On quasi n-absorbing elements of multiplicative lattices

Ece Yetkin Celikel

Abstract. A proper element q of a lattice L is said to be a quasi *n*-absorbing element if whenever $a^n b \leq q$ implies that either $a^n \leq q$ or $a^{n-1}b \leq q$. We investigate properties of this new type of elements and obtain some relations among prime, 2-absorbing, *n*-absorbing elements in multiplicative lattices.

1. Introduction

In this paper we define and study quasi *n*-absorbing elements in multiplicative lattices. A multiplicative lattice is a complete lattice L with the least element 0 and compact greatest element 1, on which there is defined a commutative, associative, completely join distributive product for which 1 is a multiplicative identity. Notice that L(R) the set of all ideals of a commutative ring R is a special example for multiplicative lattices which is principally generated, compactly generated and modular. However, there are several examples of non-modular multiplicative lattices (see [1]). Weakly prime ideals [3] were generalized to multiplicative lattices (see [1]). Weakly prime ideals [7]. While 2-absorbing, weakly 2-absorbing and *n*-absorbing ideals in commutative rings were introduced in [5], [6], and [4], 2absorbing and weakly 2-absorbing elements in multiplicative lattices were studied in [10].

We begin by recalling some background material which will be needed. An element a of L is said to be *compact* if whenever $a \leq \bigvee_{\alpha \in I} a_{\alpha}$ implies $a \leq \bigvee_{\alpha \in I_0} a_{\alpha}$ for some finite subset I_0 of I. By a C-lattice we mean a (not necessarily modular) multiplicative lattice which is generated under joins by a multiplicatively closed subset C of compact elements of L. We note that in a C-lattice, a finite product of compact elements is again compact. Throughout this paper L and L_* denotes a multiplicative lattice and the set of compact elements of the lattice L, respectively. An element a of L is said to be proper if a < 1. A proper element p of L is said to be prime (resp. weakly prime) if $ab \leq p$ (resp. $0 \neq ab \leq p$) implies either $a \leq p$ or $b \leq p$. If 0 is prime, then L is said to be a domain. A proper element m of L is said to be maximal if $m < x \leq 1$ implies x = 1. The Jacobson radical of a lattice L is

²⁰¹⁰ Mathematics Subject Classification: 13A15

 $[\]label{eq:Keywords: 2-absorbing} \ element, \ n-absorbing \ element, \ multiplicative \ lattice, \ quasi \ n-absorbing \ element.$

defined as $J(L) = \bigwedge \{m \mid m \text{ is a maximal element of } L\}$. L is said to be quasi-local if it contains a unique maximal element. If $L = \{0, 1\}$, then L is called a field. For $a \in L$, we define a radical of a as $\sqrt{a} = \bigwedge \{p \in L \mid p \text{ is prime and } a \leq p\}$. Note that in a C-lattice L,

 $\sqrt{a} = \bigwedge \{ p \in L \mid p \text{ is prime and } a \leq p \} = \bigvee \{ x \in L_* \mid x^n \leq a \text{ for some } n \in Z^+ \}$

by (Theorem 3.6 of [12]). Elements of the set $Nil(L) = \sqrt{0}$ are called *nilpotent*. For any prime element $p \in L$ by L_p we denote the localization $F = \{x \in C \mid x \leq p\}$. For details on *C*-lattices and their localizations see [9] and [11]. An element $e \in L$ is said to be *principal* [8], if it satisfies the identities (i) $a \wedge be = ((a : e) \wedge b)e$ and (ii) $(ae \vee b) : e = (b : e) \vee a$. Elements satisfying the identity (i) are called *meet principal*, elements satisfying (ii) are called *join principal*. Note that any finite product of meet (join) principal elements of *L* is again meet (join) principal [8, Lemma 3.3 and Lemma 3.4]. If every element of *L* is principal, then *L* is called a *principal element lattice* [2].

