this process IESs get re-
moved from DNA and MDSs are spliced together so that to form ma-
ture macronuclear genes (for mode details see [1]).

(a) (b)

Figure 1. From [4]. Micronuclear and macronuclear versions of actin I gene from Sty-
lonychia lemnae. (a) Micronuclear gene pattern: the gene is broken into 8 MDSs. Each
MDS (blue rectangle) is separated from each other by an IES (white rectangle). MDS2 is
inverted. (b) Assembled macronuclear gene: all IESs are removed, all MDSs are properly
ordered and linked to each other to form the contiguous gene. The orientation of MDS2 is
restored.

The intramolecular model explains gene assembly in terms of three
molecular folding-recombination operations Ld, Hi and Dlad that oper-
ate within a single molecule and splice together two or mode MDSs.
Operation Ld removes IESs, Hi inverts a piece of DNA containing MDSs
and IESs, and Dlad exchanges two pieces of DNA with places in such
a way that two or more MDSs get spliced together.

Our focus is at the elementary intramolecular operations. Those are
intramolecular operations that are “allowed” to invert/relocate piece
of DNA containing only one micronuclear (i.e., non-composite) MDS.
As the result of such a restriction, unlike the general model, elemen-
tary operations may not assemble all the micronuclear gene patterns.
Moreover, for the same micronuclear gene pattern there may exist both
successful (assemble the gene) as well as non-successful (fail to assemble
the gene) strategies. In this way, it is not easy to answer the question
what micronuclear gene patterns can be assembled into macronuclear
one by elementary intramolecular operations. The goal is to find an
efficient method to decide whether a micronuclear gene pattern can be
assembled by elementary operations. The problem is translated into
a permutation sorting problem. Here we present the recent results
related to this problem.

We refer to a recent review on general, simple (less restrictive than
elementary) and elementary model here [3].
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2 Elementary gene assembly as permutation
sorting

A gene pattern with n MDSs is formalized as a signed permutation π
over set of integers Πn = {1, 2, . . . , n}. Here, an integer i represents
the ith MDS, while signed integer i represents the inverted ith MDS in
the pattern. For instance, the micronuclear gene pattern from Fig. 1 is
represented as permutation π = 3 4 5 7 2 1 6 8.

Operations eh and ed formalize Hi and Dlad respectively as rewriting
rules over Π∗n [2]

orthodox ehi: inverted ehi: orthodox edi: inverted edi:

ui(i + 1)v → u(i + 1)iv → uiv(i− 1)(i + 1)w → uiv(i + 1)(i− 1)w →
→ ui(i + 1)v, → u(i + 1)iv, → uv(i− 1)i(i + 1)w, → uv(i + 1)i(i− 1)w,

ui(i + 1)v → u(i + 1)iv → u(i− 1)(i + 1)viw → u(i + 1)(i− 1)viw) →
→ ui(i + 1)v, → u(i + 1)iv, → u(i− 1)i(i + 1)vw, → u(i + 1)i(i− 1)vw,

where i ≥ 1 and u, v, w ∈ Π∗n.
The process of gene assembly is represented as a permutation sort-

ing process by eh and ed operations.

3 Deciding eh, ed-sortability

The decision procedure is in terms of directed graphs and permutations.
In [2, 4] we have considered so-called dependency graphs associated to
signed permutations, where a directed edge (j, i) means that a eh, ed
operation on integer i is preceded by a corresponding operation on
integer j in any strategy applicable to the given permutation. In this
way, the dependency graphs “tell” us in which order eh, ed operations
are used and which operations cannot be used at all in any strategy
applicable to π.

Currently, there exists an efficient method (cubic time complex-
ity) to decide the ed sortability for permutations with no signed el-
ement [5, 6]. The situation with eh, ed sortability is more complex,
currently the search for an efficient decision method is in progress [4].
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A characterization method for eh, ed-sortable permutations that yields
though no efficient solution one can find at [2].
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On ontology of research, development and

innovation in Republic of Moldova

Andrei Rusu

Abstract

Building information systems supposes an unambiguous un-
derstanding of key terms and relations between them in the do-
main of interest. We consider the process of evaluating the re-
search, development and innovation project proposals in Republic
of Moldova and build an initial ontology of it with the goal to be
useful to make available the use of software agents in the process
of evaluation of proposals and their results.

Keywords: research, development, innovation, ontology.

