Some results on multigroups

Johnson Aderemi Awolola and Adeku Musa Ibrahim

Abstract

The theory of multisets is an extension of the set theory. In this paper, we have studied some new results on multigroups following [11].

1. Introduction

A mathematical structure known as multiset (mset, for short) is obtained if the restriction of distinctness on the nature of the objects forming a set is relaxed. Unlike classical set theory which assumes that mathematical objects occur without repetition. However, the situation in science and in ordinary life is not like that. It is observed that there is enormous repetition in the physical world. For example, consideration of repeated roots of polynomial equation, repeated observations in statistical sample, repeated hydrogen atoms in a water molecule $\mathrm{H}_{2} \mathrm{O}$, etc., do play a significant role. The challenging task of formulating sufficiently rich mathematics of multiset started receiving serious attention from beginning of the 1970s. An updated exposition on both historical and mathematical perspective of the development of theory of multisets can be found in $[3,4,5,8,9,10,13,14,15]$.

The theory of groups is an important algebraic structure in modern mathematics. Several authors have studied the algebraic structure of set theories dealing with uncertainties such as the concept of group in fuzzy sets [12], soft sets [1], smooth sets [6], rough sets [2] etc.

2. Preliminaries

In this section, we present fundamental definitions of multisets that will be used in the subsequent sections of this paper.

Definition 2.1. Let X be a set. A multiset (mset) A drawn from X is represented by a count function C_{A} defined as $C_{A}: X \rightarrow \mathcal{D}=\{0,1,2, \ldots\}$. For each $x \in X$, $C_{A}(x)$ denotes the number of occurrences of the element x in the mset A. The representation of the mset A drawn from $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ will be as $A=$ $\left[x_{1}, x_{2}, \ldots, x_{n}\right]_{m_{1}, m_{2}, \ldots, m_{n}}$ such that x_{i} appears m_{i} times, $i=1,2, \ldots, n$ in the mset A.

[^0]Definition 2.2. A domain X is defined as a set of elements from which msets are constructed. For any positive integer n, the mset space $[X]^{n}$ is the set of all msets whose elements are in X such that no element in the mset occurs more than n times. The set $[X]^{\infty}$ is the set of all msets over a domain X such that there is no limit on the number of times an element in an mset occurs.

Definition 2.3. Let $A_{1}, A_{2}, A_{i} \in[X]^{n}, i \in I$. Then
(i) $A_{1} \subseteq A_{2} \Leftrightarrow C_{A_{1}}(x) \leqslant C_{A_{2}}(x), \forall x \in X$.
(ii) $A_{1}=A_{2} \Leftrightarrow C_{A_{1}}(x)=C_{A_{2}}(x), \forall x \in X$.
(iii) $\bigcap_{i \in I} A_{i}=\bigwedge_{i \in I} C_{A_{i}}(x), \forall x \in X$ (where \bigwedge is the minimum operation).
(iv) $\bigcup_{i \in I} A_{i}=\bigvee_{i \in I} C_{A_{i}}(x), \forall x \in X$ (where \bigvee is the maximum operation).
(v) $A_{i}^{c}=n-C_{A_{i}}(x), \forall x \in X, n \in \mathbb{Z}^{+}$.

Definition 2.4. Let X and Y be two nonempty sets and $f: X \rightarrow Y$ be a mapping. Then the image $f(A)$ of an mset $A \in[X]^{n}$ is defined as

$$
C_{f(A)}(y)= \begin{cases}\bigvee_{f(x)=y} C_{A}(x), & f^{-1}(y) \neq \emptyset \\ 0, & f^{-1}(y)=\emptyset\end{cases}
$$

Definition 2.5. Let X and Y be two nonempty sets and $f: X \rightarrow Y$ be a mapping. Then the inverse image $f^{-1}(B)$ of an mset $B \in[Y]^{n}$ is defined as $C_{f^{-1} B}(x)=C_{B}(f(x))$.

