On quasi n-absorbing elements of multiplicative lattices

Ece Yetkin Celikel

Abstract

A proper element q of a lattice L is said to be a quasi n-absorbing element if whenever $a^{n} b \leqslant q$ implies that either $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$. We investigate properties of this new type of elements and obtain some relations among prime, 2 -absorbing, n-absorbing elements in multiplicative lattices.

1. Introduction

In this paper we define and study quasi n-absorbing elements in multiplicative lattices. A multiplicative lattice is a complete lattice L with the least element 0 and compact greatest element 1 , on which there is defined a commutative, associative, completely join distributive product for which 1 is a multiplicative identity. Notice that $L(R)$ the set of all ideals of a commutative ring R is a special example for multiplicative lattices which is principally generated, compactly generated and modular. However, there are several examples of non-modular multiplicative lattices (see [1]). Weakly prime ideals [3] were generalized to multiplicative lattices by introducing weakly prime elements [7]. While 2-absorbing, weakly 2 -absorbing and n-absorbing ideals in commutative rings were introduced in [5], [6], and [4], 2absorbing and weakly 2-absorbing elements in multiplicative lattices were studied in [10].

We begin by recalling some background material which will be needed. An element a of L is said to be compact if whenever $a \leqslant \bigvee_{\alpha \in I} a_{\alpha}$ implies $a \leqslant \bigvee_{\alpha \in I_{0}} a_{\alpha}$ for some finite subset I_{0} of I. By a C-lattice we mean a (not necessarily modular) multiplicative lattice which is generated under joins by a multiplicatively closed subset C of compact elements of L. We note that in a C-lattice, a finite product of compact elements is again compact. Throughout this paper L and L_{*} denotes a multiplicative lattice and the set of compact elements of the lattice L, respectively. An element a of L is said to be proper if $a<1$. A proper element p of L is said to be prime (resp. weakly prime) if $a b \leqslant p$ (resp. $0 \neq a b \leqslant p$) implies either $a \leqslant p$ or $b \leqslant p$. If 0 is prime, then L is said to be a domain. A proper element m of L is said to be maximal if $m<x \leqslant 1$ implies $x=1$. The Jacobson radical of a lattice L is

[^0]defined as $J(L)=\bigwedge\{m \mid m$ is a maximal element of $L\} . L$ is said to be quasi-local if it contains a unique maximal element. If $L=\{0,1\}$, then L is called a field. For $a \in L$, we define a radical of a as $\sqrt{a}=\bigwedge\{p \in L \mid p$ is prime and $a \leqslant p\}$. Note that in a C-lattice L,
$$
\sqrt{a}=\bigwedge\{p \in L \mid p \text { is prime and } a \leqslant p\}=\bigvee\left\{x \in L_{*} \mid x^{n} \leqslant a \text { for some } n \in Z^{+}\right\}
$$
by (Theorem 3.6 of [12]). Elements of the set $\operatorname{Nil}(L)=\sqrt{0}$ are called nilpotent. For any prime element $p \in L$ by L_{p} we denote the localization $F=\{x \in C \mid x \nless p\}$. For details on C-lattices and their localizations see [9] and [11]. An element $e \in L$ is said to be principal [8], if it satisfies the identities $(i) a \wedge b e=((a: e) \wedge b) e$ and (ii) $(a e \vee b): e=(b: e) \vee a$. Elements satisfying the identity (i) are called meet principal, elements satisfying (ii) are called join principal. Note that any finite product of meet (join) principal elements of L is again meet (join) principal [8, Lemma 3.3 and Lemma 3.4]. If every element of L is principal, then L is called a principal element lattice [2].

Recall from [10] that a proper element q of L is called 2-absorbing (resp. weakly 2 -absorbing) if whenever $a, b, c \in L$ with $a b c \leqslant q$ (resp. $0 \neq a b c \leqslant q$), then either $a b \leqslant q$ or $a c \leqslant q$ or $b c \leqslant q$. We say that (a, b, c) is a triple zero element of q if $a b c=$ $0, a b \nless q, a c \nless q$ and $b c \nless q$. Observe that if q is a weakly 2-absorbing element which is not a 2 -absorbing, then there exist a triple zero of q. A proper element $q \in L$ is n-absorbing (resp. weakly n-absorbing) if $a_{1} a_{2} \cdots a_{n+1} \leqslant q$ (resp. $0 \neq$ $\left.a_{1} a_{2} \cdots a_{n+1} \leqslant q\right)$ for some $a_{1} a_{2} \cdots a_{n+1} \in L_{*}$ then $a_{1} a_{2} \cdots a_{k-1} a_{k+1} \cdots a_{n+1} \leqslant q$ for some $k=1, \ldots, n+1$.

