
Quasigroups and Related Systems 24 (2016), 249− 268

Cryptcodes Based on Quasigroups

in Gaussian channel

Daniela Mechkaroska, Aleksandra Popovska-Mitrovikj, Verica Bakeva

Abstract. Cryptcodes based on quasigroups transformation, known as Random Codes Based

on Quasigroups (RCBQ) are error-correcting codes de�ned by using a cryptographic algorithm

during the encoding/decoding process. Therefore, they allow not only correction of certain

amount of errors in the input data, but they also provide an information security, all built in

one algorithm. Standard and Cut-Decoding algorithms for these codes are de�ned elsewhere.

Also, performances of these codes are investigated elsewhere, when a transmission through a

binary symmetric channel is used. In this paper, we investigate the performances of RCBQ for

transmission through Gaussian channel. We analyze the in�uence of the code parameters on

the performances of RCBQ for code (72,288) with rate 1/4. We present and compare several

experimental results obtained with di�erent coding/decoding algorithms for these codes.

1. Introduction

Random Codes Based on Quasigroups (RCBQ) considered in this paper are crypt-
codes. In order to provide an information security cryptcodes include an applica-
tion of some of the known ciphers on codewords, before sending them through an
insecure channel ([11, 12]). Usually, in the design of these codes two algorithms
are used, one for error-correcting and another for obtaining information security.
In the paper [4] authors give one algorithm where a block cipher and an error-
correcting code are combined. But, the main application of their design is for
cryptographic purposes, although it can be used as an error-correcting code.

RCBQs are proposed in [2] and they are de�ned by using a cryptographic al-
gorithm during the encoding/decoding process. They allow not only correction of
certain amount of errors in the input data, but they also provide an information
security, all built in one algorithm. Therefore, these codes are interesting for fur-
ther investigation. The in�uence of the code parameters on the performances of
these codes are investigated in [6]. In [5] authors compare the performances of
RCBQ with Reed-Solomon and Reed-Muller codes. From the results for packet-
error and bit-error probabilities given there, authors concluded that RCBQ out-
performs Reed-Muller and Reed-Solomon codes signi�cantly for p > 0.05 in binary

2010 Mathematics Subject Classi�cation: 94B35, 94B60, 68P30, 20N05.
Keywords: quasigroup, random code, error-correcting code, cryptcoding, packet-error proba-
bility, bit-error probability.



250 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

symmetric channel. But, the time e�ciency of RCBQ is much lower than time
e�ciency of these two popular codes. In order to improve the decoding speed
and other performances of RCBQ, in [7, 9] authors proposed new coding/decoding
algorithms. In all papers for RCBQs, transmission through a binary symmet-
ric channel is considered. Here, we investigate performances of these codes for
transmission through Gaussian channel where the noise is a random variable with
normal N(0, N0) distribution. In this channel, the probability of bit-error (see
[10]) is given by

Pb =
1

2
erfc

(√
Eb

N0

)
, (1)

where Eb is a power constraint.
RCBQs are designed using algorithm for encryption/decryption from the imple-

mentation of TASC (Totally Asynchronous Stream Ciphers) by quasigroup string
transformation ([1]). These cryptographic algorithms use the alphabet Q and a
quasigroup operation ∗ on Q together with its parastrophe ” \ ”. The notions
of quasigroups and quasigroup string transformations are given in the previous
papers for these codes ([5], [6]). Here, we are using the same terminology and
notations as there. Note that in this paper we consider only ability of RCBQ for
corrections of errors in the transmitted data. The provided information security
is guaranteed from the used quasigroup string transformation E given in [3].

The rest of this paper is organized as follows. In Section 2, we will brie�y
repeat the coding/decoding algorithms of RSBQ. In Section 3 we explain how
the experiments are made. The in�uence of the code parameters on the perfor-
mances of RCBQ with Standard algorithm is investigated in Section 4. In Section
5, we present experimental results obtained with Cut-Decoding algorithm and we
compare these results with the best results for Standard algorithm. In order to
improve the performances of Cut-Decoding algorithm for transmission through
Gaussian channel, in Section 6, we de�ne two combinations of the proposed meth-
ods for decreasing the number of unsuccessful decodings. At the end, we give some
conclusions.

2. Description of RCBQ

Description of coding with Standard and Cut-Decoding algorithms

Let M = m1m2 . . .ml be a block of Nblock = 4l bits where mi ∈ Q and Q is an
alphabet of 4-bit symbols (nibbles). First, we add a redundancy as zero symbols
and produce message

L = L(1)L(2)...L(s) = L1L2...Lm,

of N = 4m bits (m = rs), where Li ∈ Q, L(i) are sub-blocks of r symbols
from Q. After erasing the redundant zeros from each L(i), the message L will



Cryptcodes Based on Quasigroups in Gaussian channel 251

produce the original message M . In this way we obtain (Nblock, N) code with
rate R = Nblock/N . The codeword is produced after applying the encryption
algorithm of TASC (given in Figure 1) on the message L. For this aim, a key
k = k1k2...kn ∈ Qn should be chosen. The obtained codeword of M is

C = C1C2...Cm,

where Ci ∈ Q.