3. Multigroup

In this section, we briefly give the definition of multigroup, some remarks and present some existing results given by [11], and $M S(X)$ is denoted as the set all msets over X (which is assumed to be an initial universal set unless it is stated otherwise).

Definition 3.1. Let X be a group. A multiset A over X is called a multigroup over X if the count function A or C_{A} satisfies the following conditions:
(i) $C_{A}(x y) \geqslant\left[C_{A}(x) \wedge C_{A}(y)\right], \forall x, y \in X$,
(ii) $C_{A}\left(x^{-1}\right) \geqslant C_{A}(x), \forall x \in X$.

We denote the set of all multigroups over X by $M G(X)$.

Example 3.2. Let the subset $X=\{1,-1, i,-i\}$ of complex numbers be a group and $A=[1,-1, i,-i]_{3,2,2,2}$ be a multiset over X. Then, as it is not difficult to verify, A is a multigroup over X.

Definition 3.3. Let $A, B \in M G(X)$, we have the following definitions:
(i) $C_{A \circ B}(x)=\bigvee\left\{C_{A}(y) \wedge C_{B}(z): y, z \in X, y z=x\right\}$

$$
=\max \left[\min \left\{C_{A}(y), C_{B}(z)\right\}: y, z \in X, y z=x\right]
$$

(ii) $C_{A^{-1}}(x)=C_{A}\left(x^{-1}\right)$.

We call $A \circ B$ the product of A and B, and A^{-1} the inverse of A.
Definition 3.4. (cf. [11]) Let $A \in M G(X)$. Then A is called an abelian multigroup over X if $C_{A}(x y)=C_{A}(y x), \forall x, y \in X$. The set of all abelian multigroups is denoted by $A M G(X)$.

Definition 3.5. (cf. [11]) Let $A, B \in M G(X)$. Then A is said to be a submultigroup of B if $A \subseteq B$.

Definition 3.6. (cf. [11]) Let $H \in M G(X)$. For any $x \in X, x H$ and $H x$ defined by $C_{x H}(y)=C_{H}\left(x^{-1} y\right)$ and $C_{H x}(y)=C_{H}\left(y x^{-1}\right), \forall y \in X$ are respectively called the left and right mcosets of H in X.

The following results have been given by [11] as related to this paper except for Remark 3.25 and 3.25.

Proposition 3.7. Let $A \in M G(X)$. Then
(i) $C_{A}\left(x^{n}\right) \geqslant C_{A}(x), \quad \forall x \in X$,
(ii) $C_{A}\left(x^{-1}\right)=C_{A}(x), \forall x \in X$,
(iii) $C_{A}(e) \geqslant C_{A}(x), \quad \forall x \in X$.

Proposition 3.8. Let $A, B, C, A_{i} \in M G(X)$, then the following hold:
(i) $C_{A \circ B}(x)=\bigvee_{y \in X}\left[C_{A}(y) \wedge C_{B}\left(y^{-1} x\right)\right]=\bigvee_{y \in X}\left[C_{A}\left(x y^{-1}\right) \wedge C_{B}(y)\right], \forall x \in X$,
(ii) $A^{-1}=A$,
(iii) $\left(A^{-1}\right)^{-1}=A$,
(iv) $A \subseteq B \Longrightarrow A^{-1} \subseteq B^{-1}$,
(v) $\left(\bigcup_{i \in I} A_{i}\right)^{-1}=\bigcup_{i \in I}\left(A^{-1}\right)$,
(vi) $\left(\bigcap_{i \in I} A_{i}\right)^{-1}=\bigcap_{i \in I}\left(A^{-1}\right)$,
(vii) $(A \circ B)^{-1}=B^{-1} \circ A^{-1}$,
(viii) $(A \circ B) \circ C=A \circ(B \circ C)$.

Proposition 3.9. Let $A, B \in A M G(X)$. Then $A \circ B=B \circ A$.

