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1 Introduction 

Social networks (SocNets) represent a yet poorly understood, new social 

process made possible by the advancement of the information and 

communication technologies. One of the major hurdles in understanding 

this process is the counter-intuitive assembling of groups of 

geographically disperse and intrinsically diverse subjects with diffuse or 

differing opinions. Despite various approaches developed in the literature, 

e.g. [1-9], it is not clear how such groups can coagulate and then survive 

despite frequent contradictions in opinions. 

To help understanding the mechanics of social networks, we propose 

ourselves to investigate with elementary tools the simpler problem of 

evolution of opinion in a small group where individuals adopt a fixed 

strategy of mutual contradiction. Specifically, I investigate what is the 

outcome of disagreeing or partially disagreeing with partners in a social 

network under the framework of binary logic and under the framework of 

fuzzy logic. I aim to answer simple questions as: Is there a stable or a 

periodical conclusion of the interaction? How the logic influence the 

outcome? How long it takes to arrive to a conclusion, when a stable one is 
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possible? How the definitions of the negation in the logic influence the 

outcome? What triggers a move in or out a SocNet? Assuming that a 

group of players in a SocNet is stable only if it reaches a conclusion in a 

specified time, how large can be the group, for a specified behavior of the 

players, for the group to survive? This paper is devoted to answer some of 

these questions for very simple cases as a basis for understanding more 

complex mechanisms of progression of groups in social networks. 

The version of the paper should not be regarded as a preliminary 

publication that only preludes a final version. 

2 A Preliminary Discussion 

Social networks are established based on technology, but their operation 

reflects human behaviors. While statistically characterized by the number 

of members, member retention rate, average member visits per time unit 

and other similar statistical figures, these figures measure a specific social 

process as allowed to developing in a specified framework provided by 

the technology. On the other side, whenever the number of interacting 

players is limited and the players have to respond by stating an opinion as 

response to the opinions of the others in the group, human players have a 

limited number of options for responding to the activity of the other 

members in the network. Frequently, the responses must be based on the 

opinions of the others and can represent a logically constructed response. 

The group may or may not reach a conclusion supported by all members. 

We may assume that when a conclusion can not be reached, the group 

dissolves, the players are looking for another group of discussion, or 

leaving altogether the network. When players adopt a specific strategy of 

responding – possibly because of their individual interacting 

characteristics – the outcome may be strongly dependent on those 

strategies. 

There are numerous questions unclear about the dynamics of social 

networks, including questions related to groups formation inside a social 

network, the stability of connections and groups, the “retention period” of 

individuals in the group and in the network, the migrations of players 

inside the network between groups, the global activity variation, the rules 

governing the average group dimension, and the evolution of group 

characteristics. Several such questions are addressed in this paper, 

especially how simple strategies may influence the group behavior when 
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the strategy is played under various logics. One of the results of the 

analysis is that social groups are more stable when the players use non-

binary logic, even when they perform in a contradiction-based strategy. 

Compared to the existing literature, which deals with statistical 

features of the network [1, 2, 5, 6], or with topological organization of the 

social networks [2, 4, 6], the proposed approach focuses on logic 

responses only. While I do not discuss issues related to the topology of the 

networks, as dealt with in approaches based on graphs, as [2, 5, 9], the 

topology of the graph can easily be added in the developed approach. 

3 Simple Logic Strategies in Small Groups 

The simplest interactions between members of a group in a social 

network, as in typical life interaction, are based on logical operations 

between assessments made by the members of the group. Assuming that 

the members respond sequentially and that they take turns in responding 

with their opinion to the opinion of the other speakers, the dialogue is 

some logical expression in the form of a recurrence, 
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where the upper index ][k  denotes the turn in the recurrence (in the 

discussion in the group of the social network), the lower index denotes the 

number of the speaker, assuming n  speakers, and f denotes some logic 

formula. The tilde sign shows that each opinion is valued under fuzzy 

logic by some fuzzy set. The expression may include various 

combinations of unions, joins and negations. 