Encryption Decryption

Input: Key k = k1k2 . . . kn and Input: The pair
L = L1L2 . . . Lm (a1a2 . . . ar, k1k2 . . . kn)
Output: codeword Output: The pair
C = C1C2...Cm (c1c2 . . . cr,K1K2 . . .Kn)

For j = 1 to m For i = 1 to n
X ← Lj ; Ki ← ki;
T ← 0; For j = 0 to r − 1
For i = 1 to n X, T ← aj+1;

X ← ki ∗X; temp← Kn;
T ← T ⊕X; For i = n to 2
ki ← X; X ← temp \X;

kn ← T T ← T ⊕X;
Output: Cj ← X temp← Ki−1;

Ki−1 ← X;
X ← temp \X;
Kn ← T ;
cj+1 ← X;

Output: (c1c2 . . . cr,K1K2 . . .Kn)

Figure 1: Algorithms for encryption and decryption

In Cut-Decoding algorithm, instead of using (Nblock, N) code with rate R, we
use together two (Nblock, N/2) codes with rate 2R for coding/decoding the same
message of Nblock bits. Namely, for coding we apply two times the encryption
algorithm, given in Figure 1, on the same redundant message L using di�erent
parameters (di�erent keys or quasigroups). In this way we obtain the codeword of
the message as concatenation of the two codewords of N/2 bits.

Description of decoding with Standard and Cut-Decoding algorithm

After transmission through a noise channel (for our experiments we use Gaus-
sian channel), the codeword C will be received as messageD = D(1) D(2) . . . D(s) =
D1D2 . . . Dm where D(i) are blocks of r symbols from Q and Di ∈ Q. The de-
coding process consists of four steps: (i) procedure for generating the sets with
prede�ned Hamming distance, (ii) inverse coding algorithm, (iii) procedure for
generating decoding candidate sets and (iv) decoding rule.



252 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

Let Bmax be a given integer which denotes the asumed maximum number of
errors occur in a block during transmission. The probability that at most t bits
in Di are not correctly transmitted is

P (Pb; t) =

t∑
k=0

(
4r

k

)
P k
b (1− Pb)

4r−k,

where Pb is probability of bit-error in a Gaussian channel. Then P (Pb;Bmax) is
the probability that at most Bmax errors occur in a block during transmission.
We generate the sets Hi = {α|α ∈ Qr, H(D(i), α) 6 Bmax}, for i = 1, 2, . . . , s,
where H(D(i), α) is the Hamming distance between D(i) and α.

The decoding candidate sets S0, S1, S2,. . . ,Ss, are de�ned iteratively. Let
S0 = (k1 . . . kn;λ), where λ is the empty sequence. Let Si−1 be de�ned for i > 1.
Then Si is the set of all pairs (δ, w1w2 . . . w4ri) obtained by using the sets Si−1

and Hi as follows (wj are bits). For each element α ∈ Hi and each (β,w1w2 . . .
w4r(i−1)) ∈ Si−1, we apply the inverse coding algorithm (i.e., algorithm for de-
cryption given in Figure 1) with input (α, β). If the output is the pair (γ, δ) and
if both sequences γ and L(i) have the redundant zeros in the same positions, then
the pair (δ, w1w2 . . . w4r(i−1)c1c2 . . . cr) ≡ (δ, w1w2 . . . w4ri) (ci ∈ Q) is an element
of Si.

The decoding of the received message D is given by the following rule: If the
set Ss contains only one element

(d1 . . . dn, w1 . . . w4rs),

then L = w1 . . . w4rs is the decoded (redundant) message and we say that we have
a successful decoding. In the case when the set Ss contains more than one element
then the decoding of D is unsuccessful and we say a more-candidate-error appears.
In the case when Sj = ∅ for some j ∈ {1, . . . , s}, the process will be stopped and
we say that a null-error appears.

In Cut-Decoding algorithm, after transmitting through a noise channel, we di-
vide the outgoing messageD = D(1)D(2) . . . D(s) in two messagesD1 = D(1)D(2) . . .
D(s/2) andD2 = D(s/2+1) D(s/2+2) . . . D(s) with equal lengths and we decode them
parallel with the corresponding parameters. In this decoding algorithm we make

modi�cation in the procedure for generating decoding candidate sets. Let S
(1)
i and

S
(2)
i be the decoding candidate sets obtained in the ith iteration of the two parallel

decoding processes, i = 1, . . . , s. Then, before the next iteration we eliminate from

S
(1)
i all elements whose second part does not match with the second part of an

element in S
(2)
i , and vice versa. In the (i + 1)th iteration the both processes use

the corresponding reduced sets S
(1)
i and S

(2)
i . With Cut-Decoding algorithm the

decoding speed is improved and the values of the packet-error probability (PER)
and the bit-error probability (BER) for code (72, 288) are smaller.