2. Quasi n-absorbing elements

Let L be a multiplicative lattice and n be a positive integer.
Definition 2.1. A proper element q of L is called:

- quasi n-absorbing if $a^{n} b \leqslant q$ for some $a, b \in L_{*}$ implies $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$,
- weakly quasi n-absorbing if $0 \neq a^{n} b \leqslant q$ for some $a, b \in L_{*}$ implies $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$.

Theorem 2.2. Let q be a proper element of L and $n \geqslant 1$. Then:
(1) q is a prime element if and only if it is quasi 1-absorbing,
(2) q is a weakly prime element if and only if it is weakly quasi 1-absorbing,
(3) if q is n-absorbing, then it is quasi n-absorbing,
(4) if q is quasi n-absorbing, then it is weakly quasi n-absorbing,
(5) if q is quasi n-absorbing, then it is quasi m-absorbing for all $m \geqslant n$,
(6) if q is weakly quasi n-absorbing, then it is weakly quasi m-absorbing for all $m \geqslant n$.

Proof. (1), (2), (3) and (4) are obvious. To prove (5) suppose that q is a quasi n-absorbing element of L, and $a, b \in L_{*}$ with $a^{m} b \leqslant q$ for some $m \geqslant n$. Hence
$a^{n}\left(a^{m-n} b\right) \leqslant q$. Since q is a quasi n-absorbing element, we have either $a^{n} \leqslant q$ or $a^{n-1}\left(a^{m-n} b\right) \leqslant q$. So, either $a^{m} \leqslant q$ or $a^{m-1} b \leqslant q$. This shows that q is a quasi m-absorbing element of L.
(6) can be proved analogously.

Corollary 2.3. Let q be a proper element of L.
(1) If q is prime, then it is quasi n-absorbing for all $n \geqslant 1$.
(2) If q is weakly prime, then it is weakly quasi n-absorbing all $n \geqslant 1$.
(3) If q is 2 -absorbing, then it is a quasi n-absorbing for all $n \geqslant 2$.
(4) If q is weakly 2 -absorbing, then it is weakly quasi n-absorbing for all $n \geqslant 2$.

The converses of these relations are not true in general.
Example 2.4. Consider the lattice of ideals of the ring of integers $L=L(\mathbb{Z})$. Note that the element $30 \mathbb{Z}$ of L is a quasi 2-absorbing element, and so quasi n-absorbing element for all $n \geqslant 2$ by Corollary 2.3, but it is not a 2 -absorbing element of L by Theorem 2.6 in [7].

Proposition 2.5. For a proper element q of L the following statements are equivalent.
(1) q is a quasi n-absorbing element of L.
(2) $\left(q: a^{n}\right)=\left(q: a^{n-1}\right)$ where $a \in L_{*}, a^{n} \nless q$.

In paticular, 0 is a quasi n-absorbing element of L if and only if for each $a \in L_{*}$ we have $a^{n}=0$ or $\operatorname{ann}\left(a^{n}\right)=\operatorname{ann}\left(a^{n-1}\right)$.

Proof. It follows directly from Definition 2.1.

Notice that if q is a weakly quasi n-absorbing element which is not quasi n absorbing, then there are some elements $a, b \in L_{*}$ such that $a^{n} b=0, a^{n} \notin q$ and $a^{n-1} b \nless q$. We call the pair of elements (a, b) with this property - a quasi n-zero element of q. Notice that a zero divisor element of L is a quasi 1-zero element of 0_{L}, and (a, a, b) is a triple zero element of q if and only if (a, b) is a quasi 2-zero element of q.

Theorem 2.6. Let q be a weakly quasi n-absorbing element of L. If (a, b) is a quasi n-zero element of q for some $a, b \in L_{*}$, then $a^{n} \in \operatorname{ann}(q)$ and $b^{n} \in \operatorname{ann}(q)$.

