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On locally maximal product-free sets

in 2-groups of coclass 1

Chimere S. Anabanti

Abstract. This paper is in two parts: �rst, we classify the 2-groups of coclass 1 that contain

locally maximal product-free sets of size 4, then give a classi�cation of the �lled 2-groups of

coclass 1.

1. Introduction

Let S be a product-free set in a �nite group G. Then S is locally maximal in G if
S is not properly contained in any other product-free set in G, and S is said to �ll

G if G∗ ⊆ S t SS, where G∗ = G \ {1}. We call G a �lled group if every locally
maximal product-free set in G �lls G.

Street and Whitehead [6] classi�ed the abelian �lled groups as one of C3, C5 or
an elementary abelian 2-group. Recently, Anabanti and Hart [2] classi�ed the �lled
groups of odd order as well as gave a characterisation of the �lled nilpotent groups.
In the latter direction, they proved that if G is a �lled nilpotent group, then G is
one of C3, C5 or a 2-group. One of the goals of this paper is the classi�cation of
�lled 2-groups of coclass 1.

By a 2-group of coclass 1, we mean a group of order 2n and nilpotency class
n− 1 for n > 3, and is one of the following:

(i) D2n = 〈x, y |x2n−1

= y2 = 1, xy = yx−1〉, n > 3 (Dihedral);

(ii) Q2n =〈x, y |x2
n−1

=1, x2
n−2

=y2, xy = yx−1〉 for n>3 (Generalised quaternion);

(iii) QD2n = 〈x, y | x2
n−1

= y2 = 1, xy = yx2
n−2−1〉, n > 4 (Quasi-dihedral).

In 2006, Giudici and Hart [5] began the classi�cation of groups containing
locally maximal product-free sets (LMPFS for short) of small sizes. They classi�ed
all �nite groups containing LMPFS of sizes 1 and 2, and some of size 3. The
classi�cation problem for size 3 was concluded in [1]. Dihedral groups containing
LMPFS of size 4 were classi�ed in [2]. Another goal of this paper is to classify
groups of forms (ii) and (iii) that contain locally maximal product-free sets of size
4, continuing work in [1] and [5].
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2. Preliminaries

Here, we gather together some useful results.

Lemma 2.1. [5, Lemma 3.1] Suppose S is a product-free set in a �nite group

G. Then S is locally maximal if and only if G = T (S) ∪
√
S, where T (S) =

S ∪ SS ∪ SS−1 ∪ S−1S and
√
S = {x ∈ G : x2 ∈ S}.

Proposition 2.2. [2, Proposition 1.3] Each product-free set of size
|G|
2 in a �nite

group G is the non-trivial coset of a subgroup of index 2. Furthermore such sets

are locally maximal and �ll G.

Lemma 2.3. [6, Lemma 1] Let N be a normal subgroup of a �nite group G. If G
is �lled, then G/N is �lled.

Theorem 2.4. [2, Propositions 2.8 and 4.8]
(a) The only �lled dihedral 2-groups are D4 and D8.

(b) No generalised quaternion group is �lled.

3. Main results

For a subset S of a 2-group of coclass 1, we write A(S) for S ∩ 〈x〉, and B(S) for
S ∩ 〈x〉y. Given a ∈ N, we write [0, a] for {0, 1, . . . , a}.

Proposition 3.1. Let S be a LMPFS of size m > 2 in a generalised quaternion

group G. If x2
n−2

/∈ S, then |G| 6 2(|B(S)|+ 4|A(S)||B(S)|).

Proof. Let A = A(S) and B = B(S). By Lemma 2.1, |G| = 2|B(T (S)∪
√
S)|; so to

bound |G|, we count only the possible elements of B(S∪SS∪S−1S∪SS−1∪
√
S),

and double the result. As x2
n−2 6∈ S, we have B(

√
S) = ∅. But B(SS) = AB∪BA,

B(SS−1) = BA−1 ∪AB−1 and B(S−1S) = B−1A∪A−1B. By the relations in a
generalised quaternion group, AB = BA−1 and BA = A−1B.

Hence, |B(T (S) ∪
√
S)| 6 |B|+ 4|A||B|, and the result follows.

