On locally maximal product-free sets in 2-groups of coclass 1

Chimere S. Anabanti

Abstract. This paper is in two parts: first, we classify the 2-groups of coclass 1 that contain locally maximal product-free sets of size 4, then give a classification of the filled 2-groups of coclass 1.

1. Introduction

Let S be a product-free set in a finite group G. Then S is locally maximal in G if S is not properly contained in any other product-free set in G, and S is said to fill G if $G^* \subseteq S \sqcup SS$, where $G^* = G \setminus \{1\}$. We call G a filled group if every locally maximal product-free set in G fills G.

Street and Whitehead [6] classified the abelian filled groups as one of C_3 , C_5 or an elementary abelian 2-group. Recently, Anabanti and Hart [2] classified the filled groups of odd order as well as gave a characterisation of the filled nilpotent groups. In the latter direction, they proved that if G is a filled nilpotent group, then G is one of C_3 , C_5 or a 2-group. One of the goals of this paper is the classification of filled 2-groups of coclass 1.

By a 2-group of coclass 1, we mean a group of order 2^n and nilpotency class n-1 for $n \ge 3$, and is one of the following:

(i) $D_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, xy = yx^{-1} \rangle, n \ge 3$ (Dihedral); (ii) $Q_{2^n} = \langle x, y | x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, xy = yx^{-1} \rangle$ for $n \ge 3$ (Generalised quaternion); (iii) $QD_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, xy = yx^{2^{n-2}-1} \rangle, n \ge 4$ (Quasi-dihedral).

In 2006, Giudici and Hart [5] began the classification of groups containing locally maximal product-free sets (LMPFS for short) of small sizes. They classified all finite groups containing LMPFS of sizes 1 and 2, and some of size 3. The classification problem for size 3 was concluded in [1]. Dihedral groups containing LMPFS of size 4 were classified in [2]. Another goal of this paper is to classify groups of forms (ii) and (iii) that contain locally maximal product-free sets of size 4, continuing work in [1] and [5].

²⁰¹⁰ Mathematics Subject Classification: 20D60, 20P05, 05E15 Keywords: Locally maximal, sum-free, product-free, 2-groups.

2. Preliminaries

Here, we gather together some useful results.

Lemma 2.1. [5, Lemma 3.1] Suppose S is a product-free set in a finite group G. Then S is locally maximal if and only if $G = T(S) \cup \sqrt{S}$, where T(S) = $S \cup SS \cup SS^{-1} \cup S^{-1}S \text{ and } \sqrt{S} = \{x \in G : x^2 \in S\}.$

Proposition 2.2. [2, Proposition 1.3] Each product-free set of size $\frac{|G|}{2}$ in a finite group G is the non-trivial coset of a subgroup of index 2. Furthermore such sets are locally maximal and fill G.

Lemma 2.3. [6, Lemma 1] Let N be a normal subgroup of a finite group G. If Gis filled, then G/N is filled.

Theorem 2.4. [2, Propositions 2.8 and 4.8] (a) The only filled dihedral 2-groups are D_4 and D_8 . (b) No generalised quaternion group is filled.

3. Main results

For a subset S of a 2-group of coclass 1, we write A(S) for $S \cap \langle x \rangle$, and B(S) for $S \cap \langle x \rangle y$. Given $a \in \mathbb{N}$, we write [0, a] for $\{0, 1, \dots, a\}$.

Proposition 3.1. Let S be a LMPFS of size $m \ge 2$ in a generalised quaternion group G. If $x^{2^{n-2}} \notin S$, then $|G| \leq 2(|B(S)| + 4|A(S)||B(S)|)$.

Proof. Let A = A(S) and B = B(S). By Lemma 2.1, $|G| = 2|B(T(S) \cup \sqrt{S})|$; so to bound |G|, we count only the possible elements of $B(S \cup SS \cup S^{-1}S \cup SS^{-1} \cup \sqrt{S})$, and double the result. As $x^{2^{n-2}} \notin S$, we have $B(\sqrt{S}) = \emptyset$. But $B(SS) = AB \cup BA$, $B(SS^{-1}) = BA^{-1} \cup AB^{-1}$ and $B(S^{-1}S) = B^{-1}A \cup A^{-1}B$. By the relations in a generalised quaternion group, $AB = BA^{-1}$ and $BA = A^{-1}B$.