Proof. Suppose that $a^{n} \notin \operatorname{ann}(q)$. Hence $a^{n} q_{1} \neq 0$ for some $q_{1} \in L_{*}$ where $q_{1} \leqslant q$. It follows $0 \neq a^{n}\left(b \vee q_{1}\right) \leqslant q$. Since $a^{n} \nless q$, and q is weakly quasi n-absorbing, we conclude that $a^{n-1}\left(b \vee q_{1}\right) \leqslant q$. So $a^{n-1} b \leqslant q$, a contradiction. Thus $a^{n} q=0$, and so $a^{n} \in \operatorname{ann}(q)$. Similarly we conclude that $b^{n} \in \operatorname{ann}(q)$.

Theorem 2.7. If $\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ is a family of (weakly) prime elements of L, then $\bigwedge_{\lambda \in \Lambda} p_{\lambda}$ is a (weakly) quasi m-absorbing element for all $m \geqslant 2$.

Proof. Let $\left\{p_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of prime elements of L. By Corollary 2.3 (3) it is sufficient to prove that $\bigwedge_{\lambda \in \Lambda} p_{\lambda}$ is a quasi 2-absorbing element of L.

Let $a, b \in L_{*}$ with $a^{2} b \leqslant \bigwedge_{\lambda \in \Lambda} p_{\lambda}$. Since $a^{2} b \leqslant p_{i}$ for all prime elements p_{i}, we have $a \leqslant p_{i}$ or $b \leqslant p_{i}$. Thus $a b \leqslant p_{i}$ for all $i=1, \ldots, n$ and so $a b \leqslant \bigwedge_{\lambda \in \Lambda} p_{\lambda}$, which completes the proof for prime elements.

For weakly prime elements the proof is similar.
Corollary 2.8. Let q be a proper element of L. Then $\sqrt{q}, \operatorname{Nil}(L)$ and $J(L)$ are quasi n-absorbing elements of L for all $n \geqslant 2$.

Proof. It is clear from Theorem 2.7.
Theorem 2.9. If $\left\{q_{\lambda}\right\}_{\lambda \in \Lambda}$ is a family of (weakly) quasi m-absorbing elements of a totally ordered lattice L, then for each positive integer $m \bigwedge_{\lambda \in \Lambda} q_{\lambda}$ is a (weakly) quasi m-absorbing element of L.

Proof. Assume that $\left\{q_{\lambda}\right\}_{\lambda \in \Lambda}$ is an ascending chain of quasi m-absorbing elements and $a^{m} \nless \bigwedge_{\lambda \in \Lambda} q_{\lambda}$ and $a^{m-1} b \nless \bigwedge_{\lambda \in \Lambda} q_{\lambda}$. We show that $a^{m} b \nless \bigwedge_{\lambda \in \Lambda} q_{\lambda}$. Hence $a^{m} \nless q_{j}$ and $a^{m-1} b \nless q_{k}$ for some $j, k=1, \ldots, n$.

Put $t=\min \{j, k\}$. Then $a^{m} \not \leq q_{t}$ and $a^{m-1} b \not \leq q_{t}$. Since q_{t} is a quasi m absorbing element, it follows $a^{m} b \not \leq q_{t}$. Thus $a^{m} b \nless \bigwedge_{\lambda \in \Lambda} q_{\lambda}$, we are done.

For weakly prime elements the proof is similar.
Theorem 2.10. Let for all $i=1,2, \ldots, n$, elements $q_{1}, \ldots, q_{n} \in L$ are (weakly) quasi m_{i}-absorbing, respectively. Then $\bigwedge_{i=1}^{n} q_{i}$ is a (weakly) quasi m-absorbing element of L for $m=\max \left\{m_{1}, \ldots, m_{n}\right\}+1$.

Proof. Suppose that q_{1}, \ldots, q_{n} are quasi m_{i}-absorbing, respectively. Let $a, b \in L_{*}$ be such that $a^{m} b \leqslant \bigwedge_{i=1}^{n} q_{i}$. Hence $a^{m_{i}} \leqslant q_{i}$ or $a^{m_{i}-1} b \leqslant q_{i}$ for all $i=1, . ., n$. Now assume that $a^{m} \nless \bigwedge_{i=1}^{n} q_{i}$. Without loss generality we can suppose that $a^{m_{i}} \leqslant q_{i}$ for all $1 \leqslant i \leqslant j$, and $a^{m_{i}} \nless q_{i}$ for all $j+1 \leqslant i \leqslant n$. Hence we have $a^{m_{i}-1} b \leqslant q_{i}$ for all $j+1 \leqslant i \leqslant n$. Then we get clearly $a^{m-1} b \leqslant q_{i}$ for $m=\max \left\{m_{1}, \ldots, m_{n}\right\}+1$ and for all $1 \leqslant i \leqslant n$. Thus $a^{m-1} b \leqslant \bigwedge_{i=1}^{n} q_{i}$, so we are done.