Recall from [10] that a proper element q of L is called 2-*absorbing* (resp. *weakly* 2-*absorbing*) if whenever $a, b, c \in L$ with $abc \leq q$ (resp. $0 \neq abc \leq q$), then either $ab \leq q$ or $ac \leq q$ or $bc \leq q$. We say that (a, b, c) is a *triple zero element* of q if abc = 0, $ab \leq q$, $ac \leq q$ and $bc \leq q$. Observe that if q is a weakly 2-absorbing element which is not a 2-absorbing, then there exist a triple zero of q. A proper element $q \in L$ is *n*-*absorbing* (resp. *weakly n*-*absorbing*) if $a_1a_2 \cdots a_{n+1} \leq q$ (resp. $0 \neq a_1a_2 \cdots a_{n+1} \leq q$) for some $a_1a_2 \cdots a_{n+1} \in L_*$ then $a_1a_2 \cdots a_{k-1}a_{k+1} \cdots a_{n+1} \leq q$ for some $k = 1, \ldots, n + 1$.

2. Quasi n-absorbing elements

Let L be a multiplicative lattice and n be a positive integer.

Definition 2.1. A proper element q of L is called:

- quasi n-absorbing if $a^n b \leq q$ for some $a, b \in L_*$ implies $a^n \leq q$ or $a^{n-1} b \leq q$,
- weakly quasi n-absorbing if $0 \neq a^n b \leq q$ for some $a, b \in L_*$ implies $a^n \leq q$ or $a^{n-1}b \leq q$.

Theorem 2.2. Let q be a proper element of L and $n \ge 1$. Then:

- (1) q is a prime element if and only if it is quasi 1-absorbing,
- (2) q is a weakly prime element if and only if it is weakly quasi 1-absorbing,
- (3) if q is n-absorbing, then it is quasi n-absorbing,
- (4) if q is quasi n-absorbing, then it is weakly quasi n-absorbing,
- (5) if q is quasi n-absorbing, then it is quasi m-absorbing for all $m \ge n$,
- (6) if q is weakly quasi n-absorbing, then it is weakly quasi m-absorbing for all $m \ge n$.

Proof. (1), (2), (3) and (4) are obvious. To prove (5) suppose that q is a quasi n-absorbing element of L, and $a, b \in L_*$ with $a^m b \leq q$ for some $m \geq n$. Hence

 $a^n(a^{m-n}b) \leq q$. Since q is a quasi n-absorbing element, we have either $a^n \leq q$ or $a^{n-1}(a^{m-n}b) \leq q$. So, either $a^m \leq q$ or $a^{m-1}b \leq q$. This shows that q is a quasi m-absorbing element of L.

(6) can be proved analogously.

Corollary 2.3. Let q be a proper element of L.

- (1) If q is prime, then it is quasi n-absorbing for all $n \ge 1$.
- (2) If q is weakly prime, then it is weakly quasi n-absorbing all $n \ge 1$.
- (3) If q is 2-absorbing, then it is a quasi n-absorbing for all $n \ge 2$.
- (4) If q is weakly 2-absorbing, then it is weakly quasi n-absorbing for all $n \ge 2$.

The converses of these relations are not true in general.

Example 2.4. Consider the lattice of ideals of the ring of integers $L = L(\mathbb{Z})$. Note that the element 30 \mathbb{Z} of L is a quasi 2-absorbing element, and so quasi n-absorbing element for all $n \ge 2$ by Corollary 2.3, but it is not a 2-absorbing element of L by Theorem 2.6 in [7].

Proposition 2.5. For a proper element q of L the following statements are equivalent.

(1) q is a quasi n-absorbing element of L.

(2) $(q:a^n) = (q:a^{n-1})$ where $a \in L_*$, $a^n \leq q$.

In paticular, 0 is a quasi n-absorbing element of L if and only if for each $a \in L_*$ we have $a^n = 0$ or $ann(a^n) = ann(a^{n-1})$.

Proof. It follows directly from Definition 2.1.

Notice that if q is a weakly quasi n-absorbing element which is not quasi nabsorbing, then there are some elements $a, b \in L_*$ such that $a^n b = 0, a^n \notin q$ and $a^{n-1}b \notin q$. We call the pair of elements (a, b) with this property – a quasi n-zero element of q. Notice that a zero divisor element of L is a quasi 1-zero element of 0_L , and (a, a, b) is a triple zero element of q if and only if (a, b) is a quasi 2-zero element of q.

