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Characterizations of Cli�ord semigroups

and t-Putcha semigroups by their quasi-ideals

Anjan Kumar Bhuniya and Kanchan Jana

Abstract. There are bi-ideals of semigroups which are not quasi-ideals. In spite of this fact, here

we show that a semigroup S is quasi-simple if and only if it is bi-simple, equivalently t-simple.

Main results of this article are several equivalent characterizations of the Cli�ord semigroups

and the semigroups which are semilattices of t-Archimedean semigroups by their quasi-ideals. A

semigroup S is a Cli�ord semigroup if and only if every quasi-ideal of S is a semiprime ideal,

whereas S is a semilattice of t-Archimedean semigroups if and only if
√
Q is an ideal for every

quasi-ideal Q of S.

1. Introduction

In 1952, R.A. Good and D.R. Hughes [3] �rst de�ned the notion of bi-ideals of a
semigroup. The notion of quasi-ideals in rings and semigroups was introduced and
developed by Otto Steinfeld [12], [13], [14], [15]. Di�erent classes of semigroups
has been characterized by using bi-ideals and quasi-ideals by many authors [7],
[8], [9], [10]. Later on di�erent classes of semigroups has been characterized by
using minimal and maximal left-ideals, bi-ideals and quasi-ideals by many authors
[1], [17], [4], [2], [9], [6]. Here we characterize the Cli�ord semigroups and the
semigroups which are semilattices of t-Archimedean semigroups by their quasi-
ideals.

There are several characterizations for a semigroup S equivalent to be a Clif-
ford semigroup and t-Putcha semigroup by their bi-ideals. Every quasi-ideal of a
semigroup is a bi-ideal but the converse is not true. So if a semigroup S is bi-simple
or equivalently t-simple then it is quasi-simple. Here we have a strange observa-
tion that every quasi-simple semigroup is also t-simple and thus quasi-simplicity
and t-simplicity becomes equivalent in semigroups. Therefore we hope that it may
turns out to be the case that the semigroups which are semilattices of groups or
t-Archimedean semigroups will be characterized by their quasi-ideals. We show
that a semigroup S is a semilattice of t-Archimedean semigroups.

Some elementary results together with prerequisites have been discussed in
Section 2. In Section 3 we have studied semilattice of quasi-simple semigroups.
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2. Preliminaries

A nonempty subset L of a semigroup S is called a left ideal of S if SL ⊆ L. The
right ideals are de�ned dually. A subset I of S is called an ideal of S if it is both a
left and a right ideal of S. For an element a ∈ S the principal left ideal (right ideal)
of S generated by {a} is given by Sa∪{a} (aS∪{a}) and are denoted by L(a) and
R(a) respectively. A semigroup S is called simple (left-simple, right-simple) if it
does not contain any proper ideal (left-ideal, right-ideal), and S is called t-simple
if it is both left simple and right simple.

A nonempty subset Q is called a quasi-ideal of S if QS ∩ SQ ⊆ Q. It follows
that every quasi-ideal Q of S is a subsemigroup. Every nonempty intersection of
a left ideal and a right ideal is a quasi ideal of S. Suppose Q is a quasi-ideal of S.
Then L = SQ ∪ Q is a left ideal and R = QS ∪ Q is a right ideal of S such that
Q = L ∩R. Thus a nonempty subset Q of S is a quasi-ideal if and only if it is an
intersection of a left ideal and a right ideal. For a ∈ S, let Q(a) be the quasi-ideal
generated by {a}.

A semigroup S is called quasi-simple if it has no proper quasi-ideal.
The Green's relations L, R and H on a semigroup S are de�ned by, for a, b ∈ S,

aLb if L(a) = L(b), aRb if R(a) = R(b) and H = L ∩R.

Now we have the following theorem (cf. [9]).

Theorem 2.1. Let S be a semigroup. Then H can be given as follows: for a, b ∈ S,

aHb ⇐⇒ Q(a) = Q(b).

A nonempty subset A of S is called semiprime if for all x ∈ S such that x2 ∈ A
one has x ∈ A, and completely prime (resp. semiprimary) if for all x, y ∈ S such
that xy ∈ A one has x ∈ A or y ∈ A (resp. xn ∈ A or yn ∈ A for some n ∈ N). A
subsemigroup F of S is called a �lter of S if for any a, b ∈ S, ab ∈ F ⇒ a, b ∈ F .
Let N(a) be the �lter generated by {a}. De�ne an equivalence relation N on S
by: for a, b ∈ S,

aN b if N(a) = N(b).

The following lemma (proved in [9]) plays a crucial role in the main theorems
of this article.

Lemma 2.2. Let S be a semigroup. Then N is the least semilattice congruence
on S.

3. Semilattice of groups

In this section we characterize the semigroups which are semilattices (chains) of
groups.
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Theorem 3.1. The following conditions are equivalent on a semigroup S:

(1) S is a semilattice of groups;

(2) for all a, b ∈ S, ab, ba ∈ Q(a) and a ∈ Q(a2);

(3) for all a ∈ S, Q(a) is a semiprime ideal of S;

(4) every quasi-ideal of S is a semiprime ideal of S;

(5) for all a, b ∈ S, Q(ab) = Q(a) ∩Q(b);

(6) for all a ∈ S, N(a) = {x ∈ S|a ∈ Q(x)};

(7) for every nonempty family {Qλ|λ ∈M} of quasi-ideals of S,
⋂
λ∈MQλ is a

semiprime ideal of S;

(8) H = N is the least semilattice congruence of S such that each of its congru-
ence classes is a group.

Proof. (1) ⇒ (2). Let S be a semilattice L of groups Gα, (α ∈ L). Consider
a, b ∈ S. Then there are α, β ∈ L such that a ∈ Gα, b ∈ Gβ and so aba, ab, ba are
in GαGβ ⊆ Gαβ . Since Gαβ is a group, ab ∈ Q(aba) ⊆ Q(a). Similarly, ba ∈ Q(a).
Also a, a2 ∈ Gα implies that a ∈ Q(a2).

(2)⇒ (3). Let a ∈ S. Consider q ∈ Q(a) and s ∈ S. Then sq, qs ∈ Q(q) ⊆ Q(a)
implies that Q(a) is an ideal of S. Let u ∈ S be such that u2 ∈ Q(a). Then
u ∈ Q(u2) ⊆ Q(a). Thus Q(a) is a semiprime ideal of S.

(3)⇒ (4). Follows similarly.
(4) ⇒ (5). Let a, b ∈ S. Since a ∈ Q(a) is an ideal of S, so ab ∈ Q(a) and

similarly, ab ∈ Q(b). Then ab ∈ Q(a) ