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Characterizations of Clifford semigroups

and {-Putcha semigroups by their quasi-ideals

Anjan Kumar Bhuniya and Kanchan Jana

Abstract. There are bi-ideals of semigroups which are not quasi-ideals. In spite of this fact, here
we show that a semigroup S is quasi-simple if and only if it is bi-simple, equivalently ¢-simple.
Main results of this article are several equivalent characterizations of the Clifford semigroups
and the semigroups which are semilattices of t-Archimedean semigroups by their quasi-ideals. A
semigroup S is a Clifford semigroup if and only if every quasi-ideal of S is a semiprime ideal,
whereas S is a semilattice of t-Archimedean semigroups if and only if /@ is an ideal for every
quasi-ideal @ of S.

1. Introduction

In 1952, R.A. Good and D.R. Hughes [3] first defined the notion of bi-ideals of a
semigroup. The notion of quasi-ideals in rings and semigroups was introduced and
developed by Otto Steinfeld [12], [13], [14], [15]. Different classes of semigroups
has been characterized by using bi-ideals and quasi-ideals by many authors [7],
[8], [9], [10]. Later on different classes of semigroups has been characterized by
using minimal and maximal left-ideals, bi-ideals and quasi-ideals by many authors
(1], [17], [4], [2], [9], [6]. Here we characterize the Clifford semigroups and the
semigroups which are semilattices of t-Archimedean semigroups by their quasi-
ideals.

There are several characterizations for a semigroup S equivalent to be a Clif-
ford semigroup and t-Putcha semigroup by their bi-ideals. Every quasi-ideal of a
semigroup is a bi-ideal but the converse is not true. So if a semigroup S is bi-simple
or equivalently t-simple then it is quasi-simple. Here we have a strange observa-
tion that every quasi-simple semigroup is also ¢-simple and thus quasi-simplicity
and t-simplicity becomes equivalent in semigroups. Therefore we hope that it may
turns out to be the case that the semigroups which are semilattices of groups or
t-Archimedean semigroups will be characterized by their quasi-ideals. We show
that a semigroup S is a semilattice of t-Archimedean semigroups.

Some elementary results together with prerequisites have been discussed in
Section 2. In Section 3 we have studied semilattice of quasi-simple semigroups.
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2. Preliminaries

A nonempty subset L of a semigroup S is called a left ideal of S if SL C L. The
right ideals are defined dually. A subset I of S is called an ideal of S if it is both a
left and a right ideal of S. For an element a € S the principal left ideal (right ideal)
of S generated by {a} is given by SaU{a} (aSU{a}) and are denoted by L(a) and
R(a) respectively. A semigroup S is called simple (left-simple, right-simple) if it
does not contain any proper ideal (left-ideal, right-ideal), and S is called t-simple
if it is both left simple and right simple.

A nonempty subset @ is called a quasi-ideal of S if QS N SQ C Q. It follows
that every quasi-ideal @ of S is a subsemigroup. Every nonempty intersection of
a left ideal and a right ideal is a quasi ideal of S. Suppose @ is a quasi-ideal of S.
Then L = SQ UQ is a left ideal and R = QS U @ is a right ideal of S such that
@ = LN R. Thus a nonempty subset @ of S is a quasi-ideal if and only if it is an
intersection of a left ideal and a right ideal. For a € S, let Q(a) be the quasi-ideal
generated by {a}.

A semigroup S is called quasi-simple if it has no proper quasi-ideal.

The Green’s relations £, R and H on a semigroup S are defined by, for a,b € S,

albif L(a) = L(b), aRbif R(a)=R() and H=LNR.
Now we have the following theorem (cf. [9]).

Theorem 2.1. Let S be a semigroup. Then H can be given as follows: fora,b € S,
aHb <= Q(a) = Q(b).

A nonempty subset A of S is called semiprime if for all 2 € S such that 22 € A
one has x € A, and completely prime (resp. semiprimary) if for all x,y € S such
that xy € A one hasz € Aory € A (resp. 2" € Aor y" € A for some n € N). A
subsemigroup F' of S is called a filter of S if for any a,b € S, ab € F = a,b € F.
Let N(a) be the filter generated by {a}. Define an equivalence relation A" on S
by: for a,b € S,

aNb if N(a)= N(b).