Theorem 2.6. Let q be a weakly quasi n-absorbing element of L. If (a, b) is a quasi n-zero element of q for some $a, b \in L_*$, then $a^n \in ann(q)$ and $b^n \in ann(q)$.

Proof. Suppose that $a^n \notin ann(q)$. Hence $a^n q_1 \neq 0$ for some $q_1 \in L_*$ where $q_1 \leq q$. It follows $0 \neq a^n (b \lor q_1) \leq q$. Since $a^n \notin q$, and q is weakly quasi *n*-absorbing, we conclude that $a^{n-1}(b \lor q_1) \leq q$. So $a^{n-1}b \leq q$, a contradiction. Thus $a^n q = 0$, and so $a^n \in ann(q)$. Similarly we conclude that $b^n \in ann(q)$.

Theorem 2.7. If $\{p_{\lambda}\}_{\lambda \in \Lambda}$ is a family of (weakly) prime elements of L, then $\bigwedge_{\lambda \in \Lambda} p_{\lambda}$ is a (weakly) quasi m-absorbing element for all $m \ge 2$.

 \square

Proof. Let $\{p_{\lambda}\}_{\lambda \in \Lambda}$ be a family of prime elements of L. By Corollary 2.3 (3) it is sufficient to prove that $\bigwedge_{\lambda \in \Lambda} p_{\lambda}$ is a quasi 2-absorbing element of L.

Let $a, b \in L_*$ with $a^2 b \leq \bigwedge_{\lambda \in \Lambda} p_{\lambda}$. Since $a^2 b \leq p_i$ for all prime elements p_i , we have $a \leq p_i$ or $b \leq p_i$. Thus $ab \leq p_i$ for all i = 1, ..., n and so $ab \leq \bigwedge_{\lambda \in \Lambda} p_{\lambda}$, which

completes the proof for prime elements. For weakly prime elements the proof is similar.

Corollary 2.8. Let q be a proper element of L. Then \sqrt{q} , Nil(L) and J(L) are quasi n-absorbing elements of L for all $n \ge 2$.

Proof. It is clear from Theorem 2.7.

Theorem 2.9. If $\{q_{\lambda}\}_{\lambda \in \Lambda}$ is a family of (weakly) quasi *m*-absorbing elements of a totally ordered lattice *L*, then for each positive integer $m \bigwedge_{\lambda \in \Lambda} q_{\lambda}$ is a (weakly) quasi *m*-absorbing element of *L*.

Proof. Assume that $\{q_{\lambda}\}_{\lambda \in \Lambda}$ is an ascending chain of quasi *m*-absorbing elements and $a^m \notin \bigwedge_{\lambda \in \Lambda} q_{\lambda}$ and $a^{m-1}b \notin \bigwedge_{\lambda \in \Lambda} q_{\lambda}$. We show that $a^m b \notin \bigwedge_{\lambda \in \Lambda} q_{\lambda}$. Hence $a^m \notin q_j$ and $a^{m-1}b \notin q_k$ for some $j, k = 1, \ldots, n$. Put $t = \min\{j, k\}$. Then $a^m \notin q_t$ and $a^{m-1}b \notin q_t$. Since q_t is a quasi *m*-

Put $t = \min\{j, k\}$. Then $a^m \nleq q_t$ and $a^{m-1}b \nleq q_t$. Since q_t is a quasi *m*-absorbing element, it follows $a^mb \nleq q_t$. Thus $a^mb \nleq \bigwedge_{\lambda \in \Lambda} q_{\lambda}$, we are done.

For weakly prime elements the proof is similar.

Theorem 2.10. Let for all i = 1, 2, ..., n, elements $q_1, ..., q_n \in L$ are (weakly) quasi m_i -absorbing, respectively. Then $\bigwedge_{i=1}^n q_i$ is a (weakly) quasi m-absorbing element of L for $m = \max\{m_1, ..., m_n\} + 1$.