Cryptcodes Based on Quasigroups in Gaussian channel 253

3. Experiments

The experiments with the random codes based on quasigroup are made on a high
performance claster on Faculty of Computer Science and Engineering, UKIM -
Skopje. The cluster has 24 GB RAM, a processor with 2.266 GHz and 12 physical
cores (24 logical cores) are used.

The experiments are made in the following way:

- Firstly, we extend the message obtained from the source using a pattern
for adding redundant zero nibbles. We made experiments with 6 di�erent
patterns.

- The extended message is coded using an algorithm for coding (Standard or
Cut-Decoding) and blocks of 4 nibbles.

- On the coded message we make BPSK modulation (0→ −1 and 1→ 1).

- The signal is transmitted through Gaussian channel and due to the noises,
the received output signal can be di�erent from the input signal.

- Then, we make demodulation on the output signal in the following way:

1) if the received signal is greater than 0, then the receiver assumes that
bit 1 was transmitted;

2) if the received signal is less than 0, then the receiver assumes that bit
0 was transmitted.

- The demodulated message is decoded with the corresponding (previously
de�ned) decoding algorithm.

- We compare the decoded message with the input message and compute BER
and PER for di�erent values of SNR in the interval from −3 to 10.

The packet-error probability PER is computed as a ratio of the number of
incorrectly decoded packets (messages) and the number of all packets. The incor-
rectly decoded packets appear in the following cases:

1. If the last decoding candidate set Ss has only one element, then the message
in that element (the decoded message) is compared with the input message.
If both are equal then we have a correct decoding. If the decoded message
di�ers in at least one bit then we have an uncorrected error.

2. Packet errors appear in other cases of unsuccessful decoding (more-candidate

errors and null-errors).

The bit-error probability BER is computed as a ratio of the number of in-
correctly decoded bits and the number of all bits. The incorrectly decoded bits
appear in the following cases:



254 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

1. When the decoding is successful, we compare the decoded and the input
message computing Hamming distance between them. It gives the number
of incorrectly decoded bits.

2. When a null-error appears, i.e., Si = ∅ for some 0 6 j 6 s, we take all ele-
ments from the set Si−1 and we �nd their maximal common pre�x substring.
If this string has k bits and the length of the input message is 4l bits then
we compare this substring with the �rst k bits of the input message. If they
di�er in t bits then the number of incorrectly decoded bits is 4l − k + t.

3. If a more-candidate-error appears we take all elements from the set Ss and
we �nd their maximal common pre�x substring. The number of incorrectly
decoded bits is computed as previously.

4. Experimental results for Standard algorithm

In this section we present and analyze the results obtained using Standard cod-
ing/decoding algorithm for RCBQ. We investigate the in�uence of the code pa-
rameters on the code performances.

The in�uence of the pattern on the code performances

In order to check the in�uence of the pattern on the code performances, we
made experiments with 6 di�erent patterns for redundant zero nibbles for code
(72, 288) with rate R = 1/4. This means that the alphabet

Q = {0, 1, 2, 3, 4, 5, 6, 8, 9, a,b, c, d, e, f}.
In these experiments we have used the quasigroup (Q, ∗) and its parastrophe

(Q, \) given in Table 1, the initial key k = 0123456789 and 6 patterns given in
Table 2. In the patterns, we denote the message (information) symbol with 1
and the redundant zero symbol with 0. The experiments for di�erent values of
SNR in the interval from −3 to 10 dB are made. In this section we present the
experimental results for bit-error probability (BER) and packet-error probability
(PER).

Firstly, we made experiments for Bmax = 3 with 13888 messages. The ob-
tained results for BER are given in Table 3 and presented in Figure 2, while the
appropriate values of PER are presented in Table 4 and Figure 3.

The experimental results for BER are compared with a probability Pb for
bit-error in Gaussian channel. It is obvious that the values of BER and PER
increase as the values of SNR decrease (smaller values of SNR mean larger noise).
Therefore, we made experiments starting from SNR = 10 and decreasing the
values of SNR by 1. We stoppped with experiments when we get BER > Pb.
In this case the codes does not have sense since the bit-error probability obtained
using the code is greater than the bit-error probability Pb without coding. All
experimental results for BER obtained using pattern 1 and pattern 5 were greater