Hence, $|B(T(S) \cup \sqrt{S})| \leq |B| + 4|A||B|$, and the result follows.

A little modification to the proof of Proposition 3.1 gives the following:

Lemma 3.2. If S is a LMPFS of size $m \ge 2$ in a generalised quaternion group G such that $A(S) = A(S)^{-1}$ and $x^{2^{n-2}} \notin S$, then $|G| \leq 2(|B(S)| + 2|A(S)||B(S)|)$.

The next result is a complement of Proposition 3.1. We omit the proof since it is a consequence of the definition of the group in question.

Lemma 3.3. Let G be a generalised quaternion group. If S is a LMPFS in G and contains the unique involution in A(G), then $S \subseteq A(G)$ and S is locally maximal product-free in A(G).

In the light of Lemma 3.3, we need to study A(G) more carefully. All cyclic groups containing LMPFS of sizes 1, 2 and 3 are known by the classification results in [1] and [5]. However, we cannot lay our hands on any literature that classified cyclic groups containing LMPFS of a given size $m \ge 1$; so we proceed in that direction. Our result (Corollary 3.5) addresses the question of Babai and Sós [3, p. 111] as well as Street and Whitehead [6, p. 226] on the minimal sizes of LMPFS in finite groups for the cyclic group case.

Proposition 3.4. Let S be a LMPFS of size $m \ge 1$ in C_n . Then:

- $\begin{array}{ll} (i) & |SS| \leqslant \frac{m(m+1)}{2}, \\ (ii) & |SS^{-1}| \leqslant m^2 m + 1, \end{array}$
- (*iii*) if n is odd, then $|\sqrt{S}| = m$,
- (iv) if n is even, then $|\sqrt{S}| \leq 2m$.

Proof. Suppose $S = \{x_1, x_2, \dots, x_m\}$. For (i), observe that $SS \subseteq \{x_1x_1, \dots, x_1x_m\}$ n is odd, then $\operatorname{Ker}(\theta) = \{1\}$, and if n is even, then $\operatorname{Ker}(\theta) = \{1, u\}$, where u is the unique involution in C_n . By the first isomorphism theorem, the latter case implies that each element of S has at most two square roots while the former case shows that every element of S has exactly one square root.

Corollary 3.5. If S is a LMPFS of size m in a cyclic group G, then $|G| \leq$ $\frac{3m^2+3m+2}{2}$ or $\frac{3m^2+5m+2}{2}$ according as |G| being odd or even.

Proof. As G is abelian, $S^{-1}S = SS^{-1}$; hence by Lemma 2.1, $|G| \leq |S| + |SS| + |SS|$ $|SS^{-1}| + |\sqrt{S}|$. The rest follows from Proposition 3.4.

The bound in Corollary 3.5 is fairly tight. For instance, it says that the size of a cyclic group that can contain a LMPFS of size 1 is at most 4. Indeed, the singleton consisting of the unique involution in C_4 is an example.

Definition 3.6. Two LMPFS S and T in a group G are said to be *equivalent* if there is an automorphism of G that takes one into the other.

For a finite group G, we write M_k for the set consisting of all locally maximal product-free sets of size $k \ge 1$ in G, S for the representatives of each equivalence class of M_k under the action of the automorphism groups of G, and N_k for the respective number of LMPFS in each orbit. Using GAP [4], we present our results in the Table below.