The following lemma (proved in [9]) plays a crucial role in the main theorems
of this article.

Lemma 2.2. Let S be a semigroup. Then N is the least semilattice congruence
on S.
3. Semilattice of groups

In this section we characterize the semigroups which are semilattices (chains) of
groups.
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Theorem 3.1. The following conditions are equivalent on a semigroup S:

1) S is a semilattice of groups;

2) for all a,b € S, ab,ba € Q(a) and a € Q(a?);

3) foralla €S, Q(a) is a semiprime ideal of S;

5) for all a,b € S, Q(ab) = Q(a)NQ(b);

(1)
(2)
3)
(4) every quasi-ideal of S is a semiprime ideal of S;
()
(6) for allae S, N(a)={x € Sla € Q(z)};

(7)

7) for every nonempty family {Qx|\ €A} of quasi-ideals of S, [y, @ is a
semiprime ideal of S;

(8) H =N is the least semilattice congruence of S such that each of its congru-
ence classes is a group.

Proof. (1) = (2). Let S be a semilattice L of groups G4, (o € L). Counsider
a,b € S. Then there are o, 8 € L such that a € G, b€ Gg and so aba, ab, ba are
in GoGg C Gag. Since Gup is a group, ab € Q(aba) C Q(a). Similarly, ba € Q(a).
Also a,a® € G, implies that a € Q(a?).

(2) = (3). Let a € S. Consider ¢ € Q(a) and s € S. Then sq, ¢s € Q(q) C Q(a)
implies that Q(a) is an ideal of S. Let u € S be such that u? € Q(a). Then
u € Q(u?) C Q(a). Thus Q(a) is a semiprime ideal of S.

(3) = (4). Follows similarly.

(4) = (5). Let a,b € S. Since a € Q(a) is an ideal of S, so ab € Q(a) and
similarly, ab € Q(b). Then ab € Q(a) N Q(b) implies that Q(ab) C Q(a) N Q(d).
Let z € Q(a) N Q(b). Then x € R(a) implies that there exists s; € S such that
r = as;. Then 22 = (as;)z = a(s1z). Since Q(a) N Q(b) is an ideal of S, so
s1z € Q(a) N Q(b) and hence syz € R(b). Then s;x = bsg for some sp € S. Then
22 = absy which implies that 2% € R(ab). Similarly, 22 € L(ab). Thus z2 € Q(ab)
which yields € Q(ab). Then Q(a)NQ(b) C Q(ab) and hence Q(a)NQ(d) = Q(ab).

(5) = (6). Let F = {& € S|a € Q(z)}. Consider z,y € F. Then a €
Q(z) N Q(y) = Q(xy) implies that zy € F. Thus F is a subsemigroup of S. If for
xz,y €S, xzy € F, then a € Q(xy) = Q(z) N Q(y) implies that z,y € F. Thus F is
a filter of S.

Let T be a filter of S containing a and u € F. Then there exists s € S such
that @ = syu. Then squ € T implies that v € T. Hence F = N(a).

(6) = (7). Let Q@ = [ cp @r- Then Q is a quasi-ideal of S. Let ¢ € Q and
s € S. Now q € N(gs) implies that ¢s € Q(¢) C Q. Similarly, sq € Q. Let a® € Q.
Then a? € N(a) implies that a € Q(a?) C Q. Thus Q is a semiprime ideal of S.

(7) = (4). Obvious.

(6) = (8). Let a,b € S. Then a#b implies that Q(a) = Q(b) and so a € N(b)
and b € N(a) . This implies that N(a) = N(b), i.e., aN'b. Thus H C A. Similarly,
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N C H. Hence H = N is the least semilattice congruence on S. Then every H-
class is a group.
(8) = (1). Obvious. O

In the following theorem we characterize the semigroups which are chains of
groups.

Theorem 3.2. The following conditions are equivalent on a semigroup S':
(1) S is a chain of groups;
2) for all a,b € S, ab,ba € Q(a); and a € Q(ab) or b € Q(ab);

3) for alla €S, Q(a) is a completely prime ideal of S;

5) for all a,b € S, Q(ab) = Qa) N Q(b); and Q(a) € Q(b) or Q(b) € Q(a);

)
(2)
3)
(4) every quasi-ideal of S is a completely prime ideal of S;
(5)
(6) for alla,be S, N(a) = {z € S|a € Q(z)} and N(ab) = N(a) UN(b);
(7)

7) for every nonempty family {Qx |\ €A} of quasi-ideals of S, (1yc, @x s @
completely prime ideal of S;

(8) H = N is the least chain congruence on S such that each of its congruence
classes is a group.

