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Some results on multigroups

Johnson Aderemi Awolola and Adeku Musa Ibrahim

Abstract. The theory of multisets is an extension of the set theory. In this paper, we have

studied some new results on multigroups following [11].

1. Introduction

A mathematical structure known as multiset (mset, for short) is obtained if the
restriction of distinctness on the nature of the objects forming a set is relaxed.
Unlike classical set theory which assumes that mathematical objects occur with-
out repetition. However, the situation in science and in ordinary life is not like
that. It is observed that there is enormous repetition in the physical world. For
example, consideration of repeated roots of polynomial equation, repeated obser-
vations in statistical sample, repeated hydrogen atoms in a water molecule H2O,
etc., do play a signi�cant role. The challenging task of formulating su�ciently rich
mathematics of multiset started receiving serious attention from beginning of the
1970s. An updated exposition on both historical and mathematical perspective of
the development of theory of multisets can be found in [3, 4, 5, 8, 9, 10, 13, 14, 15].

The theory of groups is an important algebraic structure in modern mathemat-
ics. Several authors have studied the algebraic structure of set theories dealing
with uncertainties such as the concept of group in fuzzy sets [12], soft sets [1],
smooth sets [6], rough sets [2] etc.

2. Preliminaries

In this section, we present fundamental de�nitions of multisets that will be used
in the subsequent sections of this paper.

De�nition 2.1. Let X be a set. A multiset (mset) A drawn from X is represented
by a count function CA de�ned as CA : X → D = {0, 1, 2, . . .}. For each x ∈ X,
CA(x) denotes the number of occurrences of the element x in the mset A. The
representation of the mset A drawn from X = {x1, x2, . . . , xn} will be as A =
[x1, x2, . . . , xn]m1,m2,...,mn

such that xi appears mi times, i = 1, 2, . . . , n in the
mset A.
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De�nition 2.2. A domain X is de�ned as a set of elements from which msets are
constructed. For any positive integer n, the mset space [X]

n
is the set of all msets

whose elements are in X such that no element in the mset occurs more than n
times. The set [X]

∞
is the set of all msets over a domain X such that there is no

limit on the number of times an element in an mset occurs.

De�nition 2.3. Let A1, A2, Ai ∈ [X]
n
, i ∈ I . Then

(i) A1 ⊆ A2 ⇔ CA1
(x) 6 CA2

(x), ∀ x ∈ X.

(ii) A1 = A2 ⇔ CA1(x) = CA2(x), ∀ x ∈ X.

(iii)
⋂

i∈I Ai =
∧

i∈I CAi
(x), ∀ x ∈ X (where

∧
is the minimum operation).

(iv)
⋃

i∈I Ai =
∨

i∈I CAi(x), ∀ x ∈ X (where
∨

is the maximum operation).

(v) Ac
i = n− CAi

(x), ∀x ∈ X, n ∈ Z+.

De�nition 2.4. Let X and Y be two nonempty sets and f : X → Y be a map-
ping. Then the image f(A) of an mset A ∈ [X]

n
is de�ned as

Cf(A)(y) =

{ ∨
f(x)=y CA(x), f−1(y) 6= ∅,

0, f−1(y) = ∅.

De�nition 2.5. Let X and Y be two nonempty sets and f : X → Y be a
mapping. Then the inverse image f−1(B) of an mset B ∈ [Y ]

n
is de�ned as

Cf−1B(x) = CB (f(x)).

3. Multigroup

In this section, we brie�y give the de�nition of multigroup, some remarks and
present some existing results given by [11], and MS(X) is denoted as the set all
msets over X (which is assumed to be an initial universal set unless it is stated
otherwise).

De�nition 3.1. Let X be a group. A multiset A over X is called a multigroup

over X if the count function A or CA satis�es the following conditions:

(i) CA(xy) > [CA(x) ∧ CA(y)] , ∀ x, y ∈ X,

(ii) CA(x−1) > CA(x), ∀ x ∈ X.

We denote the set of all multigroups over X by MG(X).

Example 3.2. Let the subset X = {1,−1, i,−i} of complex numbers be a group
and A = [1,−1, i,−i]3,2,2,2 be a multiset over X. Then, as it is not di�cult to
verify, A is a multigroup over X.
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De�nition 3.3. Let A,B ∈MG(X), we have the following de�nitions:

(i) CA◦B(x) =
∨
{CA(y) ∧ CB(z) : y, z ∈ X, yz = x}

= max [min {CA(y), CB(z)} : y, z ∈ X, yz = x],

(ii) CA−1(x) = CA(x−1).