For weakly prime elements the proof is similar.
If $x \in L$, the interval $[x, 1]$ is denoted be L / x. The elemets of \bar{a} and L / x is again a multiplicative lattice with $\bar{a} \circ \bar{b}=a b \vee x$ for all $\bar{a}, \bar{b} \in L / x$.

Theorem 2.11. Let x and q be proper elements of L with $x \leqslant q$. If q is a (weakly) quasi n-absorbing element of L, then \bar{q} is a (weakly) quasi n-absorbing element of L / x.

Proof. Suppose that $\bar{a}=a \vee x, \bar{b}=b \vee x \in L$ with $\bar{a}^{n} \bar{b} \leqslant \bar{q}$, where q is a quasi n-absorbing element of L. Then $a^{n} b \vee x \leqslant q$, and so $a^{n} b \leqslant q$. Since q is quasi 2-absorbing, we get either $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$. Thus $\bar{a}^{n}=(a \vee x)^{n} \leqslant \bar{q}$ or $\bar{a}^{n-1} \bar{b}=(a \vee x)^{n-1}(b \vee x) \leqslant \bar{q}$, as needed.

For weakly prime elements the proof is similar.
Recall that any C-lattice can be localized at a multiplicatively closed set. Let L be a C-lattice and S a multiplicatively closed subset of L_{*}. Then for $a \in L$, $a_{S}=\bigvee\left\{x \in L_{*} \mid x s \leqslant a\right.$ for some $\left.s \in S\right\}$ and $L_{S}=\left\{a_{S} \mid a \in L\right\} . L_{S}$ is again a multiplicative lattice under the same order as L with the product $a_{S} \circ b_{s}=\left(a_{S} b_{S}\right)_{S}$ where the right hand side is evaluated in L.

If $p \in L$ is prime and $S=\left\{x \in L_{*} \mid x \notin p\right\}$, then L_{S} is denoted by L_{p}. [9]
Theorem 2.12. Let m be a maximal element of L and q be a proper element of L. If q is a (weakly) quasi n-absorbing element of L, then q_{m} is a (weakly) quasi n-absorbing element of L_{m}.

Proof. Let $a, b \in L_{*}$ such that $a_{m}^{n} b_{m} \leqslant q_{m}$. Hence $u a^{n} b \leqslant q$ for some $u \nless m$. It implies that $a^{n} \leqslant q$ or $a^{n-1}(u b) \leqslant q$. Since $u_{m}=1_{m}$, we get $a_{m}^{n} \leqslant q_{m}$ or $a_{m}^{n-1} b_{m} \leqslant q_{m}$, we are done.

Theorem 2.13. Let L be a principal element lattice. Then the following statements are equivalent.
(1) Every proper element of L is a quasi n-absorbing element of L.
(2) For every $a, b \in L_{*}, a^{n}=c a^{n} b$ or $a^{n-1} b=d a^{n} b$ for some $c, d \in L$.
(3) For all $a_{1}, a_{2}, \ldots, a_{n+1} \in L_{*},\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)^{n} \leqslant c a_{1} a_{2} \cdots a_{n+1}$ or $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)^{n-1} a_{n+1} \leqslant d a_{1} a_{2} \cdots a_{n+1}$ for some $c, d \in L$.
Proof. (1) $\Leftrightarrow(2)$. Suppose that every proper element of L is a quasi n-absorbing element of L. Hence $a^{n} b \leqslant\left(a^{n} b\right)$ implies that $a^{n} \leqslant\left(a^{n} b\right)$ or $a^{n-1} b \leqslant\left(a^{n} b\right)$. Since L is a principal element lattice, there is some element $c \in L$ with $a^{n}=c a^{n} b$ or there is some element $d \in L$ with $a^{n-1} b=d a^{n} b$. The converse is clear.
(2) \Rightarrow (3). Put $a=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}$ and $b=a_{n+1}$. Hence the result follows from (2).
$(3) \Rightarrow(2)$. For all $a, b \in L_{*}$, we can write $a^{n}=(\underbrace{a \wedge a \wedge \ldots \wedge a}) \leqslant c a^{n} b$ or $a^{n-1} b=(\underbrace{a \wedge a \wedge \ldots \wedge a}_{n-1 \text { times }}) b \leqslant d a^{n} b$.