Proof. (1) = (2). Let S be a chain C of groups G,(a € C). Then the first part
follows from Theorem 3.1. For the second part, let a € G,,b € Gg, a,8 € C.
Since C is a chain, either a8 = o or a8 = 8. If a8 = a, then a, ab € G, implies
that aHab and hence a € Q(ab). Similarly, o = 3 implies that b € Q(ab). Thus
either a € Q(ab) or b € Q(ab).

(2) = (3). Let @ € S. Then Q(a) is an ideal of S by Theorem 3.1. Consider
x,y € S such that zy € Q(a). Now z € Q(zy) or y € Q(zy) implies that z € Q(a)
or y € Q(a). Thus Q(a) is a semiprime ideal of S.

(3) = (4). Follows similarly.

(4) = (5). Let a,b € S. Then Q(ab) = Q(a) N Q(b), by Theorem 3.1.

Again a € Q(ab) or b € Q(ab) implies that Q(a) C Q(ab) C Q(b) or Q(b) C
Q(ab) € Q(a). Thus Q(a) € Q(b) or Q(b) € Qo).

(5) = (6). Let a € S. Then N(a) = {x € S|a € Q(z)}, by Theorem 3.1.
Let a,b € S. Then, N(a) N N(b) C N(ab). Let x € N(ab). Then ab € Q(x).
Now we have Q(ab) = Q(a) or Q(ab) = Q(b) which implies that Q(a) C Q(x) or
Q(b) C Q(x). Then 2z € N(a) or x € N(b). Thus N(ab) C N(a) or N(ab) C N(b).
Then N(ab) C N(a) U N(b). Hence N(ab) = N(a)U N(b).

(6) = (7). Let Q = [ cp @a- In view of Theorem 3.1, we are only to show that
Q is completely prime. For a,b € S, if ab € @, then ab € N(ab) = N(a) U N(b)
implies that a € Q(ab) C Q or b € Q(ab) C Q,ie.,a € Qor b€ Q. Thus Q is a
completely prime ideal of S.
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(7) = (4). Obvious.

(6) = (8). In view of Theorem 3.1, we are only to show that A is a chain
congruence on S. Let a,b € S. Then ab € N(ab) = N(a) U N(b). Thus ab € N(a)
or ab € N(b), i.e., N(ab) C N(a) € N(a) UN(b) = N(ab) or N(ab) C N(b) C
N(a) UN(b) = N(ab). Then N(ab) = N(a) or N(ab) = N(b). Then abNa or
abN'b.

(8) = (1). Obvious. O

4. Semilattice of t-Archimedean semigroups

In this section we characterize the semigroups which are semilattices of ¢-Archimedean
semigroups by their quasi-ideals. Also in this section the semigroups which are
chains of t-Archimedean semigroups are characterized.
Let A be a nonempty subset of a semigroup S. Then the radical of A in S is
given by
VA={zeS|(@neN)z" e A}.

A semigroup S is called left (right) Archimedean if for each a € S, S = v/Sa,
(S = VaS) and t-Archimedean semigroup if it is both a left Archimedean semi-
group and a right Archimedean semigroup. Thus a semigroup S is t-Archimedean
if and only if for a,b € S there exist n € N and z1,z2 € S such that b = x1a and
b" = axs.

A semigroup S is called a semilattice (chain) of t-Archimedean semigroups if
there exists a congruence p on S such that S/p is a semilattice (chain) and each
p-class is a t-Archimedean semigroup.

Let S be a semigroup. Define a binary relation ¢ on S by : for a,b € S,

ach <= b € VSaS < b" € SaS, for some n € N.

Then a® € SaS shows that a € v/SaS, i.e., o is reflexive. So the transitive closure
p = o* is reflexive and transitive and therefore the symmetric relation n = pnp~1
is an equivalence relation. Thus the equivalence relation 7 is the least semilattice
congruence on S.