Cryptcodes Based on Quasigroups in Gaussian channel 255

∗ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 3 c 2 5 f 7 6 1 0 b d e 8 4 9 a
1 0 3 9 d 8 1 7 b 6 5 2 a c f e 4
2 1 0 e c 4 5 f 9 d 3 6 7 a 8 b 2
3 6 b f 1 9 4 e a 3 7 8 0 2 c d 5
4 4 5 0 7 6 b 9 3 f 2 a 8 d e c 1
5 f a 1 0 e 2 4 c 7 d 3 b 5 9 8 6
6 2 f a 3 c 8 d 0 b e 9 4 6 1 5 7
7 e 9 c a 1 d 8 6 5 f b 2 4 0 7 3
8 c 7 6 2 a f b 5 1 0 4 9 e d 3 8
9 b e 4 9 d 3 1 f 8 c 5 6 7 a 2 0
a 9 4 d 8 0 6 5 7 e 1 f 3 b 2 a c
b 7 8 5 e 2 a 3 4 c 6 0 d f b 1 9
c 5 2 b 6 7 9 0 e a 8 c f 1 3 4 d
d a 6 8 4 3 e c d 2 9 1 5 0 7 f b
e d 1 3 f b 0 2 8 4 a 7 c 9 5 6 e
f 8 d 7 b 5 c a 2 9 4 e 1 3 6 0 f

\ 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 8 7 2 0 d 3 6 5 c e f 9 1 a b 4
1 0 5 a 1 f 9 8 6 4 2 b 7 c 3 e d
2 1 0 f 9 4 5 a b d 7 c e 3 8 2 6
3 b 3 c 8 5 f 0 9 a 4 7 1 d e 6 2
4 2 f 9 7 0 1 4 3 b 6 a 5 e c d 8
5 3 2 5 a 6 c f 8 e d 1 b 7 9 4 0
6 7 d 0 3 b e c f 5 a 2 8 4 6 9 1
7 d 4 b f c 8 7 e 6 1 3 a 2 5 0 9
8 9 8 3 e a 7 2 1 f b 4 6 0 d c 5
9 f 6 e 5 2 a b c 8 3 d 0 9 4 1 7
a 4 9 d b 1 6 5 7 3 0 e c f 2 8 a
b a e 4 6 7 2 9 0 1 f 5 d 8 b 3 c
c 6 c 1 d e 0 3 4 9 5 8 2 a f 7 b
d c a 8 4 3 b 1 d 2 9 0 f 6 7 5 e
e 5 1 6 2 8 d e a 7 c 9 4 b 0 f 3
f e b 7 c 9 4 d 2 0 8 6 3 5 1 a f

Table 1: Quasigroup of order 16 used in the experiments and corresponding paras-
trophe

pattern 1 pattern 2 pattern 3 pattern 4 pattern 5 pattern 6

1000 1000 1100 1100 1100 1100 1100 1100 1100 1000 1100 1100
1000 1000 0000 1100 1000 0000 1100 0000 0000 1100 1000 0000
1000 1000 1100 0000 1100 1000 0000 1100 1000 0000 1100 1100
1000 1000 1100 1100 1000 0000 1100 1100 1100 1000 1000 0000
1000 1000 0000 1100 1100 1100 0000 0000 0000 1100 1100 1100
1000 1000 1100 0000 1000 0000 1100 1100 1000 0000 1000 0000
1000 1000 1100 0000 1100 1000 1100 0000 1100 1000 1000 1000
1000 1000 0000 0000 1000 0000 0000 0000 0000 1100 1000 0000
1000 1000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

Table 2: Patterns for redundant zero nibbles

than Pb and therefore these results are not present in the following tables and
�gures.

From all experimental results given in the tables and �gures we can see that
when the value of SNR increases, the bit-error and packet-error probabilities
decrease.

SNR pattern 2 pattern 3 pattern 4 pattern 6

1 0.08637 0.08737 0.10262 0.08838

2 0.02054 0.02075 0.02418 0.02057

3 0.00387 0.00408 0.00398 0.00321

4 0.00055 0.00046 0.00030 0.00016

5 0 0 0.00007 0

6 0 0 0 0.00004

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

Table 3: Experimental results for BER for di�erent patterns and Bmax = 3

From Figure 2 and Figure 3 we can notice that none of the considered patterns



256 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10

pattern2 pattern3 pattern4 pattern6

Figure 2: Experimental results for BER for di�erent patterns and Bmax = 3

SNR pattern 2 pattern 3 pattern 4 pattern 6

1 0.176915 0.17519 0.171659 0.175403

2 0.043707 0.04435 0.040971 0.043131

3 0.007488 0.00801 0.007056 0.007272

4 0.001008 0.00086 0.000648 0.000432

5 0 0 0.00007 0

6 0 0 0 0.00007

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

Table 4: Experimental results for PER for di�erent patterns and Bmax = 3

stands out as the best or as the worst, i.e., for all patterns the values of BER
(PER) are very close. In these experiments we did not obtain any unsuccessful
decoding withmore-candidate-error. So, all unsuccessful decodings are null-errors,
whose number decreases when SNR increases.

Further on, we made experiments with the same parameters, but for Bmax = 4.
The decoding process in these experiments is much slower than for Bmax = 3 since
the number of elements in the sets Si are greater. The obtained results for BER
are presented in Table 5 and Figure 4, and the results for PER in Table 6 and
Figure 5.

From Figure 4, we can see that pattern 6 is the worst pattern for this value of
Bmax, while the other patterns give almost equal values of BER (the di�erences
are in the fourth decimal). Only for smaller values of SNR pattern 3 gives better
results than pattern 2 and pattern 4.