We can assume that sometimes the actors in the group use some fixed 

strategy; that is, they preserve the same formula from one turn to the 

other, making the formula to depend on the speaker, not on the turn, 

nkn ff , . When the actors have the same response strategy, the formula 

does not depend on n  and we are left with a true recursion formula. When 

the speakers preserve the formula from one cycle to the other, but they 

have personal forms or responding, I will say that we deal with a ring-

recursion. For example, a ring recursion with three actors is expressed by 

),( 11   nnn AAfA , where f is a logic or arithmetic expression. The use of 

fuzzy recursions is a tool used in several domains and was successfully 

applied to bioinformatics [9, 10], among others. 
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3.1 Logic Recursive Models 

Assume a group of three players, each choosing to respond by 

contradicting the two others according to the behavior described by 

11   nnn AAA  . Again, players respond successively, taking turns. 

Then, whatever are the initial statements of the first two players, 0A  and 

1A , the third player will respond by 012 AAA   . We assume that 0A  

and 1A  are true, valid statements, for example “the apple is yellow” ( 0A ), 

respectively “the apple is green” ( 1A ). The answer of the third player is 

“the apple is neither yellow nor green” ( 012 AAA   ). Then, the next 

response will be from the first player again, who will say 

101101123 )()( AAAAAAAAA    (de Morgan), thus 

03 AA  . The second player response is  

001001234 )()( AAAAAAAAA   ,  

thus 14 AA  . The group evolution enters into a cycle, with no conclusion 

reached. We can safely assume that after some time, the group 

disintegrates. Notice that under binary logic, any proposition (set) and its 

negation forms a periodic solution of the recursion,  

pppp  2 ,  ppppp )(3 ,  

ppUpp  )(4 , ppUpp   )()(5 ,  

 ppp 6 , 

and the result is a period-3 sequence of sets. 

Consider the same responding strategy under fuzzy logic (min-max 

logic). Denoting the membership functions by   and assuming the 

negation defined in the standard way, )(1)( ~~ xx
AA




, we obtain: 

012

~~~
AAA   , )1,1min( 012  , 

101101123
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~
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~~
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~~~
AAAAAAAAA   , 

)1),1,1min(1min()1,1min( 101123  , 

thus 03

~~
AA  . The second player response is 

001

001234

)(

)(

AAA

AAAAAA








. 

3.2 Finding Fixed Points 
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We look for fixed points of such iterations. Consider the recursion over 

fuzzy sets 11

~~~
  nnn AAA  . Assume that there is some fuzzy set A

~
 that 

is a fixed set of the iteration, that is, satisfying the condition 

AAA
~~~

  . Then, the solutions are the sets satisfying AA
~~

 . The 

only solution is obvious. Because starting with unspecified initial 

conditions there is no way to satisfy the condition 

5.0))(1),(1min( 1   xx nn  x , an equilibrium can not be reached in 

the iteration. 

Consider 11

~~~
  nnn AAA  , with a fixed point satisfying 

AAA
~~~

 . Then, ))(),(1min()( xxx   x . When 5.0)(  x , we 

should have ))()(1 xx  , which is impossible. Therefore, any set with 

5.0)(  x  x  is a fixed point. In the iteration 11

~~~
  nnn AAA  , stability 

is reached if the iteration result satisfies 5.0)(  x  x .  

Examples. Starting with only two fuzzy sets, like in Fig. 1a, the 

result of 11

~~~
  nnn AAA   is shown in Fig. 1b. Similarly, with the 

membership functions on left in Fig. 2, the result of the second order 

fuzzy recurrence 
211

~~~~
  nnnn AAAA   shows period 3. 
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Figure 1. Example of periodicity in a second order fuzzy 

recurrence. 
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Figure 2. Example of periodicity in a third order fuzzy 

recurrence 
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Figure 3. Stable behavior for 211

~~~~
  nnnn AAAA    
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Figure 4. Results for 211

~~~~
  nnnn AAAA   (agree with 

middle).  