Recall that for every a € S, Q(a) = L(a) N R(a). In general neither L(a) = Sa
nor R(a) = aS. Also, SaNasS is a quasi-ideal of S which may not contain a. But
we have the following lemma.

Lemma 4.1. Let S be a semigroup. Then \/Q(a)= v/SaNaS=vSan vaS for
alla € S.

Lemma 4.2. Let S be a semigroup such that for all a,b € S,ab € v/ Sa N VbS.
Then

(1) for all a,b € S;a € SbNbS = for every r € N there are n € N;z € S such
that a” = b* 2b*" and hence a € \/Q(b*");
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(2) for all a,b € S,a € \/Q(b) implies that v/Q(a) C /Q(b);

(3) the least semilattice congruence n on S is given by: for all a,b € S,

anb if b€ \/Q(a) and a € \/Q(D).

Proof. (1). Let a,b € S with a € SbNbS. Then there exist s1,s2 € S such that
a = s1b = bsa. Also, there exist n € N and wuy,us € S such that (bs;)™ = u1b and
(s9b)™ = bus. Then a™t! = s1(bs1)"b = sju1b? and a™*! = b(s2b)"sy = bPugss.
Then 2"t = b2uys081u1b? implies that the result is true for r = 1. Let for
k € N, there is p € N and 2 € S such that o = b2 2b%". Then proceeding as
above, we have ¢ € N and y € S such that a? = 52" ybp2""". Thus the result
follows by the principle of Mathematical induction.

The last part follows by Lemma, 4.1.

(2). For a € \/Q(b), there are n € N and s, s2 € S such that a™ = s1b = bss.
Let x € /Q(a). Then there exists m € N such that 2™ € SanaS. Let r € N
be such that 2" > n. Then, by (1), we find p € N and v € S such that 2P =

T ' i
a?" ua? Wthh implies that 2P = a™a? ~"ua? ~"a" = bssa® ~"ua® ~"s;b. Then

x € v/Q(b), by the Lemma 4.1.
(3). Consider a € S. Then = € \/Q(a) implies that 2™ = sja = asy for
some n € N and s1,s2 € S. Then 2" = s;a%s, implies that z € v/SaS. Thus
Q(a) C vVSaS. Let y € vSaS. Then there are m € N and ¢1,t; € S such
that y™ = tiats. Again tiats € v/Stia C vV Sa and tiats € vataS C VasS implies
that y™ € VaS N +vSa = \/Q(a) and so y € \/Q(a), by the Lemma 4.1. Thus
VvSaS C y/Q(a) and hence \/Q(a) = v SaS.

Now for a,b € S, anb implies that there are ci,ca,...,¢n,dy,do, ... dy €S

such that accy, ciocs, ..., ch_10¢Cy, c,ob and body, dlcrdg,... dy— 1adm, moa.
These give ¢; € Q(a), c2 € \/Q(c1),...,b € \/Q(cn) and dy € \/ ), do €
Q(dy),...,a € \/Q(d,,) so that b € \/Q(a) and a € \/Q(b), by (2). O

Recall that for a,b € S,
aHb = Q(a) = Q(b).
Let us define /A, the radical of H on S by: for a,b € S,
Wb = /Ola) = VO).
Now we have the main theorem of this section:
Theorem 4.3. The following conditions are equivalent on a semigroup S':

(1) S is a t-Putcha semigroup;
(2) for alla,be S, be SaS implies b € \/Q(a);
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(3) for all a,b € S, ab € \/SanNVbS;

(4) Q is an ideal of S for every quasi-ideal Q of S;
(5) \/Q(a) is an ideal of S, for all a € S;

(6) N(a) ={z € S|ac+/Qx)} forallac S;
(NN

= VH is the least semilattice congruence and the congruence classes are
t-Archimedean semigroups.

7

Proof. (1) = (2). Let p be a semilattice congruence on S such that the p-classes
T.,a € S/p are t-Archimedean semigroups. Let a,b € S be such that b € SaS.
Then there are sy, so € such that b = syass. Now sjasapasysepsisea implies that
b, as1s2, s152a € T, for some o € S/p. Since T, is a t-Archimedean semigroup,
there exist n € N and uy,us € T, such that "™ = asyssu; and "™ = uss152a. Thus
b€ \/Q(a), by Lemma 4.1.