A little modi�cation to the proof of Proposition 3.1 gives the following:

Lemma 3.2. If S is a LMPFS of size m > 2 in a generalised quaternion group G
such that A(S) = A(S)−1 and x2

n−2

/∈ S, then |G| 6 2(|B(S)|+ 2|A(S)||B(S)|).

The next result is a complement of Proposition 3.1. We omit the proof since
it is a consequence of the de�nition of the group in question.

Lemma 3.3. Let G be a generalised quaternion group. If S is a LMPFS in G and

contains the unique involution in A(G), then S ⊆ A(G) and S is locally maximal

product-free in A(G).
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In the light of Lemma 3.3, we need to study A(G) more carefully. All cyclic
groups containing LMPFS of sizes 1, 2 and 3 are known by the classi�cation results
in [1] and [5]. However, we cannot lay our hands on any literature that classi�ed
cyclic groups containing LMPFS of a given size m > 1; so we proceed in that
direction. Our result (Corollary 3.5) addresses the question of Babai and Sós [3,
p. 111] as well as Street and Whitehead [6, p. 226] on the minimal sizes of LMPFS
in �nite groups for the cyclic group case.

Proposition 3.4. Let S be a LMPFS of size m > 1 in Cn. Then:

(i) |SS| 6 m(m+1)
2 ,

(ii) |SS−1| 6 m2 −m+ 1,

(iii) if n is odd, then |
√
S| = m,

(iv) if n is even, then |
√
S| 6 2m.

Proof. Suppose S ={x1, x2, . . . , xm}. For (i), observe that SS⊆{x1x1, . . . , x1xm}
∪{x2x2, . . . , x2xm} ∪ · · · ∪ {xm−1xm−1, xm−1xm} ∪{xmxm}. Hence, |SS| 6 m +

(m−1)+· · ·+2+1 = m(m+1)
2 . Case (ii) follows from SS−1⊆{1, x1x−12 , . . . , x1x

−1
m−1,

x1x
−1
m } ∪ {x2x−11 , 1, . . . , x2x

−1
m−1, x2x

−1
m } ∪ · · · ∪ {xmx−11 , xmx

−1
2 , . . . , xmx

−1
m−1, 1}.

For (iii) and (iv), de�ne a homomorphism θ : Cn → Cn by θ(x) = x2 ∀x ∈ Cn. If
n is odd, then Ker(θ)= {1}, and if n is even, then Ker(θ)= {1, u}, where u is the
unique involution in Cn. By the �rst isomorphism theorem, the latter case implies
that each element of S has at most two square roots while the former case shows
that every element of S has exactly one square root.

Corollary 3.5. If S is a LMPFS of size m in a cyclic group G, then |G| 6
3m2+3m+2

2 or 3m2+5m+2
2 according as |G| being odd or even.

Proof. As G is abelian, S−1S = SS−1; hence by Lemma 2.1, |G| 6 |S| + |SS| +
|SS−1|+ |

√
S|. The rest follows from Proposition 3.4.

The bound in Corollary 3.5 is fairly tight. For instance, it says that the size
of a cyclic group that can contain a LMPFS of size 1 is at most 4. Indeed, the
singleton consisting of the unique involution in C4 is an example.

De�nition 3.6. Two LMPFS S and T in a group G are said to be equivalent if
there is an automorphism ofG that takes one into the other.

For a �nite group G, we write Mk for the set consisting of all locally maximal
product-free sets of size k > 1 in G, S for the representatives of each equivalence
class of Mk under the action of the automorphism groups of G, and Nk for the
respective number of LMPFS in each orbit. Using GAP [4], we present our results
in the Table below.
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G |M4| S N4

C8 1 {x, x3, x5, x7} 1

C10 2 {x, x4, x6, x9} 2

C11 5 {x, x3, x8, x10} 5

C12 9 {x, x4, x6, x11}, {x, x4, x7, x10}, {x2, x3, x8, x9},
{x2, x3, x9, x10}

4, 2, 2, 1

C13 21 {x, x3, x5, x12}, {x, x3, x10, x12}, {x, x5, x8, x12} 12, 6, 3

C14 27 {x, x3, x8, x10}, {x, x3, x8, x13}, {x, x4, x6, x13},
{x, x4, x7, x12}, {x, x6, x8, x13}