Theorem 2.14. Let $L=L_{1} \times L_{2}$ where L_{1} and L_{2} are C-lattices. Then:
(1) q_{1} is a quasi n-absorbing element of L_{1} if and only if $\left(q_{1}, 1_{L_{2}}\right)$ is a quasi n-absorbing element of L,
(2) q_{2} is a quasi n-absorbing element of L_{2} if and only if $\left(1_{L_{1}}, q_{2}\right)$ is a quasi n-absorbing element of L.

Proof. (1). Suppose that q_{1} is a quasi n-absorbing element of L_{1}.
Let $\left(a_{1}, a_{2}\right)^{n}\left(b_{1}, b_{2}\right) \leqslant\left(q_{1}, 1_{L_{2}}\right)$ for some $a_{1}, b_{1} \in L_{1_{*}}$ and $a_{2}, b_{2} \in L_{2_{*}}$. Then $a_{1}^{n} b_{1} \leqslant q_{1}$ implies that either $a_{1}^{n} \leqslant q_{1}$ or $a_{1}^{n-1} b_{1} \leqslant q_{1}$. It follows either $\left(a_{1}, a_{2}\right)^{n} \leqslant$ $\left(q_{1}, 1_{L_{2}}\right)$ or $\left(a_{1}, a_{2}\right)^{n-1}\left(b_{1}, b_{2}\right) \leqslant\left(q_{1}, 1_{L_{2}}\right)$. Thus $\left(q_{1}, 1_{L_{2}}\right)$ is a quasi n-absorbing element of L. Conversely suppose that $\left(q_{1}, 1_{L_{2}}\right)$ is a quasi n-absorbing element of L and $a^{n} b \leqslant q_{1}$ for some $a, b \in L_{1_{*}}$. Hence $\left(a, 1_{L_{2}}\right)^{n}\left(b, 1_{L_{2}}\right) \leqslant\left(q_{1}, 1_{L_{2}}\right)$ which implies that either $\left(a, 1_{L_{2}}\right)^{n} \leqslant\left(q_{1}, 1_{L_{2}}\right)$ or $\left(a, 1_{L_{2}}\right)^{n-1}\left(b, 1_{L_{2}}\right) \leqslant\left(q_{1}, 1_{L_{2}}\right)$. So $a_{1}^{n} \leqslant q_{1}$ or $a_{1}^{n-1} b_{1} \leqslant q_{1}$, as needed.
(2). It can be verified similar to (1).

Theorem 2.15. Let $L=L_{1} \times \cdots \times L_{k}$ where all L_{i} are C-lattices. If q_{i} is a quasi n_{i}-absorbing element of L_{i} for all $i=1, \ldots, k$, then $\left(q_{1}, \ldots, q_{k}\right)$ is a quasi m-absorbing element of L where $m=\max \left\{n_{1}, \ldots, n_{k}\right\}+1$.

Proof. Suppose that $\left(a_{1}, \ldots, a_{k}\right)^{m}\left(b_{1}, \ldots, b_{k}\right) \leqslant\left(q_{1}, \ldots, q_{k}\right)$ for some $\left(a_{1}, \ldots, a_{k}\right)$, $\left(b_{1}, \ldots, b_{k}\right) \in L_{*}$ and $m=\max \left\{n_{1}, \ldots, n_{k}\right\}+1$. Hence $a_{i}^{m} b_{i}=a_{i}^{n_{i}}\left(a_{i}^{m-n_{i}} b_{i}\right) \leqslant q_{i}$ for all $i=1, \ldots, k$. Since each q_{i} is a quasi n_{i}-absorbing element, we have either $a_{i}^{n_{i}} \leqslant q_{i}$ or $a_{i}^{m-1} b_{i}=a_{i}^{n_{i}-1}\left(a_{i}^{m-n_{i}} b_{i}\right) \leqslant q_{i}$ for all $i=1, . ., k$. If $a_{i}^{n_{i}} \leqslant q_{i}$ for all $i=1, \ldots, k$, then $\left(a_{1}, \ldots, a_{k}\right)^{m} \leqslant\left(q_{1}, \ldots, q_{k}\right)$. Without loss generality, suppose that $a_{i}^{n_{i}} \leqslant q_{i}$ for all $1 \leqslant i \leqslant j$ and $a_{i}^{m-1} b_{i} \leqslant q_{i}$ for all $j+1 \leqslant i \leqslant k$, for some $j=1, \ldots, k$. Thus $\left(a_{1}, \ldots, a_{k}\right)^{m-1}\left(b_{1}, \ldots, b_{k}\right) \leqslant\left(q_{1}, \ldots, q_{k}\right)$, so we are done.