1 Introduction

An ontology is a formal specification of the concepts and the rela-
tionships that can exist between concepts. According to Guarino’s
definition, ”an ontology is a logical theory accounting for the intended
meaning of a formal vocabulary, i.e. its ontological commitment to a
particular conceptualization of the world” [1].

2 Method of ontology construction

The methodology used for ontology construction is based on existing
methodologies, like ontology development 101 [2] and other ones. The
proposed method translates the knowledge semantics described semi-
formally in the already developed information system EXPERT Online
https://expert.idsi.md/ developed at IDSI, http://idsi.asm.md/. The
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method consists in the following steps: i) define the classes and their
hierarchy, ii) define relations between classes; iii) descibe the business
rules in ontological manner; iv) make other adjustments; v) verify the
ontology. We have to mention also here the use of Protégé ontology
editor [3] and the web ontology language OWL DL [4].

3 Ontology construction

Today there are some top-level ontologies which describe general con-
cepts like space, time, object, event which are independent concepts
from a particular domain or a concrete problem. Among these we use
DOLCE ontology, Temporal Relations and other ones. Other top-level
ontologies might be used.

3.1 Identifying classes and creating taxonomy

To identify OWL classes used in our ontology we start with the glos-
sary of terms developed by InfoScientic group at Information Society
Development Institute [5] since OWL classes represent individuals that
form an extension of the concept mapped by the class. Many attributes
of the classes have been transformed in corresponding qualities of time
and other abstract characteristics of the DOLCE ontology and other
top-level ones.

The classes are organized in a taxonomy created on the basis of
the subsumtion relation. Classes A and B are linked by subsumption
relation if and only if every instance (individual) of A is also an instance
of B and in this case we say that B subsumes A or A is a subclass of
B. For example, the taxonomy of Activitate is shown in the Fig. 3.1.

3.2 Defining relations and business rules

Most of the relations find in our ontology map to relations found in
DOLCE ontology and its submodules. Business rules were identified
during analysis of the proposed methodology for evaluating research,
innovation and development project in Republic of Moldova proposed

554



On ontology of RDI in Republic of Moldova

Figure 1. Initial ontology based on [5]

in [6] and taking in consideration the information system EXPERT
Online.

3.3 Ontology verification

The ontology consistency is checked with the help of the Protégé tool
[3] and the Pellet reasoner system [7].

4 Conclusion

The proposed ontology can be used for information exchange between
humans and software agents as well as it can be extended to better
support the controlled natural language support in information systems
developed to support research, development and innovation in Republic
of Moldova.
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SonaRes methodology enhancement using

knowledge discovery technique

Iulian Secrieru

Abstract
The general goal of the research described in the article is

to discover and extract ”nontrivial” professional knowledge from
the knowledge base and data sets, previously unknown and po-
tentially useful for the development of intelligent informational
systems. ”Nontrivial” not in the proper sense of the professional
reasoning logic for specific problem domain, but in understanding
that this knowledge can be distinguished only through supervi-
sion of the actions or analyzing knowledge and data used in the
decision making process of the experts in this area. The proposed
new knowledge discovery technique was applied in the domain of
medical ultrasound diagnostics.

Keywords: knowledge base, taxonomy, ontology, deci-
sion making process, knowledge discovery technique, SonaRes
methodology.

1 Introduction

Professional knowledge in the domain of medical ultrasound examina-
tion (as a part of medical knowledge in general) can be divided into
declarative and procedural. Declarative knowledge is professional state-
ments that can be true or false. Procedural knowledge is the knowledge
that describes the decision making process or explains the drawn con-
clusion.

At the knowledge acquisition stage the developers of the SonaRes
methodology have decided that in the domain of ultrasound examina-
tion experts are the best source of knowledge. It has been also proved
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that the best strategy for the experts’ knowledge acquisition in this
area is direct involvement of the knowledge engineer [1].

The expert group was led by Dr. Turcanu Vasile and Dr. Puiu
Sergiu, well-recognized in medical community physicians, and func-
tions of the knowledge engineer were performed by Popcova Olga, a
researcher at the IMCS.

At the formalization stage, declarative knowledge was represented
as the fact base, and procedural knowledge – as the rule base.

Decision tree for the fact base and productions (symbolic semantics)
for the rule base were chosen as models of knowledge representation.

Thus, the development team mentioned above for the first time has
created a primary formalized knowledge base of the domain of medical
ultrasound diagnostics. The fact base represented as decision tree is,
in fact, the taxonomy of problem domain. The whole knowledge base,
which provides possibility to develop intelligent information systems,
is the first formalized ontology in this area [2].