Proof. Suppose that q_1, \ldots, q_n are quasi m_i -absorbing, respectively. Let $a, b \in L_*$ be such that $a^m b \leq \bigwedge_{i=1}^n q_i$. Hence $a^{m_i} \leq q_i$ or $a^{m_i-1}b \leq q_i$ for all i = 1, ..., n. Now assume that $a^m \not\leq \bigwedge_{i=1}^n q_i$. Without loss generality we can suppose that $a^{m_i} \leq q_i$ for all $1 \leq i \leq j$, and $a^{m_i} \not\leq q_i$ for all $j + 1 \leq i \leq n$. Hence we have $a^{m_i-1}b \leq q_i$ for all $j + 1 \leq i \leq n$. Then we get clearly $a^{m-1}b \leq q_i$ for $m = \max\{m_1, \ldots, m_n\} + 1$ and for all $1 \leq i \leq n$. Thus $a^{m-1}b \leq \bigwedge_{i=1}^n q_i$, so we are done.

For weakly prime elements the proof is similar.

If $x \in L$, the interval [x, 1] is denoted be L/x. The elements of \overline{a} and L/x is again a multiplicative lattice with $\overline{a} \circ \overline{b} = ab \lor x$ for all $\overline{a}, \overline{b} \in L/x$.

Theorem 2.11. Let x and q be proper elements of L with $x \leq q$. If q is a (weakly) quasi n-absorbing element of L, then \overline{q} is a (weakly) quasi n-absorbing element of L/x.

Proof. Suppose that $\overline{a} = a \lor x$, $\overline{b} = b \lor x \in L$ with $\overline{a}^n \overline{b} \leq \overline{q}$, where q is a quasi n-absorbing element of L. Then $a^n b \lor x \leq q$, and so $a^n b \leq q$. Since q is quasi 2-absorbing, we get either $a^n \leq q$ or $a^{n-1}b \leq q$. Thus $\overline{a}^n = (a \lor x)^n \leq \overline{q}$ or $\overline{a}^{n-1}\overline{b} = (a \lor x)^{n-1} (b \lor x) \leq \overline{q}$, as needed.

For weakly prime elements the proof is similar.

Recall that any C-lattice can be localized at a multiplicatively closed set. Let L be a C-lattice and S a multiplicatively closed subset of L_* . Then for $a \in L$, $a_S = \bigvee \{x \in L_* \mid xs \leq a \text{ for some } s \in S\}$ and $L_S = \{a_S \mid a \in L\}$. L_S is again a multiplicative lattice under the same order as L with the product $a_S \circ b_s = (a_S b_S)_S$ where the right hand side is evaluated in L.

If $p \in L$ is prime and $S = \{x \in L_* \mid x \leq p\}$, then L_S is denoted by L_p . [9]

Theorem 2.12. Let m be a maximal element of L and q be a proper element of L. If q is a (weakly) quasi n-absorbing element of L, then q_m is a (weakly) quasi n-absorbing element of L_m .

Proof. Let $a, b \in L_*$ such that $a_m^n b_m \leq q_m$. Hence $ua^n b \leq q$ for some $u \leq m$. It implies that $a^n \leq q$ or $a^{n-1}(ub) \leq q$. Since $u_m = 1_m$, we get $a_m^n \leq q_m$ or $a_m^{n-1}b_m \leq q_m$, we are done.

Theorem 2.13. Let L be a principal element lattice. Then the following statements are equivalent.

- (1) Every proper element of L is a quasi n-absorbing element of L.
- (2) For every $a, b \in L_*$, $a^n = ca^n b$ or $a^{n-1}b = da^n b$ for some $c, d \in L$.
- (3) For all $a_1, a_2, \ldots, a_{n+1} \in L_*$, $(a_1 \wedge a_2 \wedge \ldots \wedge a_n)^n \leq ca_1 a_2 \cdots a_{n+1}$ or $(a_1 \wedge a_2 \wedge \ldots \wedge a_n)^{n-1} a_{n+1} \leq da_1 a_2 \cdots a_{n+1}$ for some $c, d \in L$.