Proposition 3.10. If $A, B \in M G(X)$, then $C_{A \circ B}\left(x^{-1}\right)=C_{A \circ B}(x)$.
Proposition 3.11. Let $A \in[X]^{n}$. Then $A \in M G(X)$ if and only if $A \circ A \leqslant A$ and $A^{-1}=A$.

Proposition 3.12. Let $A \in[X]^{n}$. Then $A \in M G(X)$ if and only if $C_{A}\left(x y^{-1}\right) \geqslant$ $\left[C_{A}(x) \wedge C_{A}(y)\right], \forall x, y \in X$.

Proposition 3.13. Let $A, B \in M G(X)$. Then $A \cap B \in M G(X)$.
Remark 3.14. If $\left\{A_{i}\right\}_{i \in I}$ is a family of multigroups over X, then their intersection $\bigcap_{i \in I} A_{i}$ is a multigroup over X.

Remark 3.15. If $\left\{A_{i}\right\}_{i \in I}$ is a family of multigroups over X, then their union $\bigcup_{i \in I} A_{i}$ need not be a multigroup over X.
Proposition 3.16. Let $A \in M G(X)$. Then the non-empty sets of the form

$$
A_{n}=\left\{x \in X: C_{A}(x) \geqslant n, n \in \mathbb{N}\right\}
$$

are subgroups of X.
Proposition 3.17. Let $A \in M G(X)$. Then the non-empty sets defined as

$$
A^{*}=\left\{x \in X: C_{A}(x)>0\right\} \text { and } A_{*}=\left\{x \in X: C_{A}(x)=C_{A}(e)\right\}
$$

are subgroups of X.
Proposition 3.18. Let $A \in M S(X)$. Then the following assertions are equivalent:
(a) $C_{A}(x y)=C_{A}(y x), \forall x, y \in X$,
(b) $C_{A}\left(x y x^{-1}\right)=C_{A}(y), \forall x, y \in X$,
(c) $C_{A}\left(x y x^{-1}\right) \geqslant C_{A}(y), \forall x, y \in X$,
(d) $C_{A}\left(x y x^{-1}\right) \leqslant C_{A}(y), \forall x, y \in X$.

Proposition 3.19. Let $A \in A M G(X)$. Then A_{*}, A^{*} and $A_{n}, n \in \mathbb{N}$ are normal subgroups of X.

Proposition 3.20. Let $H \in M G(X)$, then $x H=y H$ if and only if $x^{-1} y \in H_{*}$.
Remark 3.21. If $H \in A M G(X)$, then $x H=H x, \forall x \in X$.
Proposition 3.22. Let X and Y be two groups and $f: X \rightarrow Y$ be a homomorphism. If $A \in M G(X)$, then $f(A) \in M G(Y)$.

Remark 3.23. Let X and Y be two groups and $f: X \rightarrow Y$ be a homomorphism. If $A_{i} \in M G(X), i \in I$, then $f\left(\cap_{i \in I} A_{i}\right) \in M G(Y)$.

Proposition 3.24. Let X and Y be two groups and $f: X \rightarrow Y$ be a homomorphism. If $B \in M G(Y)$, then $f^{-1}(B) \in M G(X)$.

Remark 3.25. Let X and Y be two groups and $f: X \rightarrow Y$ be a homomorphism. If $B_{i} \in M G(Y), i \in I$, then $f^{-1}\left(\bigcap_{i \in I} B_{i}\right) \in M G(X)$.

We now present some results to broaden the theoretical aspect of multigroup theory.

Proposition 3.26. Let $A \in M G(X)$. Then
(i) $C_{A}(x y)^{-1} \geqslant C_{A}(x) \wedge C_{A}(y), \forall x, y \in X$,
(ii) $C_{A}(x y)^{n} \geqslant C_{A}(x y), \forall x, y \in X$.

Proof. The proofs are straightforward.
Proposition 3.27. Let $A \in M G(X)$. If $C_{A}(x)<C_{A}(y)$ for some $x, y \in X$, then $C_{A}(x y)=C_{A}(x)=C_{A}(y x)$.