As we concluded before, for Bmax = 3, more-candidate-error does not appear
with none of the patterns. But, from the experiment for Bmax = 4 we can conclude
the following:



Cryptcodes Based on Quasigroups in Gaussian channel 257

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5 6 7 8 9

pattern2 pattern3 pattern4 pattern6

Figure 3: Experimental results for PER for di�erent patterns and Bmax = 3

SNR pattern 2 pattern 3 pattern 4 pattern 6

0 0.10582 0.08343 0.09630 0.94627

1 0.02411 0.01928 0.02336 0.24562

2 0.00361 0.00400 0.00424 0.04602

3 0.00049 0.00068 0.00047 0.00788

4 0.00024 0.00042 0.00014 0.00202

5 0.00004 0.00066 0.00016 0.00136

6 0.00032 0.00054 0.00016 0.00374

7 0.00025 0.00046 0.00011 0.00354

8 0.00025 0.00053 0.00004 0.00372

9 0.00025 0.00053 0.00004 0.00372

10 0.00025 0.00053 0.00004 0.00372

Table 5: Experimental results for BER for di�erent patterns and Bmax = 4

SNR pattern 2 pattern 3 pattern 4 pattern 6

0 0.10750 0.10829 0.10808 0.10707

1 0.02448 0.02520 0.02635 0.02758

2 0.00367 0.00554 0.00482 0.00511

3 0.00050 0.00137 0.00065 0.00086

4 0.00029 0.00101 0.00014 0.00029

5 0.00007 0.00144 0.00004 0.00014

6 0.00036 0.00115 0.00029 0.00043

7 0.00029 0.00108 0.00022 0.00043

8 0.00029 0.00122 0.00001 0.00043

9 0.00029 0.00122 0.00001 0.00043

10 0.00029 0.00122 0.00001 0.00043

Table 6: Experimental results for PER for di�erent patterns and Bmax = 4

- for SNR 6 3, we obtain more null-errors than more-candidate-errors;

- for SNR > 3, we do not have null-errors, but we havemore-candidate-errors.

In order to reduce the number of unsuccessful decodings with more-candidate-

error, we use the heuristic introduced in [7] in the experiments with Bmax = 4.



258 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0.03000

1 2 3 4 5 6 7 8 9 10

pattern2 pattern3 pattern4 pattern6

Figure 4: Experimental results for BER for di�erent patterns and Bmax = 4

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0.03000

1 2 3 4 5 6 7 8 9 10

pattern2 pattern3 pattern4 pattern6

Figure 5: Experimental results for PER for di�erent patterns and Bmax = 4

According to this heuristic, in the case of more-candidate-error we randomly select
a message from the last decoding candidate set and it is taken as decoded message.
The results for BER and PER obtained using the heuristic are presented in
Table 7 and Table 8 (Figure 6 and Figure 7), correspondingly. From the results,
we can conclude that using this heuristic, the values of BER and PER are slightly
better.

From the previous experiments, we can conclude that the chosen pattern has
a great in�uence on the code performances. For some patterns (for example,
pattern 1 and pattern 5 given in Table 2) the coding does not have a sense.



Cryptcodes Based on Quasigroups in Gaussian channel 259

SNR pattern 2 pattern 3 pattern 4 pattern 6

0 0.10582 0.08301 0.09609 0.94627

0.5 0.05395 0.04187 0.04913 0.48607

1 0.02397 0.01919 0.02336 0.24562

1.5 0.01169 0.00923 0.00960 0.08374

2 0.00361 0.00368 0.00424 0.04602

3 0.00042 0.00052 0.00047 0.00788

4 0.00011 0.00028 0.00014 0.00202

5 0.00004 0.00031 0.00016 0.00136

6 0.00025 0.00025 0.00016 0.00374

7 0.00018 0.00032 0.00011 0.00354

8 0.00018 0.00035 0.00004 0.00372

9 0.00018 0.00035 0.00004 0.00372

10 0.00018 0.00035 0.00004 0.00372

Table 7: Experimental results for BER for Bmax = 4 using the heuristic for
decreasing of more-candidate-errors

SNR pattern 2 pattern 3 pattern 4 pattern 6

0 0.10750 0.10829 0.10808 0.10707

1 0.02434 0.02506 0.02635 0.02758

2 0.00367 0.00490 0.00482 0.00511

3 0.00043 0.00058 0.00065 0.00086

4 0.00014 0.00058 0.00014 0.00029

5 0.00007 0.00065 0.00036 0.00014

6 0.00029 0.00043 0.00029 0.00043

7 0.00022 0.00058 0.00022 0.00043

8 0.00022 0.00065 0.00014 0.00043

9 0.00022 0.00065 0.00014 0.00043

10 0.00022 0.00065 0.00014 0.00043

Table 8: Experimental results for PER for Bmax = 4 using the heuristic for
decreasing of more-candidate-errors