6, 6, 6, 6, 3

C15 16 {x, x3, x5, x7}, {x, x3, x7, x12} 8, 8

C16 37 {x, x3, x10, x12}, {x, x4, x6, x9}, {x, x4, x6, x15},
{x, x4, x9, x14}, {x, x6, x9, x14}, {x, x6, x10, x14},
{x2, x6, x10, x14}

8, 4, 8, 4, 4,
8, 1

C17 48 {x, x3, x8, x13}, {x, x3, x8, x14}, {x, x3, x11, x13} 16, 16, 16

C18 54 {x, x3, x5, x12}, {x, x3, x8, x14}, {x, x3, x9, x14},
{x, x3, x12, x14}, {x, x4, x9, x16}, {x, x4, x10, x17},
{x, x5, x8, x12}, {x, x5, x8, x17}, {x, x6, x9, x16}

6, 6, 6, 6, 6,
6, 6, 6, 6

C19 36 {x, x3, x5, x13}, {x, x4, x6, x9} 18, 18

C20 36 {x, x3, x10, x16}, {x, x3, x14, x16}, {x, x4, x11, x18},
{x, x5, x14, x18}, {x, x6, x8, x11}, {x2, x5, x15, x16}

8, 8, 4, 8, 4, 4

C21 34 {x, x3, x5, x15}, {x, x4, x10, x17}, {x, x4, x14, x16},
{x, x8, x12, x18}

12, 12, 4, 6

C22 10 {x, x4, x10, x17} 10

C24 4 {x, x6, x17, x21} 4

Table: LMPFS of size 4 in cyclic group G for 8 6 |G| 6 34

In the light of Corollary 3.5 therefore, if a cyclic group G contains a LMPFS S
of size 4, then both G and S are contained in Table. Proposition 2.2 clearly tells
us that the LMPFS of size 4 in Q8 are the non-trivial cosets of the subgroups of
index 2. So we shall eliminate this from our investigation.

Proposition 3.7. Let G = Q2n . If |G| > 8 and G contains a LMPFS of size

4, then G = Q16. Moreover, up to automorphisms of Q16, the only such set is

{x, x6, y, x4y}.

Proof. Let S be a LMPFS of size 4 in G. We conclude from Lemma 3.3 and
deductions from Corollary 3.5 that no such S exist if x2

n−2 ∈ S. So, suppose
x2

n−2 6∈ S. In Proposition 3.1, if |B(S)| = 0 or 4, then |G| < 16, contrary
to our assumption that |G| > 8. If |B(S)| = 1 or 3, we get |G| < 32; so
|G| = 16, and by direct computation, no such S exists. Finally, if |B(S)| = 2,
then |G| < 64. It can easily be seen using dynamics of Lemma 2.1 that S cannot
be contained in Q32, and hence the only possibility is that S ⊆ Q16. Also elements
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of A(S) cannot have same order, and that if B(S) = {xiy, xjy}, then i and j must
have same parity. Thus, the only possibilities for S are S1 := {x, x6, y, x4y},
S2 := {x, x6, xy, x5y}, S3 := {x, x6, x3y, x7y}, S4 := {x, x6, x2y, x6y}, S5 :=
{x2, x7, y, x4y}, S6 :={x2, x7, xy, x5y}, S7 :={x2, x7, x3y, x7y}, S8 :={x2, x7, x2y,
x6y}, S9 := {x2, x3, y, x4y}, S10 := {x5, x6, y, x4y}, S11 := {x2, x3, xy, x5y},
S12 := {x2, x3, x3y, x7y}, S13 := {x2, x3, x2y, x6y}, S14 := {x5, x6, xy, x5y},
S15 := {x5, x6, x3y, x7y} and S16 := {x5, x6, x2y, x6y}. The result follows from
the fact that the automorphism φi takes S1 into Si for 1 6 i 6 16, where
φ1 : x 7→ x, y 7→ y, φ2 : x 7→ x, y 7→ xy, φ3 : x 7→ x, y 7→ x3y, φ4 : x 7→ x, y 7→ x2y,
φ5 : x 7→ x7, y 7→ y, φ6 : x 7→ x7, y 7→ xy, φ7 : x 7→ x7, y 7→ x3y, φ8 : x 7→
x7, y 7→ x2y, φ9 : x 7→ x3, y 7→ y, φ10 : x 7→ x5, y 7→ y, φ11 : x 7→ x3, y 7→ xy,
φ12 : x 7→ x3, y 7→ x3y, φ13 : x 7→ x3, y 7→ x2y, φ14 : x 7→ x5, y 7→ xy,
φ15 : x 7→ x5, y 7→ x3y and φ16 : x 7→ x5, y 7→ x2y.