C. S. Anabanti

G	$ M_4 $	S	N_4
C_8	1	$\{x, x^3, x^5, x^7\}$	1
C_{10}	2	$\{x, x^4, x^6, x^9\}$	2
C_{11}	5	$\{x, x^3, x^8, x^{10}\}$	5
C_{12}	9	$ \begin{array}{c} \{x,x^4,x^6,x^{11}\},\{x,x^4,x^7,x^{10}\},\{x^2,x^3,x^8,x^9\},\\ \{x^2,x^3,x^9,x^{10}\} \end{array} $	4, 2, 2, 1
C_{13}	21	${x, x^3, x^5, x^{12}}, {x, x^3, x^{10}, x^{12}}, {x, x^5, x^8, x^{12}}$	12, 6, 3
C_{14}	27	$\begin{array}{l} \{x, x^3, x^8, x^{10}\}, \{x, x^3, x^8, x^{13}\}, \{x, x^4, x^6, x^{13}\}, \\ \{x, x^4, x^7, x^{12}\}, \{x, x^6, x^8, x^{13}\} \end{array}$	6, 6, 6, 6, 3
C_{15}	16	$\{x, x^3, x^5, x^7\}, \{x, x^3, x^7, x^{12}\}$	8,8
<i>C</i> ₁₆	37	$\begin{array}{l} \{x, x^3, x^{10}, x^{12}\}, \ \{x, x^4, x^6, x^9\}, \ \{x, x^4, x^6, x^{15}\}, \\ \{x, x^4, x^9, x^{14}\}, \ \{x, x^6, x^9, x^{14}\}, \ \{x, x^6, x^{10}, x^{14}\}, \\ \{x^2, x^6, x^{10}, x^{14}\} \end{array}$	8, 4, 8, 4, 4, 8, 1
C_{17}	48	$\{x, x^3, x^8, x^{13}\}, \{x, x^3, x^8, x^{14}\}, \{x, x^3, x^{11}, x^{13}\}$	16, 16, 16
C_{18}	54	$ \begin{array}{l} \{x, x^3, x^5, x^{12}\}, \{x, x^3, x^8, x^{14}\}, \{x, x^3, x^9, x^{14}\}, \\ \{x, x^3, x^{12}, x^{14}\}, \{x, x^4, x^9, x^{16}\}, \{x, x^4, x^{10}, x^{17}\}, \\ \{x, x^5, x^8, x^{12}\}, \{x, x^5, x^8, x^{17}\}, \{x, x^6, x^9, x^{16}\} \end{array}$	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
C_{19}	36	$\{x, x^3, x^5, x^{13}\}, \{x, x^4, x^6, x^9\}$	18,18
C_{20}	36	$ \begin{array}{c} \{x,x^3,x^{10},x^{16}\},\{x,x^3,x^{14},x^{16}\},\{x,x^4,x^{11},x^{18}\},\\ \{x,x^5,x^{14},x^{18}\},\{x,x^6,x^8,x^{11}\},\{x^2,x^5,x^{15},x^{16}\} \end{array} $	8, 8, 4, 8, 4, 4
C_{21}	34	$ \begin{array}{l} \{x, x^3, x^5, x^{15}\}, \{x, x^4, x^{10}, x^{17}\}, \{x, x^4, x^{14}, x^{16}\}, \\ \{x, x^8, x^{12}, x^{18}\} \end{array} $	12, 12, 4, 6
C_{22}	10	$\{x, x^4, x^{10}, x^{17}\}$	10
C_{24}	4	$\{x, x^6, x^{17}, x^{21}\}$	4

Table: LMPFS of size 4 in cyclic group G for $8 \leqslant |G| \leqslant 34$

In the light of Corollary 3.5 therefore, if a cyclic group G contains a LMPFS S of size 4, then both G and S are contained in Table. Proposition 2.2 clearly tells us that the LMPFS of size 4 in Q_8 are the non-trivial cosets of the subgroups of index 2. So we shall eliminate this from our investigation.

Proposition 3.7. Let $G = Q_{2^n}$. If |G| > 8 and G contains a LMPFS of size 4, then $G = Q_{16}$. Moreover, up to automorphisms of Q_{16} , the only such set is $\{x, x^6, y, x^4y\}$.

Proof. Let S be a LMPFS of size 4 in G. We conclude from Lemma 3.3 and deductions from Corollary 3.5 that no such S exist if $x^{2^{n-2}} \in S$. So, suppose $x^{2^{n-2}} \notin S$. In Proposition 3.1, if |B(S)| = 0 or 4, then |G| < 16, contrary to our assumption that |G| > 8. If |B(S)| = 1 or 3, we get |G| < 32; so |G| = 16, and by direct computation, no such S exists. Finally, if |B(S)| = 2, then |G| < 64. It can easily be seen using dynamics of Lemma 2.1 that S cannot be contained in Q_{32} , and hence the only possibility is that $S \subseteq Q_{16}$. Also elements