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0.03000

1 2 3 4 5 6 7 8 9 10

pattern2 pattern3 pattern4 pattern6

Figure 6: Experimental results for BER for Bmax = 4 using the heuristic for
decreasing of more-candidate-errors



260 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

0.03000

1 2 3 4 5 6 7 8 9 10

pattern2 pattern3 pattern4 pattern6

Figure 7: Experimental results for PER for Bmax = 4 using the heuristic for
decreasing of more-candidate-errors

In�uence of the key length to the code performances

In order to check the in�uence of the key length to the code performances, we
have made experiments using keys with di�erent lengths. The results obtained for
key lengths of 5, 10 and 15 nibbles are represented in Table 9, Figure 8 (for BER)
and Table 10, Figure 9 (for PER).

SNR key length 5 key length 10 key length 15

1 0.02838 0.01928 0.02090

2 0.01135 0.00400 0.00401

3 0.01026 0.00068 0.00091

4 0.00899 0.00042 0.00041

5 0.00952 0.00066 0.00032

6 0.00910 0.00054 0.00081

7 0.00931 0.00046 0.00067

8 0.00922 0.00053 0.00067

9 0.00927 0.00053 0.00066

10 0.00929 0.00053 0.00066

Table 9: Experimental results for BER for key lengths of 5, 10 and 15 nibbles

Analyzing the presented results we can see that results obtained using keys with
length 10 and 15 are almost identical. Also, in these cases, the decoding speeds are
same. In the experiments with a key of length 5, the worse results for BER and
PER are obtained. For this key length and SNR > 3, the bit-error probability
is about 15 to 20 times greater than the corresponding probability obtained with
the key length 10, and it is up to 29 times greater than the probability obtained
with the key length 15.

From the experiments we can conclude that the key length also has a great
in�uence on the performances of these codes.



Cryptcodes Based on Quasigroups in Gaussian channel 261

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6 7 8 9 10

kluc 5 kluc 15 kluc 10

Figure 8: Experimental results for BER for key lengths of 5, 10 and 15 nibbles

SNR key length 5 key length 10 key length 15

1 0.03816 0.02520 0.02772

2 0.01533 0.00554 0.00583

3 0.01360 0.00137 0.00151

4 0.01202 0.00101 0.00093

5 0.01245 0.00144 0.00079

6 0.01216 0.00115 0.00144

7 0.01252 0.00108 0.00129

8 0.01245 0.00122 0.00129

9 0.01245 0.00122 0.00129

10 0.01250 0.00122 0.00129

Table 10: Experimental results for PER for key lengths of 5, 10 and 15 nibbles

In�uence of the chosen quasigroup to the code performances

In order to check the in�uence of the choice of a quasigroup on the code per-
formances, we have made experiments with a cyclic quasigroup of order 16 using a
key of 10 nibbles. Firstly, the experiments were made by using the third pattern.
But, in these experiments we obtained a great number of messages in the decoding
candidate sets. So, the decoding process was very slow and it did not �nish in
reasonable time.

Therefore, we made experiments using the �rst pattern and Bmax = 4. The
decoding was faster than in the previous case, but not enough. Also, we obtained
a great number of more-candidate-errors. For example, for SNR = 1, the proba-
bility for this type of error is 0.98.

From these experiments, we can conclude that the choice of the quasigroup has
an enormous in�uence on the performances of these codes.

From all experimental results obtained with Standard algorithm for coding/de-
coding messages transmitted through a Gaussian channel, we can conclude that
the best results are obtained using the third pattern, the key length equal to 10



262 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10

kluc 5 kluc 15 kluc 10

Figure 9: Experimental results for PER for key lengths of 5, 10 and 15 nibbles

(or 15), the quasigroup given in Table 1 and Bmax = 4.

5. Experimental results for Cut-Decoding algorithm

In the experiments made with Cut-Decoding algorithm, in both processes of cod-
ing/decoding we used a same quasigroup and di�erent keys. The best results are
obtained for the following parameters:

- redundancy pattern: 1100 1110 1100 1100 1110 1100 1100 1100 0000;

- two di�erent keys with length 5: k1 = 01234 and k2 = 56789;

- the quasigroup given in Table 1;

- Bmax = 4.

Also, experiments with keys of 10 nibbles were made, but the results were
similar.

Let PERc be the packet-error probability and BERc the bit-error probability
obtained with Cut-Decoding algorithm. We will compare these probabilities with
PERs and BERs obtained with Standard algorithm using the best parameters
(pattern 3, quasigroup given in Table 1 and key k = 0123456789). In Table 11
and Figure 10, BERs and BERc for di�erent values of SNR are given, and in
Table 12 and Figure 11 - the corresponding results for PERs and PERc. In the
tables we present the results for SNR > 0, since the decoding does not have sense
(BER > Pb) for smaller values of SNR.