Definition 2.16. A proper element q of L is said to be a strongly quasi n-absorbing element of L if whenever $a, b \in L$ (not necessarily compact) with $a^{n} b \leqslant q$ implies that either $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$.

It is clearly seen that every strongly quasi n-absorbing element of L is quasi n-absorbing.

Theorem 2.17. Let L be a principal element lattice. The following statements are equivalent.
(1) Every proper element of L is a strongly quasi n-absorbing element of L.
(2) For all $a, b \in L, a^{n}=a^{n} b$ or $a^{n-1} b=a^{n} b$.
(3) $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)^{n} \leqslant a_{1} a_{2} \cdots a_{n+1} \quad$ or $\left(a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}\right)^{n-1} a_{n+1} \leqslant$ $a_{1} a_{2} \cdots a_{n+1}$ for all $a_{1}, a_{2}, \ldots, a_{n+1} \in L$.

Proof. This can be easily shown using the similar argument in Theorem 2.13.
Theorem 2.18. Let q be a proper element of L. Then:
(1) If $a^{n} b \leqslant q \leqslant a \wedge b$, where $a, b \in L$, implies that $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$, then q is a strongly quasi n-absorbing element of L.
(2) If $a_{1} a_{2} \cdots a_{n+1} \leqslant q \leqslant a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n+1}$, where $a_{1}, a_{2}, \ldots, a_{n+1} \in L$, implies that $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n+1} \leqslant q$, for some $1 \leqslant i \leqslant n+1$, then q is a strongly quasi n-absorbing element of L.

Proof. (1). Let $x, y \in L$ with $x^{n} y \leqslant q$. We show that $x^{n} \leqslant q$ or $x^{n-1} y \leqslant q$. Now put $a=x \vee q$ and $b=y \vee q$. Hence we conclude $a^{n} b \leqslant q \leqslant a \wedge b$, and so $a^{n} \leqslant q$ or $a^{n-1} b \leqslant q$ by (1). It follows $x^{n} \leqslant q$ or $x^{n-1} y \leqslant q$.
(2). It can be easily verified similar to (1).

References

[1] F. Alarcon and D.D. Anderson, Commutative semirings and their lattices of ideals, Houston J. Math. 20 (1994), 571 - 590.
[2] D.D. Anderson and C. Jayaram, Principal element lattices, Czechoslovak Math. J. 46 (1996), $99-109$.
[3] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), 831 - 840 .
[4] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Commun. Algebra 39 (2011), 1646 - 1672.
[5] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), $417-429$.
[6] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39 (2013), $441-452$.
[7] F. Callialp, C. Jayaram and U. Tekir, Weakly prime elements in multiplicative lattices, Commun. Algebra 40 (2012), 2825 - 2840.
[8] R.P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
[9] C. Jayaram and E.W Johnson, s-prime elements in multiplicative lattices, Periodica Math. Hungarica 31 (1995), 201 - 208.
[10] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Commun. Algebra 42 (2014), 2338-2353.
[11] J.A. Johnson and G.R. Sherette, Structural properties of a new class of CMlattices, Canadian J. Math. 38 (1986), 552 - 562.
[12] N.K. Thakare, C.S. Manjarekar and S. Maeda, Abstract spectral theory II, Minimal characters and minimal spectrums of multiplicative lattices, Acta. Sci. Math. (Szeged). 52 (1988), $53-67$.

Received March 07, 2016
Department of Mathematics, Gaziantep University, 27310 Gaziantep, Turkey
E-mail: yetkin@gantep.edu.tr

[^0]: 2010 Mathematics Subject Classification: 13A15
 Keywords: 2-absorbing element, n-absorbing element, multiplicative lattice, quasi n-absorbing element.