(2) = (3). Let a,b € S. Now (ab)? = abab implies (ab)? € SaS N SbS. Then
(ab)? € /Q(a) N \/Q(b) C v/San+/bS and hence ab € v/ Sa N /bS.

(3) = (4). Let Q be a quasi-ideal of S and let v € v/Q and ¢ € S. Then u" = ¢
for some n € N,¢ € Q. Also by (3), there is m € N such that (uc)™ € Su and
(uc)™*! € uSu. Consider r € N such that 2" > n. Then by Lemma 4.2, there are
my € N and z € S such that (uc)™ = v zu? = qu? ~"zu® ~"q which implies
that uc € /gSNSq = \/Q(q) C +/Q, by Lemma 4.1. Similarly, cu € v/Q. Thus
v/Q is an ideal of S.

(4) = (5). Trivial.

(5) = (3). Let a,b € S. Then y/Q(a) and /Q(b) are ideals of S. Then
ab € \/Q(a) N \/Q(b) and hence ab € v/Sa N /bS.

(3) = (6). Let a € S and F = {x € Sla € /Q(z)}. Consider y,z € F.
Then there exist n € N uj,us € S such that a” = w2z and a™ = yus. Also,
by (3), there are mi,ma € Nywi,wy € S such that (uguizy)™ = zyw; and
(zyuguy)™ = wyzy. Now a?" = yuguyz implies a?""™ D = (yuguyz)™+! =
y(uguizy)™ugurz = (yz)ywiuguiz. Also, a2n(ma+1) — yuguy zwe2(yz). Thus
yz € F', by Lemma 4.1; and hence F' is a subsemigroup of S.

Let y,z € S be such that yz € F. Then a € \/Q(yz) = vyzS N +/Syz C
VyS NSz Now, by (3), yz € v/Sy, and so yz € vyS N /Sy = /Q(y), by
Lemma 4.1. Then /Q(yz) C /Q(y), by Lemma 4.2. Thus a € \/Q(y) and hence
y € F. Similarly, z € F. Thus F is a filter that contains a. Let T be a filter of
S containing a and y € F. Then a™ = sy for some m € N;s € S. Now a™ € T
implies sy € T and hence y € T. Thus F = N(a).

(6) = (7). Consider a,b € S. Then ab € N(ab) implies that a,b € N(ab). Then,
by (6), ab € \/Q(a) N /Q(b) C VSan VbS. If aNb then N(a) = N(b) implies
that b € \/Q(a) and a € \/Q(b). So, /Q(b) C \/Q(a) and /Q(a) C \/Q(b)
by Lemma 4.2. Thus avHb and hence N C v#H. Similarly, v € N. Hence
N = V/H is the least semilattice congruence.
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Let T be an N-class in S. Since N is a semilattice congruence, T is a sub-
semigroup. Consider a,b € T. Then a?N'b implies that N(a?) = N(b); and by (6)
we have b € \/Q(a?). Thus there are n € N and s1,52 € S such that b" = s;a®
and b® = a?sy which implies that b”t! = bs;a? and b"t! = a2syb. Since N is
a semilattice congruence, t; = bs;aNbs1a’ N IND and t3 = assbNb which im-
plies that t; = bsya € T and t5 = assb € T. Thus b € VTa N +vaT and hence T is
a t-Archimedean semigroup.

(7) = (1). Follows directly. O

Theorem 4.4. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups.

(2) S is a t-Putcha semigroup and for all a,b € S, b€ \/Q(a) or a € /Q(D).
(3) For alla,be S, N(a) ={x € S|a € /Q(x)} and N(ab) = N(a) U N(b).
(4)

4) N = /H is the least chain congruence on S such that each of its congruence
classes is t-Archimedean.

Proof. (1) = (2). Let S be a chain C of ¢-Archimedean semigroups S, (« € C). Let
a,b € S. Then a € S, and a € Sg for some «, 5 € C. Since C is a chain, either
af =aor af = . If af = a, then a,ab € S,; and since S, is a t-Archimedean
semigroup, there exist n € N and 1, x5 € S, such that ™ = x1ab and a™ = abxs.
Now, by Theorem 4.3, since S is a semilattice of ¢-Archimedean semigroup, there
are m € N and s € S such that (abze)™ = brys. Then we have a™™ = s1b and
a™ = bxgys for some s; € S and hence a € 1/Q(b), by Lemma 4.1. If af = 5,
then b,ab € Sg and similarly as above we have b € 1/Q(a).

