
Proceedings of the International Workshop on Intelligent Information Systems 

IIS’2011, September 13-14, 2011, Chisinau, Republic of Moldova 

© 2011 by Veaceslav Macari 

Architecting a Hybrid Computation System 

Using Microsoft Parallel Extensions, Open 

MPI, nVidia CUDA 

Veaceslav Macari 

Abstract: The article describes the possibility to develop a framework 

which uses hybrid parallel computing to achieve maximal performance 

from available hardware resources (CPU & GPU) of all computers in LAN. 

Keywords: hybrid parallel computing, CUDA, Open MPI, Microsoft 

Parallel Extensions 

1 Introduction 

There are already well known programming technologies used in modern 

world: MS Parallel Extensions (MS PE), MPI, and CUDA. Hybrid 

programming supposes usage of several parallel programming techniques 

together to achieve maximal performance of algorithms. 

The idea of proposed framework is to use combination of the 

mentioned technologies and provide a set of APIs that will hide 

underlaying hardware from users. This implies creation of a virtual 

machine that offers a layer between existing hardware and user 

application, to provide abstract calculation resources. It should be 

developed as independent functionality (using factory pattern), flexible 

and runable even it is executed on a single CPU machine, without network 

and GPU support. 

The general architecture of a hybrid parallel system is composed from 

a group of cells, which uses MPI to distribute tasks at the network level. 

Then, at the entity (cell) level, MS PE is used to distribute processing task 

between each CPU. At the same time, at the cell level, CUDA is used to 

distribute tasks across available GPU’s. 

2 Used programming technologies description 

MS Parallel Extensions is a managed concurrency library that 

implements multi-threading [1]. MS PE spreads tasks over available 

CPUs. There is always a master thread, which starts all other threads with 

unique id’s that run concurrently on different processors. MS PE tasks run 

on the same host, but on different hardware processors. 



Architecting a Hybrid Computation System Using Microsoft Parallel Extensions, 

Open MPI, nVidia CUDA 

249 

 

MS PE in this case, is used to involve all CPUs present on the host 

computer, because usually, even if the user implements multiple threads 

with fork () function, the tasks created by the same application share a 

single CPU. For an optimal usage of MS PE in application, the algorithms 

should be organized to allow division on parallel computing parts. 

Open MPI - Open Message Passing Interface allows processes to 

communicate with one another by sending messages even if these 

processes are running on different computers on a high speed network. 

Currently, Open MPI is implemented in different languages, 

including C/C++ and C# [2]. 

CUDA - Compute Unified Device Architecture is a parallel computation 

architecture elaborated by nVIDIA to be used with their GPU (Graphics 

Processing Units) devices [3]. The technology is ported to different 

languages like C, C++, Java and C# [4] because it uses so called kernel 

modules which are uploaded to CUDA enabled GPU, and serves as micro-

routines that process data in concordance with algorithm requirements [5].  

The kernels can be implemented using modular programming model, 

as separate CUDA object files, which are loaded at runtime and supplied 

to the GPU. Therefore algorithmic part is separated from management 

part and can be independently maintained without recompiling entire 

application. 

3 Proposed framework architecture 

The technologies MS PE, Open MPI, and CUDA are used together to 

involve all available resources to resolve a given task. The resources are 

allocated in the order of their performance decreasing: the most 

productive resource is used firstly. 

For example, let’s say application is requested to create 2 processes 

which perform computation of a huge matrix, and 2 other ones which 

execute common algorithms. The local configuration is a PC with a single 

CPU and single CUDA enabled GPU. In this case, the virtualization layer 

(VL) allocates its own GPU for one of the matrix computation algorithms 

and its own CPU for one of the common algorithms. Since the resources 

are already used, the VL searches for suitable node from its resource map 

and allocates the requested resources from a node of local area network. 

The main role of the virtualization layer is to recognize algorithms 

and to distribute them between machines in a high speed LAN, on 



Veaceslav Macari 

250 

processors of a single node for common operations, and to route to 

available GPU’s of the same node for scalar operations.  

The layer should provide an abstraction in such a way, that the 

programming model issues calculation request without taking care of 

underlaying hardware and processing resources. The number and 

performance of available resources affect only the performance of 

designed algorithms. The functions provided by the framework look like 

this: virtualLayer.Matrix.Multiply(m1, m2), or if addressing to 

multitasking which is realized by MS PE: 

virtualLayer.Threading.ExecuteParallel(() => Add(2, 3)). 

Such requests stimulate VL to search for a best suitable resource (see 

Table 1) and allocate it to execute requested operation. 

Virtualization layer uses a map of available resources and resources 

topology for optimal allocation when they are requested by the user 

application. This map is built on layer initialization and is continuously 

updated during its life time period. Therefore new entries can be added, or 

the expired ones can be removed. 

Table1: Resources map example 
HOST_ID CPU_CNT GPU_NR REACH_ 

COEF 

PERFORMANCE EXPIRITY_ 

TIMEOUT 

Resource1 6 2 2 100 500 

Resource2 9 1 5 400 700 

The map includes the following information: 

- HOST_ID - the IP/network address of available node; 

- CPU_CNT - number of available CPUs; 

- GPU_NR - number of available GPU; 

- REACH_COEF – reachability coefficient, calculated from ping 

time and response delay; 

- PERFORMANCE - calculated resource performance index, used 

to determine processing request across the involved nodes; 

- EXPIRITY_TIMEOUT - permanently updated value, used to 

exclude offline hosts. 

The distribution of data processing (see Fig.1) should be done 

across available processing resources - on demand. The calculation is 

launched from a master computer, which initiates the entire infrastructure 

as follows: 

• Initiate and detect local processing capabilities (MP+CUDA); 



Architecting a Hybrid Computation System Using Microsoft Parallel Extensions, 

Open MPI, nVidia CUDA 

251 

 

• Discover similar hosts in the local network (MPI); 

• Query the discovered hosts for their own processing capabilities 

(MP+CUDA); 

• Compose an internal map of available resources, including 

performance and resources reachability (ping delay). 

 
Figure 1. An architecture overview with data processing distribution 

using MS PE, Open MPI, and CUDA. 

References 
[1] http://en.wikipedia.org/wiki/Parallel_Extensions  

[2] http://osl.iu.edu/research/mpi.net/  

[3] http://developer.nvidia.com/category/zone/cuda-zone  

[4] http://www.hoopoe-

cloud.com/Solutions/CUDA.NET/Default.aspx#releases 

[5] http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_C

UDA_Programming_Guide_2.0.pdf , CHAPTER 2, page 5. 

V. Macari 

Institute of Mathematics and Computer Science of ASM 

E-mail: vmacari@gmail.com 