The rule base and the fact base form the basis of the knowledge
base of the SonaRes methodology. It is the object of analysis in this
article. The main objective of this study is to identify new ”nontriv-
ial” professional knowledge using intellectual analysis of the SonaRes
knowledge base.

2 SonaRes methodology and technology

SonaRes methodology is a comprehensive and integrated approach for
design and development of clinical decision support systems. It pro-
vides clinicians with information support in all decision making stages,
and currently has no analogy in the world.

SonaRes methodology combines new advanced methods for acquisi-
tion and management of medical professional knowledge with effective
algorithms of ultrasound images processing.

SonaRes methodology:

• Offers principles to select the acquisition method and mode, cor-
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responding to the application domain;

• Proposes an original alternative form for representation of the
acquired knowledge;

• Gives new original methods and algorithms for inference, ultra-
sound images processing, quick search, encryption of personal
data about patients, and creation of adaptive interfaces.

SonaRes technology provides effective algorithms for storage and
documentation of specific cases, corresponding to normal/pathological
states and anomalies of organs from the hepato-pancreato-biliary re-
gion, detected by ultrasound diagnostics. This technology allows in
reasonable terms to formalize the same organs with another degree of
particularization, other organs, or some other types of medical diag-
nostics.

Under the presented research, SonaRes methodology will be used to
choose the method for representation of the new discovered knowledge
[3] and SonaRes technology will be used to incorporate this knowledge
into the kernel of the SonaRes knowledge base of four abdominal organs
(gallbladder, pancreas, liver and bile ducts).

The SonaRes knowledge base, which will be examined to search
for new ”nontrivial” knowledge, includes the following data and expert
knowledge:

• for gallbladder – 335 facts, 54 decision rules, 166 model images
annotated by the expert group, 226 images with regions of interest
(ROIs) marked;

• for pancreas – 231 facts, 52 decision rules, 106 model images, 137
images with ROIs marked;

• for liver – 167 facts, 31 decision rules, 87 model images, 111
images with ROIs marked;

• for bile ducts – 257 facts, 15 decision rules, 30 model images, 37
images with ROIs marked.
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3 Knowledge discovery technique in domain of
medical ultrasound diagnostics

Statistical and logic analysis form the basis of knowledge discovery
technique [4]. Usually classification, modeling and predictions meth-
ods, used in domain of knowledge discovery, are based on decision trees,
neural networks, genetic algorithms, fuzzy logic, associative memory,
cognitive representation, etc.

As the main statistical methods used for new knowledge discovery
we can mention the following: descriptive analysis, correlation and
regression analysis, factor analysis, componential analysis, discriminant
analysis, time series analysis, survival analysis, relational analysis, etc.

Given the specific of the knowledge base of the SonaRes methodol-
ogy (existence of two different forms of its presentation and new knowl-
edge obtained during the transition from the ontology representation
into a cognitive modular matrix [3]), there were selected classification
and modeling methods based on decision trees and cognitive represen-
tation, and correlation and relational analysis as statistical methods.

Use of logical analysis of the knowledge base of the SonaRes
methodology represented as a decision tree and its cognitive form al-
lowed us to reformulate specific pieces of some rules in order to improve
inference. For example, for the knowledge base that describes gallblad-
der 133 fragments in 42 rules have been reformulated.

Use of correlation analysis and relational analysis of the knowledge
base of the SonaRes methodology, represented as a cognitive modular
matrix allowed us to formulate new hypotheses. For example, for the
knowledge base that describes gallbladder 27 new hypotheses were for-
mulated. Fig. 1 shows a fragment of the cognitive modular matrix,
served as a basis for formulation of 2 hypotheses:

1. IF ”Perivesicular area has modifications, the collection shape be-
ing striplike” THEN ”The collection is homogeneous”.

2. IF ”Perivesicular area has modifications, the collection shape be-
ing abnormal” then ”The collection is inhomogeneous”.

560



SonaRes methodology enhancement using knowledge . . .

Figure 1. Fragment of the SonaRes knowledge base represented as a
cognitive modular matrix

The identified hypothesis will be given to the expert group for vali-
dation and addition to the knowledge base as new ”nontrivial” knowl-
edge.

4 Conclusion and future work

Reformulation of specific fragments in some rules of the knowledge base
of the SonaRes methodology allowed us to create a faster, simpler and
clearer logical inference.