Proof. Given that $C_{A}(x)<C_{A}(y)$ for some $x, y \in X$. Since $A \in M G(X)$, then $C_{A}(x y) \geqslant C_{A}(x) \wedge C_{A}(y)=C_{A}(x)$. Now, $C_{A}(x)=C_{A}\left(x y y^{-1}\right) \geqslant C_{A}(x y) \wedge$ $C_{A}(y)=C_{A}(x y)$, since $C_{A}(x)<C_{A}(y), C_{A}(x y)<C_{A}(y)$. Therefore, $C_{A}(x y)=$ $C_{A}(x)$. Similarly, $C_{A}(y x)=C_{A}(x)$.

Proposition 3.28. Let $A \in M G(X)$. Then $C_{A}\left(x y^{-1}\right)=C_{A}(e)$ implies $C_{A}(x)=$ $C_{A}(y)$.

Proof. Given $A \in M G(X)$ and $C_{A}\left(x y^{-1}\right)=C_{A}(e) \forall x, y \in X$. Then
$C_{A}(x)=C_{A}\left(x\left(y^{-1} y\right)\right)=C_{A}\left(\left(x y^{-1}\right) y\right) \geqslant C_{A}\left(x y^{-1}\right) \wedge C_{A}(y)=C_{A}(e) \wedge C_{A}(y)=C_{A}(y)$,
i.e., $C_{A}(x) \geqslant C_{A}(y)$.

Also, $C_{A}(y)=C_{A}\left(y^{-1}\right)=C_{A}\left(e y^{-1}\right)=C_{A}\left(\left(x^{-1} x\right) y^{-1}\right) \geqslant C_{A}\left(x^{-1}\right) \wedge C_{A}\left(x y^{-1}\right)$
$=C_{A}(x) \wedge C_{A}(e)=C_{A}(x)$, i.e., $C_{A}(y) \geqslant C_{A}(x)$. Hence, $C_{A}(x)=C_{A}(y)$.
Proposition 3.29. Let $A, B, C, D \in M G(X)$. If $A \subseteq B$ and $C \subseteq D$, then $A \circ C \subseteq B \circ D$.

Proof. Since $A \subseteq B$ and $C \subseteq D$, it follows that $C_{A}(x) \geqslant C_{B}(x), \forall x \in X$ and $C_{C}(x) \leqslant C_{D}(x), \forall x \in X$. So,

$$
\begin{aligned}
C_{(A \circ C)}(x) & =\bigvee\left\{C_{A}(y) \wedge C_{C}(z): y, z \in X, y z=x\right\} \\
& \leqslant \bigvee\left\{C_{B}(y) \wedge C_{D}(z): y, z \in X, y z=x\right\}=C_{(B \circ D)}(x)
\end{aligned}
$$

Hence, $A \circ C \subseteq B \circ D$.
Proposition 3.30. Let $A, B \in M G(X)$ and $A \subseteq B$ or $B \subseteq A$. Then $A \cup B \in M G(X)$.

Proof. The proof is straightforward.

Remark 3.31. Let $A \in M G(X)$, then A^{c} need not be a multigroup over X. Indeed, if $X=\left(V_{4},+\right)=\{0, a, b, c\}$ is the Klein's 4-group, then for $A=[0, a]_{2,1}$ we have $A^{c}=[0, a]_{2,3} \neq M G(X)$ because $\exists C_{A}(a)>C_{A}(0)$.

Proposition 3.32. If $A \in M G(X)$, then $A^{c} \in M G(X)$ if and only if $C_{A}(x)=$ $C_{A}(e), \forall x \in X$.

Proposition 3.33. Let $A \in M G(X)$ and $x \in X$. Then $C_{A}(x y)=C_{A}(y) \forall y \in X$ if and only if $C_{A}(x)=C_{A}(e)$.