Not negating the last response in the recurrence produces the 

periodical result shown in Fig. 5 below. 
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Figure 5. Results obtained for 211

~~~~
  nnnn AAAA  .  

3.3 Randomized Logic Models 

While the above simple models may offer a glimpse into several facts, the 

purely logic models are too elementary to illuminate the complexity of 

human behaviors. The human response is less mechanical and is often 

randomly changing. In the first place, the perception of the meaning in the 

statements of the other members of the group may be imperfect, like as 

affected by some kind of noise. This type of noise translates in 
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fluctuations of the membership functions during iteration. Also, we may 

assume that the “older” membership functions are noisier than the more 

recent ones. For example, the last membership function used in a 

recursion, nA
~

 will be affected less by noise than the membership function 

2

~
nA . 

Accounting for the randomness in the human response requires a 

“random logic” response, where the logic connectives are noisy. We 

define the “randomized negation” operator as  ArandA ())1(~  , 

or 

  )(())1()(~ xrandx AA 


. 

Moreover, I define an  -randomized fuzzy set, denoted by A
~

 , 

having the membership function 

  )(())1()(~ xrandx AA 


. 

Using randomized membership functions, the previously described 

recurrence is 211

~~~~
  nnnn AAAA  . The behavior is strongly 

dependent on the value   and on the distribution of the random variable 

rand(). More on the randomized logic will be presented in another paper. 
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Figure 6. Effect of randomized negation with 2.0 , for the case 

shown under standard fuzzy logic in Fig. 5. 

The model used in Fig. 6 is 

   
 2

11

)5/8.0(
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
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n

nnn

Arand

ArandArandA




. 

Using higher noises (more noisy negation operator), with 4.0 , 

produces no visible pattern in the response, see below (Fig. 7). 
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Figure 7. Effect of randomized negation with 4.0 , for the 

recursion case shown under standard fuzzy logic 

211

~~~~
  nnnn AAAA   with the periodicity as in Fig. 5. 

Using less randomization in a fifth order recursion 

43211

~~~~~~
  nnnnnn AAAAAA   produces the results shown in the 

next figure. 
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Figure 8. Results of randomized negation in the fifth order 

recursion. 
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Figure 9. Result using the left-side panel membership functions as 

initial values for the fifth order fuzzy logic recursion 

43211

~~~~~~
  nnnnnn AAAAAA  . 
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The recursion used in deriving Figure 8 is: 

 
   43

211

)5/8.0()5/8.0(

)5/9.0(









nn

nnnn

ArandArand

ArandAAA





. 

When comparing the results shown in Fig. 8 with those shown in 

Fig.9, we notice that small changes in the randomizing logic will not 

much affect the result. 
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Figure 10.  

In yet another example, we use the fuzzy set iteration 

43211

~~~~~~
  nnnnnn AAAAAA   where the middle term is the 

only one not negated. The result is shown in Figure 10 and shows that the 

evolution corresponds to periodicity, but the three solutions in the period 

are not too far from each other, so group coherence might be preserved. 

4 More Realistic Models 

4.1 Dynamic Population Models – Withdrawal Probability 

Define a difference between solutions in a period; the distance will predict 

the chance of getting out by users from a group (the dissatisfaction 

increases with distance). Using Euclidean distance, 

dxx

dxxx
d

k
k

ji

ji

)(min

))()((
),(

2

2

2















 . 

The reasoning of normalizing to the denominator is that the distance 

is relative – large departures from one membership function to another are 

significant when they are commensurate to the membership functions. 

Then, taking the maximum distance among all couples of membership 

functions, the distance of interest between the “opinions” of the members 
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in the group is ji
ji

d ,
),(

max . I define the probability for each member of 

the group to quit the group at any moment of time as kktp  1.0)( , 

where the constant 0.1 is arbitrarily chosen and may relate to the network 

under investigation. 
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Figure 11. Result of iteration for the recursion 

43211   nnnnnn AAAAAA   with the initial membership 

functions shown in the left panel 

What when mood oscillates? (Oscillations of the logic, of the 

membership function, delay-in-response oscillations etc.) How mood 

oscillations of an agent propagate in the network? 

4.2 Weighted Logic Models 

We propose a “weighted logic”, or better said “threshold logic”, where 

weights are assigned to “sources” before any inference.  