New ”nontrivial” knowledge obtained in the form of hypotheses,
being validated and accepted by the expert group, will increase the
SonaRes knowledge base and will reduce the required number of queries
to the user. It is extremely important when diagnostics is made in
emergency situations.

The described results were obtained in semi-automatic mode. Cur-
rently, a computer-aided version of the used algorithms is under devel-
opment.
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Opportunities for Object Detection using Haar

Feature-based Cascade Classifier algorithm

Inga Titchiev, Mircea Petic, Grigorii Horos

Abstract

The main goal of this paper is the evaluation of the usual
methods of processing and analysis of images for the purpose of
object detection. Limitations of the processing and image analy-
sis were determined using Haar Feature-based Cascade Classifier
algorithm.

Keywords: Haar Feature-based Cascade Classifier, image
processing, open CV.

1 Introduction

Image processing and analysis includes all the techniques and methods
of acquisition, storage, display, modification and operation of visual
information contained in images. In particular, image analysis refers to
the ability to describe, understand and recognize scenes, scene objects
and links between them. From the functional point of view, image
analysis transforms the input image into a description.

Using information technologies for acquisition of the images (in-
cluding medical one) leads to the increased quality of life by applying
fast and effective treatment. Also to further increase the effect of their
use the problem related to time optimization in the process of search-
ing for an image (object) is being investigated. For this purpose Haar
Feature-based Cascade Classifier algorithm will be used.
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2 Haar Feature-based Cascade Classifier

Initially the object detector described below has been proposed by Paul
Viola [1] and improved by Rainer Lienhart [2, 3]. For the purpose of
objects detection there was developed an application that provides the
following opportunities:

• Loading of a new image.

• Deleting of an image.

• Verification of the searched object. To perform this, the Haar
Feature-based Cascade Classifier algorithm is used. This algo-
rithm describes how to train and use a cascade of boosted classi-
fiers for rapid object detection. The use of this algorithm implies
several stages.

– At the first stage a template file with specific features of
searched object is created. This requires two types of sample
images: negative samples and positive samples images.
Negative samples correspond to non-object images. Positive
samples correspond to object images. Negative samples are
taken from arbitrary images. These images must not contain
object representations.
Positive samples are created by the create samples utility.
They may be created from single object image or from col-
lection of previously marked up images. For our application,
template file [5] has been used.

– The next stage after samples creation is training the clas-
sifier. It is performed by the haartraining utility. In the
following, OpenCV cvHaarDetectObjects() function (in par-
ticular haarFaceDetect demo) is used for detection.

– Also DetectandWrite() function is used to determine the
number of found objects of the same type, it is returned
as a result in a file containing the image description with
.json extension.
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3 Obtained results after applying the algo-
rithm

After using this algorithm for a set of 200 images its efficiency is 98
percent.

There were detected the following problems that reduce its effec-
tiveness and which require the improvements:

• there are not detected images that contain the sought object with
a deviation of more than 30 percent.

• there are not detected very small objects.

• there are not detected images that contain black faces.

4 Future work

At the next step we want to use this algorithm in parallel [4] on mul-
tiple processes. For this, a set of images will be divided into multi-
ple partitions in order to determine the time effectiveness of the Haar
Feature-based Cascade Classifier algorithm application. In order to
use multiprocessor advantages, a compiler that supports OpenMP 4.0
standard will be used.

5 Conclusion

Image processing is a current research direction, useful in various fields.
In particular, we are interested in efficient methods and algorithms used
in the processing of medical images obtained by ultrasound investiga-
tion.

In this paper the opportunities for object detection with Haar
Feature-based Cascade Classifier algorithm were described. There were
identified limitations of this algorithm. Further research will be di-
rected to adapt this algorithm for the purpose of Parallel Object De-
tection.
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Metaheuristic Optimization in Image Processing

Milan Tuba

Abstract

Nondeterministic metaheuristic optimization and digital im-
age processing are two very different research fields, both ex-
tremely active and applicable. They touch in a very limited area,
but that narrow interaction opens new very promising applica-
tions for digital image processing and new and different deploy-
ment of metaheuristic optimization. Multilevel image threshold-
ing is very important for image segmentation, which in turn is
crucial for higher level image analysis, while JPEG quantization
table selection is a newly proposed method that adjusts JPEG
algorithm for many specific applications. Both problems include
exponential combinatorial optimization with complex objective
functions which are solvable only by nondeterministic methods.
This lecture presents successful applications of the recent seeker
optimization, firefly algorithm, bat algorithm and coocko search
metaheuristics to multilevel thresholding and JPEG quantization
table selection problems.