We call A ◦B the product of A and B, and A−1 the inverse of A.

De�nition 3.4. (cf. [11]) Let A ∈ MG(X). Then A is called an abelian multi-

group over X if CA(xy) = CA(yx), ∀ x, y ∈ X. The set of all abelian multigroups
is denoted by AMG(X).

De�nition 3.5. (cf. [11]) Let A,B ∈ MG(X). Then A is said to be a submulti-

group of B if A ⊆ B.

De�nition 3.6. (cf. [11]) Let H ∈MG(X). For any x ∈ X, xH and Hx de�ned
by CxH(y) = CH(x−1y) and CHx(y) = CH(yx−1), ∀ y ∈ X are respectively called
the left and right mcosets of H in X.

The following results have been given by [11] as related to this paper except
for Remark 3.25 and 3.25.

Proposition 3.7. Let A ∈MG(X). Then

(i) CA(xn) > CA(x), ∀ x ∈ X,

(ii) CA(x−1) = CA(x), ∀ x ∈ X,

(iii) CA(e) > CA(x), ∀ x ∈ X.

Proposition 3.8. Let A,B,C,Ai ∈MG(X), then the following hold:

(i) CA◦B(x)=
∨

y∈X
[
CA(y)∧CB(y−1x)

]
=
∨

y∈X
[
CA

(
xy−1

)
∧CB(y)

]
, ∀x∈X,

(ii) A−1 = A,

(iii)
(
A−1

)−1
= A,

(iv) A ⊆ B =⇒ A−1 ⊆ B−1,

(v)
(⋃

i∈I Ai

)−1
=
⋃

i∈I
(
A−1

)
,

(vi)
(⋂

i∈I Ai

)−1
=
⋂

i∈I
(
A−1

)
,

(vii) (A ◦B)
−1

= B−1 ◦A−1,

(viii) (A ◦B) ◦ C = A ◦ (B ◦ C).

Proposition 3.9. Let A,B ∈ AMG(X). Then A ◦B = B ◦A.
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Proposition 3.10. If A,B ∈MG(X), then CA◦B(x−1) = CA◦B(x).

Proposition 3.11. Let A ∈ [X]
n
. Then A ∈ MG(X) if and only if A ◦ A 6 A

and A−1 = A.

Proposition 3.12. Let A ∈ [X]
n
. Then A ∈MG(X) if and only if CA

(
xy−1

)
>

[CA(x) ∧ CA(y)] , ∀ x, y ∈ X.

Proposition 3.13. Let A,B ∈MG(X). Then A ∩B ∈MG(X).

Remark 3.14. If {Ai}i∈I is a family of multigroups overX, then their intersection⋂
i∈I Ai is a multigroup over X.

Remark 3.15. If {Ai}i∈I is a family of multigroups over X, then their union⋃
i∈I Ai need not be a multigroup over X.

Proposition 3.16. Let A ∈MG(X). Then the non-empty sets of the form

An = {x ∈ X : CA(x) > n, n ∈ N}
are subgroups of X.

Proposition 3.17. Let A ∈MG(X). Then the non-empty sets de�ned as

A∗ = {x ∈ X : CA(x) > 0} and A∗ = {x ∈ X : CA(x) = CA(e)}
are subgroups of X.

Proposition 3.18. Let A ∈ MS(X). Then the following assertions are equiva-

lent:

(a) CA(xy) = CA(yx), ∀ x, y ∈ X,

(b) CA

(
xyx−1

)
= CA(y), ∀ x, y ∈ X,

(c) CA

(
xyx−1

)
> CA(y), ∀ x, y ∈ X,

(d) CA

(
xyx−1

)
6 CA(y), ∀ x, y ∈ X.

Proposition 3.19. Let A ∈ AMG(X). Then A∗, A
∗ and An, n ∈ N are normal

subgroups of X.

Proposition 3.20. Let H ∈MG(X), then xH = yH if and only if x−1y ∈ H∗.

Remark 3.21. If H ∈ AMG(X), then xH = Hx, ∀ x ∈ X.