Proof. Let $C_{A}(x y)=C_{A}(y), \forall y \in X$. Then $C_{A}(x)=C_{A}(x e)=C_{A}(e)$.
Conversely, let $C_{A}(x)=C_{A}(e)$. Since $C_{A}(e) \geqslant C_{A}(y) \forall y \in X$, we have $C_{A}(x) \geqslant C_{A}(y)$. Thus, $C_{A}(x y) \geqslant C_{A}(x) \wedge C_{A}(y)=C_{A}(e) \wedge C_{A}(y)=C_{A}(y)$, i.e., $C_{A}(x y) \geqslant C_{A}(y), \forall y \in X$.

But $C_{A}(y)=C_{A}\left(x^{-1} x y\right) \geqslant C_{A}(x) \wedge C_{A}(x y)$ and $C_{A}(x) \geqslant C_{A}(x y), \forall y \in X$, imply $C_{A}(x) \wedge C_{A}(x y)=C_{A}(x y) \leqslant C_{A}(y), \forall y \in X$. So, $C_{A}(y) \geqslant C_{A}(x y), \forall y \in X$. Hence, $C_{A}(x y)=C_{A}(y) \quad \forall y \in X$.

Proposition 3.34. If $A \in M G(X)$ and $H \leqslant X$, then $\left.A\right|_{H} \in M G(H)$.
Proof. Let $x, y \in H$. Then $x y^{-1} \in H$. Since $A \in M G(X)$, then $C_{A}\left(x y^{-1}\right) \geqslant$ $C_{A}(x) \wedge C_{A}(y) \forall x, y \in X$. Moreover, $C_{\left.A\right|_{H}}\left(x y^{-1}\right) \geqslant C_{A \mid H}(x) \wedge C_{A \mid H}(y) \forall x, y \in X$. Hence, $\left.A\right|_{H} \in M G(H)$.

4. Multigroup homomorphism

Proposition 4.1. Let $f: X \longrightarrow Y$ be an epimorphism and $B \in M S(Y)$. If $f^{-1}(B) \in M G(X)$, then $B \in M G(Y)$.

Proof. Let $x, y \in Y$ then $\exists a, b \in X$ such that $f(a)=x$ and $f(b)=y$. It follows that

$$
\begin{aligned}
C_{B}(x y)=C_{B}(f(a) f(b)) & =C_{B}(f(a b))=C_{f^{-1}(B)}(a b) \geqslant C_{f^{-1}(B)}(a) \wedge C_{f^{-1}(B)}(b) \\
& =C_{B}(f(a)) \wedge C_{B}(f(b))=C_{B}(x) \wedge C_{B}(y)
\end{aligned}
$$

Again,

$$
\begin{aligned}
C_{B}\left(x^{-1}\right) & =C_{B}\left(f(a)^{-1}\right)=C_{B}\left(f\left(a^{-1}\right)\right)=C_{\left(f^{-1}(B)\right)}\left(a^{-1}\right)=C_{f^{-1}(B)}(a) \\
& =C_{B}(f(a))=C_{B}(x)
\end{aligned}
$$

Therefore, $B \in M G(Y)$.
Proposition 4.2. Let X be a group and $f: X \longrightarrow X$ is an automorphism. If $A \in M G(X)$, then $f(A)=A$ if and only if $f^{-1}(A)=A$.

Proof. Let $x \in X$. Then $f(x)=x$. Now, $C_{\left(f^{-1}(A)\right)}(x)=C_{A}(f(x))=C_{A}(x)$ implies $f^{-1}(A)=A$.

Conversely, let $f^{-1}(A)=A$. Since f is an automorphism, then

$$
\begin{aligned}
C_{f(A)}(x) & =\bigvee\left\{C_{A}\left(x^{\prime}\right): x^{\prime} \in X, f\left(x^{\prime}\right)=f(x)=x\right\} \\
& =C_{A}(f(x))=C_{\left(f^{-1}(A)\right)}(x)=C_{A}(x)
\end{aligned}
$$

Hence, the proof.
Proposition 4.3. Let $f: X \rightarrow Y$ be a homomorphism of groups, $A \in M G(X)$ and $B \in M G(Y)$. If A is a constant on Kerf, then $f^{-1}(f(A))=A$.