Proposition 3.8. Let S be a LMPFS of size m > 4 in a quasi-dihedral group G.
If x2

n−2

/∈ S, then |G| 6 2(|B(S)|+ 6|A(S)||B(S)|).

Proof. Similar to the proof of Proposition 3.1.

Lemma 3.9. No LMPFS of size 4 in a quasi-dihedral group G contains the unique

involution in A(G).

Proof. Let S be a LMPFS of size 4 in a quasi-dihedral groupG such that x2
n−2 ∈ S.

First observe that S must contain elements from both A(G) and B(G); so we have
the following three cases: (I) |A(S)| = 1 and |B(S)| = 3; (II) |A(S)| = 2 and
|B(S)| = 2; (III) |A(S)| = 3 and |B(S)| = 1. As S is product-free in G, it cannot

contain elements of the form {x2l+1y, l > 0}; otherwise (x2l+1y)2 = x2
n−2 ∈ S. For

Case I, let S := {x2n−2

, x2iy, x2jy, x2ky} for 0 6 i, j, k 6 2n−2−1. Then A(T (S)) =
A(S ∪ SS ∪ S−1S ∪ SS−1) = A(S ∪ SS). But A(S ∪ SS) cannot yield an element
of the form x2l+1; so we can only rely on A(

√
S) for such element. Observe that√

x2iy =
√
x2jy =

√
x2ky = ∅, and from Proposition 3.4(iv), |A(

√
x2n−2)| 6 2.

In particular, A(
√
x2n−2) = {x2n−3

, x3(2
n−3)}. Hence, there is no element of the

form x2l+1 in A(T (S)∪
√
S); a fallacy! as the number of such element in A(QD2n)

is 2n−2. Thus, no such S exist. For Case II, let S := {x2n−2

, xr, x2jy, x2ky}. If
r is even, then the number of elements of the form x2l+1 in A(

√
S), A(SS) and

A(SS−1) are at most 2, 0 and 0 respectively; so no such S exist. If r is odd, then
the number of elements of the form x2l+1 in A(

√
S), A(SS) and A(SS−1) are at

most 0, 1 and 1 respectively; again, no such S exist. Case III is similar.

The proof of the next result is similar to that of Proposition 3.7 using Propo-
sition 3.8 and Lemma 3.9.

Proposition 3.10. Up to automorphisms of QD16, the LMPFS of size 4 in QD16

are {x, x6, y, x4y} and {x, x6, x3y, x7y}. Furthermore, there is no LMPFS of size

4 in QD2n for n > 4.
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We are now in the position to address the second aim of this paper: classi�ca-
tion of �lled 2-groups of coclass 1.

Theorem 3.11. The only �lled 2-group of coclass 1 is D8.

Proof. By Theorem 2.4, we only show that no quasi-dihedral group is �lled. Let
G = QD2n , n > 4. Then N := 〈x8〉 is a normal subgroup of G whose quotient is
of size 16. Suppose |G| > 16. Given a1 ∈ [0, 7], xa1N = xa1+8a2N for 1 6 a2 6
|N |−1. Similarly, given b1 ∈ [0, 7], xb1yN = xb1+8b2yN for 1 6 b2 6 |N |−1. Thus,
G/N = X tY , where X = {xiN | 0 6 i 6 7} and Y = {xiyN | 0 6 i 6 7}. Clearly,
X ∼= C8

∼= A(D16). On the other hand, each element of Y has order 2 since for i

even, (xiyN)(xiyN) = NN = N , and for i odd, (xiyN)(xiyN) = x2
n−2

NN = N .
Hence, G/N ∼= D16. By Theorem 2.4(a) and Lemma 2.3 therefore, G is not a
�lled group. Now let |G| = 16. By Proposition 3.10, S = {x, x6, y, x4y} is locally
maximal in QD16. However, S does not �ll QD16 since |A(QD∗16)| = 7 > 6 =
|A(S t SS)|; so QD16 is not �lled.

We conclude this discussion with the following question:

Question 3.12. Are there in�nitely many non-abelian �lled groups?
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