Proposition 3.22. Let X and Y be two groups and f : X → Y be a homomor-

phism. If A ∈MG(X), then f(A) ∈MG(Y ).

Remark 3.23. Let X and Y be two groups and f : X → Y be a homomorphism.
If Ai ∈MG(X), i ∈ I, then f (∩i∈IAi) ∈MG(Y ).

Proposition 3.24. Let X and Y be two groups and f : X → Y be a homomor-

phism. If B ∈MG(Y ), then f−1(B) ∈MG(X).



Some results on multigroups 173

Remark 3.25. Let X and Y be two groups and f : X → Y be a homomorphism.
If Bi ∈MG(Y ), i ∈ I, then f−1

(⋂
i∈I Bi

)
∈MG(X).

We now present some results to broaden the theoretical aspect of multigroup
theory.

Proposition 3.26. Let A ∈MG(X). Then

(i) CA(xy)−1 > CA(x) ∧ CA(y), ∀ x, y ∈ X,

(ii) CA(xy)n > CA(xy), ∀ x, y ∈ X.

Proof. The proofs are straightforward.

Proposition 3.27. Let A ∈MG(X). If CA(x) < CA(y) for some x, y ∈ X, then

CA(xy) = CA(x) = CA(yx).

Proof. Given that CA(x) < CA(y) for some x, y ∈ X. Since A ∈ MG(X), then
CA(xy) > CA(x) ∧ CA(y) = CA(x). Now, CA(x) = CA

(
xyy−1

)
> CA(xy) ∧

CA(y) = CA(xy), since CA(x) < CA(y), CA(xy) < CA(y). Therefore, CA(xy) =
CA(x). Similarly, CA(yx) = CA(x).

Proposition 3.28. Let A ∈MG(X). Then CA(xy−1) = CA(e) implies CA(x) =
CA(y).

Proof. Given A ∈MG(X) and CA(xy−1) = CA(e) ∀ x, y ∈ X. Then

CA(x)=CA(x(y−1y))=CA((xy−1)y)>CA(xy−1)∧CA(y)=CA(e)∧CA(y)=CA(y),

i.e., CA(x) > CA(y).
Also, CA(y) = CA(y−1) = CA(ey−1) = CA((x−1x)y−1) > CA(x−1)∧CA(xy−1)

= CA(x) ∧ CA(e) = CA(x), i.e., CA(y) > CA(x). Hence, CA(x) = CA(y).

Proposition 3.29. Let A,B,C,D ∈MG(X). If A ⊆ B and C ⊆ D, then

A ◦ C ⊆ B ◦D.

Proof. Since A ⊆ B and C ⊆ D, it follows that CA(x) > CB(x), ∀ x ∈ X and
CC(x) 6 CD(x), ∀ x ∈ X. So,

C(A◦C)(x) =
∨
{CA(y) ∧ CC(z) : y, z ∈ X, yz = x}

6
∨
{CB(y) ∧ CD(z) : y, z ∈ X, yz = x} = C(B◦D)(x).

Hence, A ◦ C ⊆ B ◦D.

Proposition 3.30. Let A,B ∈MG(X) and A ⊆ B or B ⊆ A. Then

A ∪B ∈MG(X).

Proof. The proof is straightforward.
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Remark 3.31. Let A ∈ MG(X), then Ac need not be a multigroup over X.
Indeed, if X = (V4,+) = {0, a, b, c} is the Klein's 4-group, then for A = [0, a]2,1
we have Ac = [0, a]2,3 6= MG(X) because ∃ CA(a) > CA(0).

Proposition 3.32. If A ∈ MG(X), then Ac ∈ MG(X) if and only if CA(x) =
CA(e), ∀ x ∈ X.

Proposition 3.33. Let A ∈MG(X) and x ∈ X. Then CA(xy) = CA(y) ∀ y ∈ X
if and only if CA(x) = CA(e).

Proof. Let CA(xy) = CA(y), ∀y ∈ X. Then CA(x) = CA(xe) = CA(e).
Conversely, let CA(x) = CA(e). Since CA(e) > CA(y) ∀y ∈ X, we have

CA(x) > CA(y). Thus, CA(xy) > CA(x) ∧ CA(y) = CA(e) ∧ CA(y) = CA(y), i.e.,
CA(xy) > CA(y), ∀y ∈ X.