Proof. Let $f(x)=y$. Then

$$
C_{f^{-1}(f(A))}(x)=C_{f(A)} f(x)=C_{f(A)}(y)=\bigvee\left\{C_{A}(x): x \in X, f(x)=y\right\}
$$

Since $f\left(x^{-1} z\right)=f\left(x^{-1}\right) f(z)=(f(x))^{-1} f(z)=y^{-1} y=e^{\prime}, \forall z \in X$ such that $f(z)=y$, which implies $x^{-1} z \in \operatorname{Kerf}$. Also, since A is constant on Kerf, then $C_{A}\left(x^{-1} z\right)=C_{A}(e)$. Therefore, $C_{A}(x)=C_{A}(z) \quad \forall z \in X$ such that $f(z)=y$ by Proposition 3.28. Hence, the proof.

Proposition 4.4. Let $H \in A M G(X)$. Then the map $f: X \rightarrow X / H$ defined by $f(x)=x H$ is a homomorphism Kerf $=\left\{x \in X: C_{H}(x)=C_{H}(e)\right\}$, where e is the identity of X.

Proof. Let $x, y \in X$. Then $f(x y)=(x y) H=x H y H=f(x) f(y)$. Hence, f is a homomorphism. Further,

$$
\begin{aligned}
\operatorname{Ker} f & =\{x \in X: f(x)=e H\}=\{x \in X: x H=e H\} \\
& =\left\{x \in X: C_{H}\left(x^{-1} y\right)=C_{H}(y) \forall y \in X\right\} \\
& =\left\{x \in X: C_{H}\left(x^{-1}\right)=C_{H}(e)\right\}=\left\{x \in X: C_{H}(x)=C_{H}(e)\right\}=H_{*},
\end{aligned}
$$

which completes the proof.
Remark 4.5. By Propositions 4.4 and 3.19, $\operatorname{Ker} f$ is a normal subgroup of X.
Proposition 4.6. (First Isomorphism Theorem) Let $f: X \rightarrow Y$ be an epimorphism of groups and $H \in A M G(X)$, then $X / H_{*} \cong Y$, where $H_{*}=\operatorname{Kerf}$.

Proof. Define $\Theta: X / H_{*} \rightarrow Y$ by $\theta\left(x H_{*}\right)=f(x) \forall x \in X$. Let $x H=y H$ such that $C_{H}\left(x^{-1} y\right)=C_{H}(e)$. Since $x^{-1} y \in H_{*}$, then $f\left(x^{-1} y\right)=f(e) \Longrightarrow f(x)=f(y)$. Hence, Θ is well-defined. Obviously it is an epimorphism. Moreover, $f(x)=f(y)$ implies $f(x)^{-1} f(y)=f(e)$. So, $f\left(x^{-1}\right) f(y)=f\left(x^{-1} y\right)=f(e)$, i.e., $x^{-1} y \in H_{*}$ and consequantly, $C_{H}\left(x^{-1} y\right)=C_{H}(e)$. Thus, $x H=y H$, which shows Θ is an isomorphism.

Proposition 4.7. (Second Isomorphism Theorem) If $H, N \in A M G(X)$ such that $C_{H}(e)=C_{N}(e)$, then $H_{*} N_{*} / N \cong H_{*} / H \cap N$.

Proof. Clearly, for any $x \in H_{*} N_{*}, x=h n$ where $h \in H_{*}$ and $n \in N_{*}$. Define $\varphi: H_{*} N_{*} / N \rightarrow H_{*} / H \cap N$ by $\varphi(x N)=h(H \cap N)$.