Keywords: digital image processing, multilevel thresh-
olding, quantization matrix optimization, JPEG compression,
swarm intelligence, metaheuristic optimization.

1 Introduction

Digital image processing is one of the most applicable research areas
used in medicine, security, quality control, astronomy etc. It consists
of very different techniques belonging to low level signal processing,
medium level morphological processing and segmentation for feature
detection and high level artificial intelligence algorithms for object
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recognition, information extraction, representation and understanding.
At different stages of image processing some hard optimization prob-
lems occur. For example, multilevel image thresholding is a step in
segmentation, but even though this problem at first sight seems to be
simple, to determine optimal n numbers in the range [0-255] is NP-hard
combinatorial problem. JPEG quantization matrix optimization is also
an exponential combinatorial problem since the number of coefficients,
after DCT, is 64 and each can be an integer between 0 and 255.

Such problems cannot be solved in reasonable time by standard
mathematical deterministic methods. Nature inspired metaheuristic
algorithms have recently been successfully used for this type of hard
optimization problems. They try to guide random Monte-Carlo search
by simulating some successful systems from the nature. Swarm in-
telligence is an important branch of nature inspired algorithms where
collective intelligence of different species like ants, bees, cuckoos, fire-
flies, bats, fish, birds, krill etc. is simulated.

2 Multilevel thresholding

The criteria for selecting thresholds can be different, but most often
used are Kapur’s entropy criterion based on elements of the form
Hk = −∑tk+1−1

i=tk
Pi
wk

ln Pi
wk

, where wk =
∑tk+1−1

i=tk
Pi and between-

class variance Otsu’s criterion based on the elements of the form
σk = wk(µk − µt)2, µk =

∑tk+1−1
i=tk

iPi
wk

, where µt =
∑L−1

i=0 iPi is the
total mean intensity of the original image.

Both, Kapur’s and Otsu’s criteria were used and exhaustive search
was performed for 2, 3, 4, and 5 thresholds. For 5 thresholds ex-
haustive search required almost an hour of computational time and for
each new threshold that time increases 255-fold so for 6 thresholds the
computation would last one week, for 7 threshods 5 years etc. In [1]
seeker optimization algorithm was used on 4 standard benchmark im-
ages, while in [2] cuckoo search and firefly are tested on 6 images. To
the same 6 images bat algorithm was applied in [3]. All these swarm
intelligence algorithms required less that 0.1 sec of computational time
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for 5 thresholds and could easily be applied to any size problem, with
result almost always equal to results of exhaustive search i.e. global op-
timum. The mechanism for selecting coefficients that will give desired
compression ratio includes variable number of non-zero coefficients, but
with the fixed total length of bits for representation.

3 JPEG quantization

For different applications various measures of compression quality or
image similarity can be devised. However, for many applications sim-
ple metrics like sum of the squares of differences (or sum of absolute
values of differences) of intensities of the corresponding pixels can be
used since in the compression and decompression there is no spatial
movement. Firefly algorithm was applied to quantization matrix opti-
mization problem in [4]. Extremely complex objective function includes
for each generated candidate matrix inverse DCT and distance to the
original image calculation. JPEQ recommended Q10 table was used for
considerable compression of the benchmark image. Measure of the sim-
ilarity of images was 5.9 (average distance). Firefly algorithm optimiza-
tion generated table that achieved distance of 5.1 which is equivalent
to Q18 standard JPEG table, with apparently better looking image.

4 Conclusion

In this lecture successful application of swarm intelligence metaheuris-
tics to hard optimization problems that occur in image processing was
illustrated by seeker optimization algorithm, cuckoo search, firefly al-
gorithm and bat algorithm for multilevel thresholding and firefly algo-
rithm for JPEG quantization table optimization.
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Intelligent Robust Control System based on

Quantum KB-Self-organization: Quantum Soft

Computing and Kansei / Affective Engineering

Technologies

Sergey Ulyanov, Veacheslav Albu, Irina Barchatova

Abstract

New results in robust intelligent cognitive control are in-
troduced based on unconventional computational intelligence as
quantum soft computing technology. Synergetic effect of inte-
grated IT of Kansei / Affective and System of Systems Engi-
neering as intelligent cognitive robust control on Benchmarks is
considered. An example of designing integrated fuzzy intelligent
control systems (IFICS) in unpredicted situations using Kansei
/ Affective Engineering is described. The background of applied
unconventional computational intelligence is soft and quantum
computing technologies.