of A(S) cannot have same order, and that if $B(S) = \{x^i y, x^j y\}$, then i and j must have same parity. Thus, the only possibilities for S are $S_1 := \{x, x^6, y, x^4 y\}$, $S_2 := \{x, x^6, xy, x^5 y\}$, $S_3 := \{x, x^6, x^3 y, x^7 y\}$, $S_4 := \{x, x^6, x^2 y, x^6 y\}$, $S_5 := \{x^2, x^7, y, x^4 y\}$, $S_6 := \{x^2, x^7, xy, x^5 y\}$, $S_7 := \{x^2, x^7, x^3 y, x^7 y\}$, $S_8 := \{x^2, x^7, x^2 y, x^6 y\}$, $S_9 := \{x^2, x^3, y, x^4 y\}$, $S_{10} := \{x^5, x^6, y, x^4 y\}$, $S_{11} := \{x^2, x^3, xy, x^5 y\}$, $S_{12} := \{x^2, x^3, x^3 y, x^7 y\}$, $S_{13} := \{x^2, x^3, x^2 y, x^6 y\}$, $S_{14} := \{x^5, x^6, xy, x^5 y\}$, $S_{15} := \{x^5, x^6, x^3 y, x^7 y\}$ and $S_{16} := \{x^5, x^6, x^2 y, x^6 y\}$. The result follows from the fact that the automorphism ϕ_i takes S_1 into S_i for $1 \le i \le 16$, where $\phi_1 : x \mapsto x, y \mapsto y, \phi_2 : x \mapsto x, y \mapsto xy, \phi_3 : x \mapsto x, y \mapsto x^3 y, \phi_4 : x \mapsto x, y \mapsto x^2 y,$ $\phi_5 : x \mapsto x^7, y \mapsto y, \phi_6 : x \mapsto x^7, y \mapsto xy, \phi_7 : x \mapsto x^7, y \mapsto x^3 y, \phi_8 : x \mapsto$ $x^7, y \mapsto x^2 y, \phi_9 : x \mapsto x^3, y \mapsto y, \phi_{10} : x \mapsto x^5, y \mapsto y, \phi_{11} : x \mapsto x^3, y \mapsto xy,$ $\phi_{12} : x \mapsto x^5, y \mapsto x^3 y$ and $\phi_{16} : x \mapsto x^5, y \mapsto x^2 y.$

Proposition 3.8. Let S be a LMPFS of size $m \ge 4$ in a quasi-dihedral group G. If $x^{2^{n-2}} \notin S$, then $|G| \le 2(|B(S)| + 6|A(S)||B(S)|)$.

Proof. Similar to the proof of Proposition 3.1.

Lemma 3.9. No LMPFS of size 4 in a quasi-dihedral group G contains the unique involution in A(G).

Proof. Let S be a LMPFS of size 4 in a quasi-dihedral group G such that $x^{2^{n-2}} \in S$. First observe that S must contain elements from both A(G) and B(G); so we have the following three cases: (I) |A(S)| = 1 and |B(S)| = 3; (II) |A(S)| = 2 and |B(S)| = 2; (III) |A(S)| = 3 and |B(S)| = 1. As S is product-free in G, it cannot contain elements of the form $\{x^{2l+1}y, l \ge 0\}$; otherwise $(x^{2l+1}y)^2 = x^{2^{n-2}} \in S$. For Case I, let $S := \{x^{2^{n-2}}, x^{2i}y, x^{2j}y, x^{2k}y\}$ for $0 \le i, j, k \le 2^{n-2} - 1$. Then $A(T(S)) = A(S \cup SS \cup S^{-1}S \cup SS^{-1}) = A(S \cup SS)$. But $A(S \cup SS)$ cannot yield an element of the form x^{2l+1} ; so we can only rely on $A(\sqrt{S})$ for such element. Observe that $\sqrt{x^{2i}y} = \sqrt{x^{2j}y} = \sqrt{x^{2k}y} = \emptyset$, and from Proposition 3.4(iv), $|A(\sqrt{x^{2^{n-2}}})| \le 2$. In particular, $A(\sqrt{x^{2^{n-2}}}) = \{x^{2^{n-3}}, x^{3(2^{n-3})}\}$. Hence, there is no element of the form x^{2l+1} in $A(T(S) \cup \sqrt{S})$; a fallacy! as the number of such element in $A(QD_{2^n})$ is 2^{n-2} . Thus, no such S exist. For Case II, let $S := \{x^{2^{n-2}}, x^r, x^{2j}y, x^{2k}y\}$. If r is even, then the number of elements of the form x^{2l+1} in $A(\sqrt{S})$, A(SS) and $A(SS^{-1})$ are at most 2, 0 and 0 respectively; so no such S exist. If r is odd, then the number of elements of the form x^{2l+1} in $A(SS^{-1})$ are at most 2, 0 and 0 respectively; so no such S exist. If r is odd, then the number of elements of the form x^{2l+1} in $A(SS^{-1})$ are at most 2, 0 and 0 respectively; so no such S exist. If r is odd, then the number of elements of the form x^{2l+1} in $A(SS^{-1})$ are at most 0, 1 and 1 respectively; again, no such S exist. Case III is similar.