In one version of the weighted logic, the weights act as thresholds. If 

a source has weight w, then whatever truth (belief) value it has under the 

weight, it is assigned truth value 0,  

 
 










wxp

wxpxp
wxp

)(0

)()(
),(  

if the proposition appears in the antecedent of an inference or in a OR 

connected set of propositions. Thus, 

 
 



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)()),(( . 

When the proposition appears in a join (AND connected 

propositions), it is replaced by 

 
 










wxpw

wxpxp
wxp

)(1

)()(1
),( . 



Modeling Behavior in Social Networks under Disagreement 

65 

 

Thus, marginal truth is not accounted for, when the proposition 

belongs to a weighted source. Of course, the thresholded logic makes 

sense only in infinitely-valued logics, like fuzzy logic. Thresholded logic 

produces significantly different results in models of social networks based 

on fuzzy logic. 

Example. Consider a version of coupled fuzzy maps (CFM) [17, 18] 

composed of seven agents and described by the initial conditions (initial 

membership functions): 



 
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The CFM equations are: 
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The result of iteration of the CFM is shown in Fig. 12. 
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Figure 12. Result for the CFM described in the text 

The result is very different from what one obtains using standard, no-

threshold fuzzy logic. Indeed, the standard case produces a null result 

after a few iterations. 

The threshold in a network may be assigned based on previous 

experience (learning, for example learning the degree of similar beliefs of 

the source and the reasoner). In a FCM, or in a vicinity based network, the 

weight might decrease with the distance to the source. 

4.3 Partial Logic 

In this subsection I sketch another aspect not yet accounted for in the 

behavior of human networkers. Imagine the dialogue: A: What color do 

you think it is? B: I think it’s blue. A: No, I don’t think so. While the 

dialogue is informative and perfectly valid for humans, we hardly have a 

suitable model for deriving a conclusion from such dialogue. The reason 

for it is that the “no” has not the hard negation meaning )(1 x  where 

)(x  is the truth degree of the proposition “it is blue.” The dialogue says 

something about the object color in relation to the blue color, but says less 

about the true color and the rest of the spectrum of the light. A does not 

say that the object has all other colors except blue, as the hard negation 

implies. 

Based on human meanings and experience, the dialogue can be 

interpreted as taking place with both speakers having a possibility to 

actually look at the object, because the verb “is” is in present time. Were 
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the verb in past time, we had suspected that the speakers recollect facts 

and the interpretation had been “A: I don’t remember well, but I don’t 

think so.” 

In both cases there is some sort of negation regarding blue, but a 

different degree of uncertainty. For sure, A is uncertain, not positive about 

other colors. Thus, we need to deal on a partial negation and a partial 

uncertainty. 

4.4 Other models 

While not a social network in the sense of the socializing networks on 

Internet, economic models involving individual human decision makers 

are decision aggregation problems that bear much in common to the 

problems above discussed. References [19] and [20] describe networks of 

small companies where the managers adopt competing but not necessarily 

logical strategies similar to the contradiction strategies described above. 

The results of simulations show [19, 20] that iterations of decision making 

based on fuzzy logic in economic processes may develop interesting 

dynamics. 

5 Discussion and Conclusions 

We attempted to introduce several simple logic models for the behavior of 

small groups in a social network. The models are based on fuzzy logic in 

its various forms. For a more accurate modeling of the human actors, 

several new modeling tools related to logic were needed. The new tools 

introduced include the thresholded logic, the approximate (randomized) 

logic, including randomized negation, and fuzzy coupled maps. The 

modeling of behavior of the actors was further improved by introducing 

rules for the actors leaving the group. 

The main findings are i) that groups are almost always impossible 

when binary logic is applied and a disagreement strategy is adopted 

(except trivial solutions, for example when groups can survive under void 

agreement), moreover ii) that the groups are fragile whenever strict fuzzy 

logic formulas are applied to describe the group. More credible results are 

obtained when fuzzy logic is transformed into thresholded fuzzy logic. 

The models explain at least partly and superficially why the retention rate 

in most social networks is so low and why the grouping is more stable 

when the group is large. An expected, still shocking finding is that 
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“behavioral noise”, that is, small random changes in the behavior, which 

are quite natural in for humans, may significantly enhance the stability of 

the “logic social groups.” 
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