Keywords: Intelligent robust control, Kansei / Affective en-
gineering, toolkit of quantum computational intelligence, quan-
tum soft computing, quantum fuzzy inference.

1 Introduction

This report presents an example of designing integrated fuzzy intel-
ligent control systems (IFICS) in unpredicted situations using hybrid
technology of computational intelligence, cognitive processes and Kan-
sei / Affective Engineering. The background of applied unconventional

c©2014 by S. Ulyanov, V. Albu, I. Barchatova
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computational intelligence is soft and quantum computing technolo-
gies. All researches are supported by relevant publications and patents
(see http: //www.qcoptimizer.com/) [1–7].

New approach to cognitive intelligent robust fuzzy control that in-
cludes the human factor risk is considered. With the developed toolkit
it can design intelligent control systems that guarantee the goal control
achievement in unpredicted control situations.

2 IT design of IFICS and Kansei / Affective
Engineering toolkit

Design processes of IFICS in unpredicted situations were constructed
of two approaches [3–5]:

• system of systems engineering technology describes the possibility
of complex ill-defined (autonomous or hierarchically connected)
dynamic control system’s design that includes human decision
making and risk factors in unpredicted (unforeseen) control situ-
ations;

• Kansei / Affective Engineering technology and its toolkit include
qualitative description of human being emotion, instinct and in-
tuition that are used effectively in design processes of smart /
wise cognitive robotics and intelligent mechatronics.

Kansei process gathers the functions related to emotions, sensitiv-
ity, feelings, experience, intuition (i.e. sensory qualities related func-
tions (Clark 1996)), including interactions between them; Kansei means
are all the senses (sight, hearing, taste, smell, touch, balance, recog-
nition...) and – probably – other internal factors (such as personality,
mood, experience, and so on); Kansei result is the fruit of Kansei pro-
cess (i.e. of these function processes and of their interactions) [8, 9].

Therefore, Kansei result is a synthesis of sensory brain cognitive
qualities. For example, it has been argued that emotion, pain and
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cognitive control are functionally segregated in distinct subdivisions of
the cingulate cortex of brain. However, recent observations encourage
a fundamentally different view [10]. In humans and other primates,
the cingulate – a thick belt of cortex encircling the corpus callosum
– is one of the most prominent features on the mesial surface of the
brain [11]. Early research suggested that the rostral cingulate cortex
(Brodmann’s “precingulate”; architectonic areas) plays a key part in
affect and motivation [12].

The presence of typically quantum effects, namely superposition
and interference, in what happens when human concepts are combined,
provide a quantum model in complex Hilbert space that represents
faithfully experimental data measuring the situation of combining con-
cepts [13].

We considered the humanized technology of intelligent robotic sys-
tems design based on Kansei / Affective Engineering and System of Sys-
tems Engineering using Quantum / Soft Computing as unconventional
computational intelligence toolkit. As it is well known, the subject
of humanized technology or human-related systems has been actively
researched. With the increasing concern regarding human factors in
system development Kansei Engineering and Soft Computing are the
most representative research fields on this subject [10]. Soft comput-
ing toolkit is developed for emotion, instinct, and intuition recognition
and expression generation [14, 15]. In particular with genetic algo-
rithm – GA – (as effective random search of solution) an intuition
process (optimization) is modeled. Fuzzy neural network (FNN) is
used for description of instinct process (adaptation and learning) that
modeled approximation of optimal solution in unpredicted control sit-
uation. Fuzzy logic control is used for design of an emotion according
to corresponding designed look-up table [14, 16, 17]. Quantum control
algorithm of self-organization is the background of wise robotic control
system’s design. Quantum computing toolkit is used for increasing
of robustness in intelligent control systems (especially for unpredicted
control situations) [4, 5, 18].
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The basis for the implementation of this idea is the research result
that opened the new principle: self-organization with minimization of
generalized entropy production (as the new physical measure of con-
trol quality) [3, 4]. Self-organization is a central coordination mecha-
nism exhibited by both natural and artificial collective social-technical
systems. Self-organized mechanisms are characterized by nonlinear re-
sponses to stimulus intensity, incomplete information, and randomness.
Self-organization coexists with guidance from environmental templates,
networks of interactions among individuals, and various forms of leader-
ship or preexisting individual specialization. A general characteristic of
self-organizing systems is as follows: they are robust or resilient. This
means that they are relatively insensitive to perturbations or errors,
and have a strong capacity to restore themselves, unlike most human
designed systems [4]. One reason for this fault-tolerance is the redun-
dant, distributed organization: the non-damaged regions can usually
make up for the damaged ones. Another reason for this intrinsic ro-
bustness is that self-organization thrives on randomness, fluctuations
or “noise”. A certain amount of random perturbations will facilitate
rather than hinder self-organization. A third reason for resilience is the
stabilizing effect of feedback loops.