If $x N=y N$, where $y=h_{1} n_{1}, h_{1} \in H_{*}$ and $n_{1} \in N_{*}$, then
$C_{N}\left(x^{-1} y\right)=C_{N}\left((h n)^{-1} h_{1} n_{1}\right)=C_{N}\left(n^{-1} h^{-1} h_{1} n_{1}\right)=C_{N}\left(h^{-1} h_{1} n^{-1} n_{1}\right)=C_{N}(e)$.
Hence, $C_{N}\left(h^{-1} h_{1}\right)=C_{N}\left(n^{-1} n_{1}\right)=C_{N}(e)$. Thus,

$$
C_{H \cap N}\left(h^{-1} h_{1}\right)=C_{H}\left(h^{-1} h_{1}\right) \wedge C_{N}\left(h^{-1} h_{1}\right)=C_{H}(e) \wedge C_{N}(e)=C_{H \cap N}(e),
$$

i.e., $h(H \cap N)=h_{1}(H \cap N)$. Hence, φ is well-defined.

If $x N, y N \in H_{*} N_{*} N$, then $x y=h n h_{1} n_{1}$. Since $H \in \operatorname{AMG}(X)$, then $C_{H}\left(n h_{1} n_{1}\right)=C_{H}\left(h_{1}\right)$ gives $n h_{1} n_{1} \in H_{*}$. Hence,
$\varphi(x N y N)=\varphi(x y N)=h\left(n h_{1} n 1\right)(H \cap N)=h(H \cap N) n h_{1} n_{1}(H \cap N)$ and

$$
\begin{aligned}
C_{H \cap N}\left(h_{1}^{-1}\left(n h_{1} n_{1}\right)\right) & \geqslant C_{H}\left(h_{1}^{-1} n h_{1} n_{1}\right) \wedge C_{N}\left(h_{1}^{-1} n h_{1} n_{1}\right) \\
& =C_{H}\left(h_{1}^{-1}\left(n h_{1} n_{1}\right)\right) \wedge C_{N}\left(n\left(h_{1}^{-1} h_{1} n_{1}\right)\right) \\
& =C_{H}(e) \wedge C_{N}(e) \\
& =C_{H \cap N}(e) .
\end{aligned}
$$

Hence, $n h_{1} n_{1}(H \cap N)=h_{1}(H \cap N)$, i.e., $\varphi(x N y N)=h(H \cap N) h_{1}(H \cap N)=$ $\varphi(x N) \varphi(y N)$, which shows that φ is a homomorphism.
φ is also an epimorphism, since for $h(H \cap N) \in H_{*} / H \cap N$ and $n \in N_{*}$, we have $x=h n \in H_{*} N_{*}$ and $\varphi(x N)=h(H \cap N)$.

Moreover, if $x, y \in H_{*} N_{*}$, where $x=h n$ and $y=h_{1} n_{1}, h, h_{1} \in H_{*}$ and $n, n_{1} \in N_{*}$ and $h(H \cap N)=h_{1}(H \cap N)$, then $C_{H \cap N}\left(h^{-1} h_{1}\right)=C_{H \cap N}(e)$, i.e., $C_{H}\left(h^{-1} h_{1}\right) \wedge C_{N}\left(h^{-1} h_{1}\right)=C_{H}(e) \wedge C_{N}(e)$. But $C_{H}(e)=C_{N}(e)$ and $C_{H}\left(h^{-1} h_{1}\right)=$ $C_{H}(e)$, so $C_{N}\left(h^{-1} h_{1}\right)=C_{N}(e)$. Therefore,

$$
\begin{aligned}
C_{N}\left(x^{-1} y\right) & =C_{N}\left((h n)^{-1} h_{1} n_{1}\right) \\
& =C_{N}\left(n^{-1} h^{-1} h_{1} n_{1}\right)=C_{N}\left(h^{-1} h_{1} n^{-1} n_{1}\right) \\
& \geqslant C_{N}\left(h^{-1} h_{1}\right) \wedge C_{N}\left(n^{-1} n_{1}\right)=C_{N}(e) \wedge C_{N}(e)=C_{N}(e) .
\end{aligned}
$$

Thus, $C_{N}\left(x^{-1} y\right)=C_{N}(e)$, and consequently, $x N=y N$.
Hence, $H_{*} N_{*} / N \cong H_{*} / H \cap N$.
Proposition 4.8. (Third Isomorphism Theorem) Let $H, N \in A M G(X)$ with $H \subseteq N$ and $C_{H}(e)=C_{N}(e)$. Then $X / N \cong(X / H) /\left(N_{*} / H\right)$.