Cryptcodes Based on Quasigroups in Gaussian channel 263

SNR BERs BERc

0 0.08343 0.07153
1 0.01928 0.01831
2 0.00400 0.00249
3 0.00068 0.00073
4 0.00042 0.00052
5 0.00066 0.00047
6 0.00054 0.00060
7 0.00046 0.00049
8 0.00053 0.00046
9 0.00053 0.00046
10 0.00053 0.00046

Table 11: Comparison of experimental results for BER for both algorithms

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

0.09000

1 2 3 4 5 6 7 8 9 10 11

BER_s BER_c

Figure 10: Comparison of BERs

From the results given in Table 11 and Table 12, we can conclude that for both
algorithms the results for PER and BER are approximately equal (they di�er
in the third or higher decimal). But the decoding process with Cut-Decoding
algorithm is about 4 times faster than with Standard algorithm.



264 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

SNR PERs PERc

0 0.10829 0.10001
1 0.02520 0.02722
2 0.00554 0.00410
3 0.00137 0.00230
4 0.00101 0.00252
5 0.00144 0.00230
6 0.00115 0.00252
7 0.00108 0.00238
8 0.00122 0.00223
9 0.00122 0.00223
10 0.00122 0.00223

Table 12: Comparison of experimental results for PER for both algorithms

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

1 2 3 4 5 6 7 8 9 10 11

PER_s PER_c

Figure 11: Comparison of PERs

Methods for decreasing of number of unsuccessful decodings with Cut-

Decoding algorithm

In order to reduce the number of unsuccessful decodings with null-error and
more-candidate-error, several modi�cations of Cut-Decoding algorithm are de�ned
(in [7]). To improve the performances of Cut-Decoding algorithm (for transmission
through Gaussian channel) we use the following two combinations of the proposed
modi�cations.

In the both combinations with backtracking, if the decoding ends with null-

error, then the last two iterations are canceled and the �rst of them is reprocessed
with Bmax + 2 = 6 (the next iterations use the previous value of Bmax). If
the decoding ends with more-candidate-error, then the last two iterations of the



Cryptcodes Based on Quasigroups in Gaussian channel 265

decoding process are canceled and the penultimate iteration is reprocessed with
Bmax − 1 = 3. In the decoding of a message only one backtracking is made,
except when after the backtracking for null-error, more-candidate-error appears.
In Combination 1, we make one more backtracking for more-candidate-error if
both decoding candidate sets are non-empty. In Combination 2, we make one
more backtracking for more-candidate-error, if at least one of decoding candidate
sets is non-empty.

The bit-error and packet-error probabilities obtained with Combination 1 are
denoted by BERc−back and PERc−back. The bit-error and packet-error probabili-
ties obtained with Combination 2 are denoted by BERc−back−2 and PERc−back−2.

In Table 13 and Figure 12, we compare the values of packet-error probabilities
PERs, PERc, PERc−back and PERc−back−2 and in Table 14 and Figure 13 -
corresponding bit-error probabilities BER, BERc, BERc−back and BERc−back−2.

SNR PERs PERc PERc−back PERc−back−2

0 0.10829 0.10001 0.07431 0.07496
1 0.02520 0.02722 0.01944 0.01743
2 0.00554 0.00410 0.00259 0.00331
3 0.00137 0.00230 0.00043 0.00036
4 0.00101 0.00252 0.00014 0.00014
5 0.00144 0.00230 0.00014 0.00007
6 0.00115 0.00252 0.00022 0.00014
7 0.00108 0.00238 0.00029 0.00029
8 0.00122 0.00238 0.00029 0.00029
9 0.00122 0.00223 0.00029 0.00029
10 0.00122 0.00223 0.00029 0.00029

Table 13: Comparison of experimental results for PER

SNR BERs BERc BERc−back BERc−back−2

0 0.08343 0.07153 0.04701 0.04815
1 0.01928 0.01830 0.01163 0.01137
2 0.00400 0.00249 0.00146 0.00227
3 0.00068 0.00073 0.00018 0.00013
4 0.00042 0.00052 0.00009 0.00010
5 0.00066 0.00047 0.00005 0.00003
6 0.00054 0.00060 0.00007 0.00006
7 0.00046 0.00049 0.00010 0.00010
8 0.00053 0.00046 0.00010 0.00010
9 0.00053 0.00046 0.00010 0.00010
10 0.00053 0.00046 0.00010 0.00010

Table 14: Comparison of experimental results for BER



266 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10 11

PER_s PER_c PER_c_back PER_c_back2

Figure 12: Comparison of PERs

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

0.06000

0.07000

0.08000

0.09000

1 2 3 4 5 6 7 8 9 10 11

BER_s BER_c BER_c_back BER_c_back2

Figure 13: Comparison of BERs

Analyzing the results we can see that Cut-Decoding algorithm with the both
proposed combinations for backtracking gives better (and almost identical) results
than Cut-Decoding algorithm without backtracking and Standard algorithm.

Also, we calculate the percentage of the eliminated unsuccessful decodings by
using the both combinations for backtracking. These results are given in Table 15.