Models of self-organization included natural quantum effects and
based on the following information-thermodynamic concepts: (i) macro-
and micro-level interactions with information exchange (in agent based
model (ABM) micro-level is the communication space where the inter-
agent messages exchange and are explained by increased entropy on a
micro-level); (ii) communication and information transport on micro-
level (“quantum mirage” in quantum corrals); (iii) different types
of quantum spin correlation that design different structure in self-
organization (quantum dot); (iv) coordination control (swam-bot and
snake-bot).

Quantum control algorithm of self-organization is based on quan-
tum fuzzy inference QFI model [4]. QFI includes these concepts of
self-organization and has been realized by corresponding quantum op-
erators, and can be considered as quantum algorithmic gate [6, 7].
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Structure of QFI that realize the self-organization process is developed
on the corresponding quantum algorithmic gate [7]. QFI is one of pos-
sible realizations of quantum control algorithm of self-organization that
includes all of these features: (i) superposition; (ii) selection of quan-
tum correlation types; (iii) information transport and quantum oracle;
and (iv) interference.

With superposition the templating operation is realized. Physically,
the quantum operation as the templating one is based on macro- and
micro-level interactions with information exchange of active agents.
The power source of communication and information transport on
micro-level is used for selection of quantum correlation type of op-
eration self-assembling, and this is realized based on quantum genetic
algorithm toolkit [2]. In this case the type of correlation defines the
level of robustness in designed KB of fuzzy controller (FC). Quantum
oracle calculates “intelligent quantum state” that includes the most
important (value) information transport for coordination control. In-
terference is used for extraction the results of coordination control and
design in on-line robust knowledge base (KB) [4].

The developed QA of self-organization is applied to the design of ro-
bust KB of FC in unpredicted control situations. Main goal of quantum
control algorithm of self-organization is the support of optimal thermo-
dynamic trade-off between stability, controllability and robustness of
control object behavior using robust self-organized KB of intelligent
control system [3]. Main operations of developed QA and concrete
examples of QFI applications are described in [4, 5].

Information design technology of robust IFICS includes two steps:
1) step 1 based on soft computing optimizer (SCO); and 2) step 2
based on quantum computing optimizer (QCO). Main problem in this
technology is the design of robust KB of FC that can include the self-
organization of KB in unpredicted control situations. The background
of this design processes is KB optimizers based on quantum / soft
computing technologies [3–5].

Fig. 1 contains factors that define the control situation and shows
the structure of robust intelligent control, consisting of two (or more)
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fuzzy PID (proportional- integral- differential) controllers (FC PID)
and block QFI implementing property of KB self-organization. QFI
model uses private individual KB of FC, each of which is obtained
by the toolbox “SCO” for fixed (standard) control situations in the
external random environment.

The structure of ICS, that is presented in Fig. 1, shows how the
self-organization principle is realized on the base of QFI model, and
includes the support of the thermodynamic trade-off relations between
stability, controllability, robustness properties (Eq. 2). The kernel of
the abovementioned FC design toolkit is a SCO implementing advanced
soft computing ideas. SCO is considered as a new flexible tool for
design of optimal structure and robust KBs of FC based on a chain of
genetic algorithms (GAs) with information-thermodynamic criteria for
KB optimization and advanced error BP-algorithm for KB refinement.
Some measured or simulated data (called as ‘teaching signal” (TS))
about the modelling system [3] can be as the input to SCO.

The functional structure model of QFI in Fig. 2 describes the algo-
rithm for coding, searching and extracting the value information from
two KB’s of fuzzy PID controllers designed by SCO. Applying the
QFI in IFICS’s structure, additional (hidden) quantum information
is extracted and used to design a robust control signals on-line from
responses FC that are received in unpredicted situations. Different
quantum controllers based on different fuzzy controllers (controllers
with different types of the correlation, controllers with different KB
(two, three, four, etc.), cognitive controllers etc.) can be designed and
tested by QCO.