Proof. (1) \Leftrightarrow (2). Suppose that every proper element of L is a quasi *n*-absorbing element of L. Hence $a^n b \leq (a^n b)$ implies that $a^n \leq (a^n b)$ or $a^{n-1}b \leq (a^n b)$. Since L is a principal element lattice, there is some element $c \in L$ with $a^n = ca^n b$ or there is some element $d \in L$ with $a^{n-1}b = da^n b$. The converse is clear.

(2) \Rightarrow (3). Put $a = a_1 \wedge a_2 \wedge \ldots \wedge a_n$ and $b = a_{n+1}$. Hence the result follows from (2).

(3) \Rightarrow (2). For all $a, b \in L_*$, we can write $a^n = (\underbrace{a \wedge a \wedge \ldots \wedge a}_{n \text{ times}}) \leqslant ca^n b$ or $a^{n-1}b = (\underline{a \wedge a \wedge \ldots \wedge a})b \leqslant da^n b.$

$$n-1$$
 times

Theorem 2.14. Let $L = L_1 \times L_2$ where L_1 and L_2 are C-lattices. Then:

(1) q_1 is a quasi n-absorbing element of L_1 if and only if $(q_1, 1_{L_2})$ is a quasi n-absorbing element of L,

 \square

(2) q_2 is a quasi n-absorbing element of L_2 if and only if $(1_{L_1}, q_2)$ is a quasi n-absorbing element of L.

Proof. (1). Suppose that q_1 is a quasi *n*-absorbing element of L_1 .

Let $(a_1, a_2)^n (b_1, b_2) \leq (q_1, 1_{L_2})$ for some $a_1, b_1 \in L_{1_*}$ and $a_2, b_2 \in L_{2_*}$. Then $a_1^n b_1 \leq q_1$ implies that either $a_1^n \leq q_1$ or $a_1^{n-1} b_1 \leq q_1$. It follows either $(a_1, a_2)^n \leq (q_1, 1_{L_2})$ or $(a_1, a_2)^{n-1} (b_1, b_2) \leq (q_1, 1_{L_2})$. Thus $(q_1, 1_{L_2})$ is a quasi *n*-absorbing element of *L*. Conversely suppose that $(q_1, 1_{L_2})$ is a quasi *n*-absorbing element of *L* and $a^n b \leq q_1$ for some $a, b \in L_{1_*}$. Hence $(a, 1_{L_2})^n (b, 1_{L_2}) \leq (q_1, 1_{L_2})$ which implies that either $(a, 1_{L_2})^n \leq (q_1, 1_{L_2})$ or $(a, 1_{L_2})^{n-1} (b, 1_{L_2}) \leq (q_1, 1_{L_2})$. So $a_1^n \leq q_1$ or $a_1^{n-1} b_1 \leq q_1$, as needed.

(2). It can be verified similar to (1).

Theorem 2.15. Let $L = L_1 \times \cdots \times L_k$ where all L_i are C-lattices. If q_i is a quasi n_i -absorbing element of L_i for all $i = 1, \ldots, k$, then (q_1, \ldots, q_k) is a quasi m-absorbing element of L where $m = \max\{n_1, \ldots, n_k\} + 1$.

Proof. Suppose that $(a_1, \ldots, a_k)^m (b_1, \ldots, b_k) \leq (q_1, \ldots, q_k)$ for some (a_1, \ldots, a_k) , $(b_1, \ldots, b_k) \in L_*$ and $m = \max\{n_1, \ldots, n_k\} + 1$. Hence $a_i^m b_i = a_i^{n_i} (a_i^{m-n_i} b_i) \leq q_i$ for all $i = 1, \ldots, k$. Since each q_i is a quasi n_i -absorbing element, we have either $a_i^{n_i} \leq q_i$ or $a_i^{m-1} b_i = a_i^{n_i-1} (a_i^{m-n_i} b_i) \leq q_i$ for all $i = 1, \ldots, k$. If $a_i^{n_i} \leq q_i$ for all $i = 1, \ldots, k$, then $(a_1, \ldots, a_k)^m \leq (q_1, \ldots, q_k)$. Without loss generality, suppose that $a_i^{n_i} \leq q_i$ for all $1 \leq i \leq j$ and $a_i^{m-1} b_i \leq q_i$ for all $j + 1 \leq i \leq k$, for some $j = 1, \ldots, k$. Thus $(a_1, \ldots, a_k)^{m-1} (b_1, \ldots, b_k) \leq (q_1, \ldots, q_k)$, so we are done. \Box