The proof of the next result is similar to that of Proposition 3.7 using Proposition 3.8 and Lemma 3.9.

Proposition 3.10. Up to automorphisms of QD_{16} , the LMPFS of size 4 in QD_{16} are $\{x, x^6, y, x^4y\}$ and $\{x, x^6, x^3y, x^7y\}$. Furthermore, there is no LMPFS of size 4 in QD_{2^n} for n > 4.

We are now in the position to address the second aim of this paper: classification of filled 2-groups of coclass 1.

Theorem 3.11. The only filled 2-group of coclass 1 is D_8 .

Proof. By Theorem 2.4, we only show that no quasi-dihedral group is filled. Let $G = QD_{2^n}, n \ge 4$. Then $N := \langle x^8 \rangle$ is a normal subgroup of G whose quotient is of size 16. Suppose |G| > 16. Given $a_1 \in [0,7], x^{a_1}N = x^{a_1+8a_2}N$ for $1 \le a_2 \le |N|-1$. Similarly, given $b_1 \in [0,7], x^{b_1}yN = x^{b_1+8b_2}yN$ for $1 \le b_2 \le |N|-1$. Thus, $G/N = X \sqcup Y$, where $X = \{x^iN \mid 0 \le i \le 7\}$ and $Y = \{x^iyN \mid 0 \le i \le 7\}$. Clearly, $X \cong C_8 \cong A(D_{16})$. On the other hand, each element of Y has order 2 since for i even, $(x^iyN)(x^iyN) = NN = N$, and for i odd, $(x^iyN)(x^iyN) = x^{2^{n-2}}NN = N$. Hence, $G/N \cong D_{16}$. By Theorem 2.4(*a*) and Lemma 2.3 therefore, G is not a filled group. Now let |G| = 16. By Proposition 3.10, $S = \{x, x^6, y, x^4y\}$ is locally maximal in QD_{16} . However, S does not fill QD_{16} since $|A(QD_{16}^*)| = 7 > 6 = |A(S \sqcup SS)|$; so QD_{16} is not filled. □

We conclude this discussion with the following question:

Question 3.12. Are there infinitely many non-abelian filled groups?

Acknowledgements

This research is supported by a Birkbeck PhD scholarship. The author is grateful to Professor Sarah Hart for useful comments.

References

- C.S. Anabanti and S.B. Hart, Groups containing small locally maximal productfree sets, Intern. J. Combin. (2016), Article ID 8939182, 5 pages.
- [2] C.S. Anabanti and S.B. Hart, On a conjecture of Street and Whitehead on locally maximal product-free sets, Australasian J. Combin. 63 (2015), 385 - 398.
- [3] L. Babai and V.T. Sós, Sidon sets in groups and induced subgraphs of Cayley graphs, European J. Combin. 6 (1985), 101 - 114.
- [4] The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.7.7; 2015, (http://www.gap-system.org).
- [5] M. Giudici and S. Hart, Small maximal sum-free sets, Electronic J. Combin. 16 (2009), 1-17.
- [6] A.P. Street and E.G. Whitehead Jr., Group Ramsey Theory, J. Combinatorial Theory, Ser. A 17, (1974), 219 – 226.

Received February 15, 2016

Department of Economics, Mathematics and Statistics, Birkbeck, University of London, WC1E 7HX London, United Kingdom

E-mail: c.anabanti @mail.bbk.ac.uk

Department of Mathematics, University of Nigeria, Nsukka, Nigeria E-mail: chimere.anabanti@unn.edu.ng