After testing, we choose the best robust controller for using in real
applications.

Concrete industrial Benchmarks (as “cart–pole” system, robotic
unicycle, robotic motorcycle, mobile robot for service use, semi-active
car suspension system etc.) are tested successfully with the developed
design technology [19–22].

We demonstrate the efficiency of application of QFI by the Bench-
mark.
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Figure 1. Structure of robust intelligent control system (ICS) in un-
predicted control situations

Figure 2. Functional structure model of QFI
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3 Examples

3.1 Benchmark of QFI-application: “Cart–Pole system”

Let us consider fuzzy robust control problem of “cart-pole” system as
intelligent control Benchmark. This system, as well known, is described
by the equation of motion [3, 4]. KB of FC is designed by SCO using
Gaussian and Rayleigh noises respectively.

Figure 3. Dynamic behavior of “cart–pole” system (a); and Thermo-
dynamic behavior of “cart–pole” system (b)

Fig. 3a shows the dynamic behavior of the system in unpredicted
control situation. In this case a new time delay in the structure (see
Fig. 3a and Fig. 2) in sensor is 0.002 sec; parametric Gaussian noise
is with the amplitude 0.01; new initial state

[
θ0, θ̇0

]
= [13, 1] (deg),

[z0, ż0] = [0, 0]. External noise is Raleigh noise as in the learning
situation. Fig. 5b shows the thermodynamic behavior of the sys-
tem and of FC. Fig. 3b shows that generalized entropy production
of the system “control object + fuzzy PID-controller” is minimal (min-
imum consumption of useful source and power), and with quantum
self-organization of KB the required trade-off distribution between sta-
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bility, controllability and robustness is achieved.
It is a pure quantum effect, and it does not have classical analogy.

Thus results of simulation show that winner is quantum fuzzy controller
(QFC) designed from two KB controllers with minimum of generalized
entropy production. Results of simulations in Fig. 3 show also that
from two unstable FC it is possible to design on-line a new robust
stable FC (Parrondo paradox).

Therefore, QFI strongly supports optimal thermodynamic trade-
off between stability, controllability and robustness in self-organization
process (from viewpoint of physical background of global robustness in
intelligent control systems).

It is also important the new result for advanced control system:
the designed block QFC increases robustness of system control, but all
other controllers (FC1, FC2) failed to do this.

3.2 QFI application in cognitive and intelligent FC

Figs 4 and 5 show other situation: control system includes the human
factor.

Blok QFI in Fig. 3 includes intelligent FC (FC1) and fuzzy cognitive
controller (FCC2). In this case, KB of FC has been designed for the
surface roughness of the carriage of Gaussian type. KB of FCC was also
adopted, as for FC, but with the ability to change productional rules of
output signal proportional gain when a human operator observes the
change in the type of surface displacement movement of the carriage.

Unpredicted situation of control system, when roughness of surface
obstacles of the carriage with a Gaussian distribution type obstacles
comes to the surface with a uniform probability distribution of obsta-
cles, is shown in Fig. 4. In this case roughness of surface obstacles
of the carriage has time dependent probability density function. The
simulation results show (see Figs. 4 and 5) that the robustness of FC
is the loss of control after 30 seconds (after the change of the type of
surface). And FCC lost robustness under the same conditions after 80
sec., although time interval robustness of ICS significantly increased
compared to FC.
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KB quantum PID was designed on-line from the responses of no-
robust FC and FCC due to quantum self-organization. Thus the ro-
bustness of ICS is increased. In this case all the properties of intelligent
and cognitive control systems have been retained.

Figure 4. Simulation results of “cart–pole” system

Figure 5. Noise with time dependent probability density function
This approach was applied to other complex commercial industrial

robotic systems [19–22].

4 Conclusions
These examples show the possible using of new types of unconven-
tional computational intelligence and quantum algorithm of KBs self-
organization, which allows on-line control to achieve the goal in unpre-
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dicted situations by improving the robustness of the IFICS in problem-
oriented fields. The background of applied unconventional computa-
tional intelligence is soft and quantum computing technologies. Cre-
ation and implementation of software products (using new types of
intelligent computing and software and hardware support, knowledge
extraction algorithms, processing and generation of knowledge in in-
telligent control of quantum nano-technology, etc.) is a special kind of
knowledge, which can be considered as a separate item.
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