We can notice that the obtained percentages of the eliminated unsuccessful
decodings are same with both proposed combinations for backtracking, i.e, we
have the same number of eliminated unsuccessful decodings. But, for SNR 6 2,
the �rst combination gives better elimination of null-errors and the second one -



Cryptcodes Based on Quasigroups in Gaussian channel 267

% of elimination % of elimination
SNR 1st combination 2st combination
0 22.75% 22.85%
1 35.19% 35.19%
2 35.09% 35.09%
3 84.38% 84.38%
4 80.00% 80.00%
5 90.63% 90.63%
6 91.43% 91.43%
7 87.88% 87.88%
8 87.10% 87.10%
9 83.87% 83.87%
10 87.10% 87.10%

Table 15: Percent of eliminated unsuccessful decodings

better elimination of more-candidate-errors.

Conclusions

From the experiments made for investigation of the performances of RCBQ for
transmission through Gaussian channel, we can conclude that all parameters (a
pattern for adding redundancy, a key length and a chosen quasigroup) have in-
�uence to the performances of these codes. Also, the pattern and the quasigroup
have a great in�uence to the decoding speed. Namely, with inappropriate choice
of these parameters, the decoding process does not �nish in real time and the
packet-error and bit-error probabilities are very large. Two combinations with
backtracking of Cut-Decoding algorithm are proposed and they give a good per-
centage of eliminated unsuccessful decodings.

These conclusions for in�uence of parameters on the performances of RCBQ
for transmission through Gaussian channel are very similar with corresponding
conclusions for transmission through a binary symmetric channel (see, [6, 7, 8, 9]).

Acknowledgment

This research was partially supported by Faculty of Computer Science and Engi-
neering at the University "Ss Cyril and Methodius" in Skopje.

References

[1] D. Gligoroski, S. Markovski and Lj. Kocarev. Totally asynchronous stream

ciphers + Redundancy = Cryptcoding, S. Aissi, H.R. Arabnia (Eds.): Proc. Internat.
Confer. Security and Management, SAM 2007, Las Vegas, CSREA Press (2007), pp.
446− 451.



268 D. Mechkaroska, A. Popovska-Mitrovikj and V. Bakeva

[2] D. Gligoroski, S. Markovski and Lj. Kocarev, Error-correcting codes based on

quasigroups, Proc. 16th Intern. Confer. Computer Communications and Networks
(2007), pp. 165− 172.

[3] S. Markovski, D. Gligoroski and V. Bakeva, Quasigrouop string processing:

Part 1, Contributions, Sec. Math. Tech. Sci., MANU, 20 (1999), 13− 28.

[4] C.N. Mathur, K. Narayan and K.P. Subbalakshmi, High Di�usion Cipher:

Encryption and Error Correction in a Single Cryptographic Primitive, Lecture Notes
Comput. Sci. 3989 (2006), 309− 324.

[5] A. Popovska-Mitrovikj, V. Bakeva and S. Markovski, On random error cor-

recting codes based on quasigroups, Quasigroups and Related Systems 19 (2011),
301− 316.

[6] A. Popovska-Mitrovikj, S. Markovski and V. Bakeva, Performances of

error-correcting codes based on quasigroups, D.Davcev, J.M.Gomez (Eds.): ICT-
Innovations 2009, Springer (2009), pp. 377− 389.

[7] A. Popovska-Mitrovikj, S. Markovski anf V. Bakeva, Increasing the decoding
speed of random codes based on quasigroups, S. Markovski, M. Gusev (Eds.): ICT
Innovations 2012, Web proceedings, ISSN 1857-7288, pp. 93− 102.

[8] A. Popovska-Mitrovikj, S. Markovski and V. Bakeva, Some New Results for

Random Codes Based on Quasigroups, Proc. 10th Conf. Informatics and Information
Technology with International Participants, Bitola (2013), pp. 178− 181.

[9] A. Popovska-Mitrovikj, S. Markovski and V. Bakeva, 4-Sets-Cut-Decoding
algorithms for random codes based on quasigroups, Intern. J. Electronics Commun.
69 (2015), 1417− 1428.

[10] J.G. Proakis and M. Salehi, Digital Communications, Fifth Edition, McGrawHill
Higher Education (2008)

[11] H. Tzonelih and T.R.N. Rao, Secret error-correcting codes, Lecture Notes Com-
put. Sci. 403 (1990), 540− 563.

[12] N. Zivic and C. Ruland, Parallel Joint Channel Coding and Cryptography, In-
tern. J. Electrical and Electronics Engineering, 4(2) (2010), 140− 144.

Received March 19, 2016
University "Ss Cyril and Methodius" - Skopje,
Faculty of Computer Science and Engineering,
P.O. Box 393, Republic of Macedonia
E-mails: daniela-mec@hotmail.com, aleksandra.popovska.mitrovikj@�nki.ukim.mk,
verica.bakeva@�nki.ukim.mk