But CA(y) = CA(x−1xy) > CA(x) ∧ CA(xy) and CA(x) > CA(xy), ∀y ∈ X,
imply CA(x)∧CA(xy) = CA(xy) 6 CA(y), ∀y ∈ X. So, CA(y) > CA(xy), ∀y ∈ X.
Hence, CA(xy) = CA(y) ∀y ∈ X.

Proposition 3.34. If A ∈MG(X) and H 6 X, then A|H ∈MG(H).

Proof. Let x, y ∈ H. Then xy−1 ∈ H. Since A ∈ MG(X), then CA(xy−1) >
CA(x)∧CA(y) ∀x, y ∈ X.Moreover,CA|H (xy−1) > CA|H(x)∧CA|H(y) ∀x, y ∈ X.
Hence, A|H ∈MG(H).

4. Multigroup homomorphism

Proposition 4.1. Let f : X −→ Y be an epimorphism and B ∈ MS(Y ). If

f−1(B) ∈MG(X), then B ∈MG(Y ).

Proof. Let x, y ∈ Y then ∃ a, b ∈ X such that f(a) = x and f(b) = y. It follows
that

CB(xy) = CB(f(a)f(b)) = CB(f(ab)) = Cf−1(B)(ab) > Cf−1(B)(a) ∧ Cf−1(B)(b)

= CB(f(a)) ∧ CB(f(b)) = CB(x) ∧ CB(y).

Again,

CB(x−1) = CB(f(a)−1) = CB(f(a−1)) = C(f−1(B))(a
−1) = Cf−1(B)(a)

= CB(f(a)) = CB(x).

Therefore, B ∈MG(Y ).

Proposition 4.2. Let X be a group and f : X −→ X is an automorphism. If

A ∈MG(X), then f(A) = A if and only if f−1(A) = A.
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Proof. Let x ∈ X. Then f(x) = x. Now, C(f−1(A))(x) = CA(f(x)) = CA(x)
implies f−1(A) = A.

Conversely, let f−1(A) = A. Since f is an automorphism, then

Cf(A)(x) =
∨
{CA(x′) : x′ ∈ X, f(x′) = f(x) = x}

= CA(f(x)) = C(f−1(A))(x) = CA(x).

Hence, the proof.

Proposition 4.3. Let f : X → Y be a homomorphism of groups, A ∈ MG(X)
and B ∈MG(Y ). If A is a constant on Kerf , then f−1(f(A)) = A.

Proof. Let f(x) = y. Then

Cf−1(f(A))(x) = Cf(A)f(x) = Cf(A)(y) =
∨
{CA(x) : x ∈ X, f(x) = y}.

Since f(x−1z) = f(x−1)f(z) = (f(x))−1f(z) = y−1y = e′, ∀z ∈ X such that
f(z) = y, which implies x−1z ∈ Kerf . Also, since A is constant on Kerf , then
CA(x−1z) = CA(e). Therefore, CA(x) = CA(z) ∀ z ∈ X such that f(z) = y by
Proposition 3.28 . Hence, the proof.

Proposition 4.4. Let H ∈ AMG(X). Then the map f : X → X/H de�ned by

f(x) = xH is a homomorphism Kerf = {x ∈ X : CH(x) = CH(e)}, where e is the

identity of X.

Proof. Let x, y ∈ X. Then f(xy) = (xy)H = xHyH = f(x)f(y). Hence, f is a
homomorphism. Further,

Kerf = {x ∈ X : f(x) = eH} = {x ∈ X : xH = eH}
=
{
x ∈ X : CH(x−1y) = CH(y) ∀y ∈ X

}
=
{
x ∈ X : CH(x−1) = CH(e)

}
= {x ∈ X : CH(x) = CH(e)} = H∗,

which completes the proof.

Remark 4.5. By Propositions 4.4 and 3.19, Ker f is a normal subgroup of X.

Proposition 4.6. (First Isomorphism Theorem) Let f : X → Y be an epimor-

phism of groups and H ∈ AMG(X), then X/H∗ ∼= Y , where H∗ = Kerf .