Proof. Define $f: X / H \rightarrow X / N$ by $f(x H)=x N \quad \forall x \in X$ such that $C_{H}\left(x^{-1} y\right)=$ $C_{H}(e)=C_{N}(e) \quad \forall x H=y H$. Because $H \subseteq N$, we have $C_{N}\left(x^{-1} y\right) \geqslant C_{H}\left(x^{-1} y\right)=$ $C_{N}(e)$ and so $C_{N}\left(x^{-1} y\right)=C_{N}(e)$, i.e., $x N=y N$, which means that f is welldefined. Obviously f is an epimorphism.

Moreover,

$$
\begin{aligned}
\operatorname{Ker} f & =\{x H \in X / H: f(x H)=e N\} \\
& =\{x H \in X / H x: N=e N\} \\
& =\left\{x H \in X / H: C_{N}(x)=C_{N}(e)\right\} \\
& =\left\{x H \in X / H: x \in N_{*}\right\}=N_{*} / H .
\end{aligned}
$$

Thus, $\operatorname{Kerf}=N_{*} / H$ and $X / N \cong(X / H) /\left(N_{*} / H\right)$.

References

[1] H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), $2726-2735$.
[2] R. Biswas and S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994), $251-254$.
[3] W. Blizard, The development of multiset theory, Modern Logic $\mathbf{1}$ (1991), 319-352.
[4] K. Chakraborty, On bags and fuzzy bags, Adv. Soft Comput. Techn. Appl. 25 (2000), 201 - 2012.
[5] C.S. Claude, G. Paũn, G. Rozenberg and A. Salomaa (eds.), Multiset processing mathematics,computer science and molecular computing points of view, Lecture Notes Comput. Sci. 2235 (2001).
[6] M. Demirci, Smooth groups, Fuzzy Sets Systems 117 (2001), 431 - 437.
[7] M. Dresher and O. Ore, Theory of multigroups, American J. Math. 60 (1938), $705-733$.
[8] J.L. Hickman, A note on the concept of multiset, Bull. Australian Math. Soc. 22 (1980), 211 - 217.
[9] D.E. Knuth, The art of computer programming, vol. 2, Adison-Wesley, 1981.
[10] J. Lake, Sets, fuzzy sets, multisets and functions, J. London Math. Soc. 12 (1976), 323-326.
[11] S.K. Nazmul, P. Majumdar and S. K. Samanta, On multisets and multigroups, Annals Fuzzy Math. Inform. 6 (2013), $643-656$.
[12] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512 - 517.
[13] D. Singh, A.M. Ibrahim, T. Yohanna and J.N. Singh, An overview of the application of multisets, Novi Sad J. Math. 33 (2007), no. 2, 73-92.
[14] D. Singh, A.M. Ibrahim, T. Yohanna and J.N. Singh, A systematization of fundamentals of multisets, Lecturas Matematicas 29 (2008), 33-48.
[15] R.R. Yager, On the theory of bags, Int. J. General Systems 13 (1986), $23-27$.
Received April 16, 2016
Department of Mathematics/Statistics/Computer Science, University of Agriculture, Makurdi, Nigeria
E-mail: remsonjay@yahoo.com
and
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria
E-mail: amibrahim@abu.edu.ng

[^0]: 2010 Mathematics Subject Classification: 20E10, 94D05
 Keywords: Multiset, multigroup, multigroup homomorphism.