Definition 2.16. A proper element q of L is said to be a *strongly quasi n-absorbing* element of L if whenever $a, b \in L$ (not necessarily compact) with $a^n b \leq q$ implies that either $a^n \leq q$ or $a^{n-1}b \leq q$.

It is clearly seen that every strongly quasi n-absorbing element of L is quasi n-absorbing.

Theorem 2.17. Let L be a principal element lattice. The following statements are equivalent.

- (1) Every proper element of L is a strongly quasi n-absorbing element of L.
- (2) For all $a, b \in L$, $a^n = a^n b$ or $a^{n-1}b = a^n b$.
- (3) $(a_1 \wedge a_2 \wedge \ldots \wedge a_n)^n \leq a_1 a_2 \cdots a_{n+1}$ or $(a_1 \wedge a_2 \wedge \ldots \wedge a_n)^{n-1} a_{n+1} \leq a_1 a_2 \cdots a_{n+1}$ for all $a_1, a_2, \ldots, a_{n+1} \in L$.

Proof. This can be easily shown using the similar argument in Theorem 2.13. \Box

Theorem 2.18. Let q be a proper element of L. Then:

- (1) If $a^n b \leq q \leq a \wedge b$, where $a, b \in L$, implies that $a^n \leq q$ or $a^{n-1}b \leq q$, then q is a strongly quasi n-absorbing element of L.
- (2) If $a_1a_2\cdots a_{n+1} \leqslant q \leqslant a_1 \land a_2 \land \ldots \land a_{n+1}$, where $a_1, a_2, \ldots, a_{n+1} \in L$, implies that $a_1 \cdots a_{i-1}a_{i+1} \cdots a_{n+1} \leqslant q$, for some $1 \leqslant i \leqslant n+1$, then q is a strongly quasi n-absorbing element of L.

Proof. (1). Let $x, y \in L$ with $x^n y \leq q$. We show that $x^n \leq q$ or $x^{n-1}y \leq q$. Now put $a = x \lor q$ and $b = y \lor q$. Hence we conclude $a^n b \leq q \leq a \land b$, and so $a^n \leq q$ or $a^{n-1}b \leq q$ by (1). It follows $x^n \leq q$ or $x^{n-1}y \leq q$.

(2). It can be easily verified similar to (1).

References

- F. Alarcon and D.D. Anderson, Commutative semirings and their lattices of ideals, Houston J. Math. 20 (1994), 571 - 590.
- [2] D.D. Anderson and C. Jayaram, Principal element lattices, Czechoslovak Math. J. 46 (1996), 99 - 109.
- [3] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831 - 840.
- [4] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Commun. Algebra 39 (2011), 1646 - 1672.
- [5] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
- [6] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), 441 – 452.
- [7] F. Callialp, C. Jayaram and U. Tekir, Weakly prime elements in multiplicative lattices, Commun. Algebra 40 (2012), 2825 – 2840.
- [8] R.P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
- C. Jayaram and E.W Johnson, s-prime elements in multiplicative lattices, Periodica Math. Hungarica 31 (1995), 201 - 208.
- [10] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Commun. Algebra 42 (2014), 2338 – 2353.
- [11] J.A. Johnson and G.R. Sherette, Structural properties of a new class of CMlattices, Canadian J. Math. 38 (1986), 552 - 562.
- [12] N.K. Thakare, C.S. Manjarekar and S. Maeda, Abstract spectral theory II, Minimal characters and minimal spectrums of multiplicative lattices, Acta. Sci. Math. (Szeged). 52 (1988), 53 - 67.

Received March 07, 2016

Department of Mathematics, Gaziantep University, 27310 Gaziantep, Turkey E-mail: yetkin@gantep.edu.tr