Proof. De�ne Θ : X/H∗ → Y by θ(xH∗) = f(x) ∀x ∈ X. Let xH = yH such that
CH(x−1y) = CH(e). Since x−1y ∈ H∗, then f(x−1y) = f(e) =⇒ f(x) = f(y).
Hence, Θ is well-de�ned. Obviously it is an epimorphism. Moreover, f(x) = f(y)
implies f(x)−1f(y) = f(e). So, f(x−1)f(y) = f(x−1y) = f(e), i.e., x−1y ∈ H∗
and consequantly, CH(x−1y) = CH(e). Thus, xH = yH, which shows Θ is an
isomorphism.
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Proposition 4.7. (Second Isomorphism Theorem) If H,N ∈ AMG(X) such that

CH(e) = CN (e), then H∗N∗/N ∼= H∗/H ∩N .

Proof. Clearly, for any x ∈ H∗N∗, x = hn where h ∈ H∗ and n ∈ N∗. De�ne
ϕ : H∗N∗/N → H∗/H ∩N by ϕ(xN) = h(H ∩N).

If xN = yN , where y = h1n1, h1 ∈ H∗ and n1 ∈ N∗, then

CN (x−1y) = CN ((hn)−1h1n1) = CN (n−1h−1h1n1) = CN (h−1h1n
−1n1) = CN (e).

Hence, CN (h−1h1) = CN (n−1n1) = CN (e). Thus,

CH∩N (h−1h1) = CH(h−1h1) ∧ CN (h−1h1) = CH(e) ∧ CN (e) = CH∩N (e),

i.e., h(H ∩N) = h1(H ∩N). Hence, ϕ is well-de�ned.
If xN, yN ∈ H∗N∗ N , then xy = hnh1n1. Since H ∈ AMG(X), then

CH(nh1n1) = CH(h1) gives nh1n1 ∈ H∗. Hence,
ϕ(xNyN) = ϕ(xyN) = h(nh1n1)(H ∩N) = h(H ∩N)nh1n1(H ∩N) and

CH∩N (h−11 (nh1n1)) > CH(h−11 nh1n1) ∧ CN (h−11 nh1n1)

= CH(h−11 (nh1n1)) ∧ CN (n(h−11 h1n1))

= CH(e) ∧ CN (e)

= CH∩N (e).

Hence, nh1n1(H ∩ N) = h1(H ∩ N), i.e., ϕ(xNyN) = h(H ∩ N)h1(H ∩ N) =
ϕ(xN)ϕ(yN), which shows that ϕ is a homomorphism.

ϕ is also an epimorphism, since for h(H ∩ N) ∈ H∗/H ∩ N and n ∈ N∗, we
have x = hn ∈ H∗N∗ and ϕ(xN) = h(H ∩N).

Moreover, if x, y ∈ H∗N∗, where x = hn and y = h1n1, h, h1 ∈ H∗ and
n, n1 ∈ N∗ and h(H ∩ N) = h1(H ∩ N), then CH∩N (h−1h1) = CH∩N (e), i.e.,
CH(h−1h1)∧CN (h−1h1) = CH(e)∧CN (e). But CH(e) = CN (e) and CH(h−1h1) =
CH(e), so CN (h−1h1) = CN (e). Therefore,

CN (x−1y) = CN ((hn)−1h1n1)

= CN (n−1h−1h1n1) = CN (h−1h1n
−1n1)

> CN (h−1h1) ∧ CN (n−1n1) = CN (e) ∧ CN (e) = CN (e).

Thus, CN (x−1y) = CN (e), and consequently, xN = yN .
Hence, H∗N∗/N ∼= H∗/H ∩N .

Proposition 4.8. (Third Isomorphism Theorem) Let H,N ∈ AMG(X) with

H ⊆ N and CH(e) = CN (e). Then X/N ∼= (X/H)/(N∗/H).

Proof. De�ne f : X/H → X/N by f(xH) = xN ∀x ∈ X such that CH(x−1y) =
CH(e) = CN (e) ∀xH = yH. Because H ⊆ N , we have CN (x−1y) > CH(x−1y) =
CN (e) and so CN (x−1y) = CN (e), i.e., xN = yN , which means that f is well-
de�ned. Obviously f is an epimorphism.
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Moreover,

Kerf = {xH ∈ X/H : f(xH) = eN}
= {xH ∈ X/Hx : N = eN}
= {xH ∈ X/H : CN (x) = CN (e)}
= {xH ∈ X/H : x ∈ N∗} = N∗/H.

Thus, Kerf = N∗/H and X/N ∼= (X/H)/(N∗/H).
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