(2) = (3). By Theorem 4.3, we have N(a) = {z € S|a € v/Q(x)}, since S
is a t-Putcha semigroup. Let a,b € S. Then ab € N(ab) implies that a € N(ab)
and b € N(ab), and hence N(a) U N(b) C N(ab). Again, either a € 1/Q(b) or
b e /Q(a). If a € \/Q(b), then there are n € N and s € S such that a™ = bs
and so a”t! = abs. Since S is a semilattice of t-Archimedean semigroups, there
exist m € N and ¢ € S such that (abs)™ = tab, by Theorem 4.3. Then we have
a™tm = tab and a("*V"™ = abt; for some t; € S. Then a € \/Q(ab) which
implies that ab € N(a). Thus N(ab) C N(a). If b € \/Q(a), then similarly we
have N(ab) C N(b), which shows that N(ab) C N(a) U N(b). Hence N(ab) =
N(a) U N(b).

(3) = (4). Tt follows by Theorem 4.3 that A" = v/#H is the least semilattice
congruence on S and each N-class is a t-Archimedean semigroup.

Now consider a,b € S. Then ab € N(a) U N(b) shows that ab € N(a) or
ab € N(b). Again N(a) C N(ab) and N(b) C N(ab). Thus either N(ab) C N(a) C
N(ab) or N(ab) C N(b) C N(ab). i.e., either aNab or bNab. Hence N is a chain
congruence on S. Since every chain is a semilattice and N is the least semilattice
congruence, it is the least chain congruence on S.

(4) = (1). Trivial. O
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Theorem 4.5. The following conditions on a semigroup S are equivalent:
1) S is a chain of t-Archimedean semigroups;
2) /Q is a completely prime ideal of S for every quasi-ideal Q of S;

3) /Q(a) is a completely prime ideal of S for every a € S;

(
(
(
(4) V/Q(ab) = \/Q(a) N /Q(b) for all a,b € S and every quasi-ideal of S is

semiprimary .

Proof. (1) = (2). Let S be a chain C of t-archimedean semigroups {S, | o € C}. We
take a quasi-ideal @ of S. Then /@ is an ideal of S, by Theorem 4.3. Let z,y € S
be such that xy € v/Q. Then there is n € N such that (xy)® = u € Q. Suppose
z € Sy and y € Sg,a,8 € C . Since C is a chain, either af = o or a8 = (.
If a8 = a, then z,u € S,. Since S, is t-Archimedean, so z € /Q(u) C Q.
Similarly, if a8 = 3, then y € /Q. Hence /@ is a completely prime ideal of S.

(2) = (3). Obvious.

(3) = (4). Let a,b € S. Then /Q(a) and /Q(b) are ideals of S and hence
ab € \/Q(a) N v/Q(b). This implies 1/Q(ab) C \/Q(a) N /Q(b), by Lemma 4.2
and Theorem 4.3. Since \/Q(ab) is completely prime, so a,b € \/Q(ab) which
implies 1/Q(a) N /Q(b) C \/Q(ab). Thus \/Q(ab) = /Q(a) N /Q(b)

Let @ be a quasi-ideal of S and z,y € S be such that xy € Q. Then xy €
v/ Q(xy) implies that = € \/Q(zy) or y € \/Q(zy). Thus 2" € \/Q(zy) C Q or
y"™ € +/Q(zy) C Q for some n € N. Hence ) is semiprimary.

(4) = (1). Let a,b € S. Then ab € \/Q(a) N /Q(b) C VSanVbS. Then

by Theorem 4.3, S is a t-Putcha semigroup. Since 1/Q(ab) is a semiprimary,

ab € Q(ab) implies that a € 1/Q(ab) = \/Q(a)N/Q(b) C \/Q(b) or b € \/Q(ab) C
v/Q(a). Thus S is a chain of ¢-Archimedean semigroups by Theorem 4.4. O
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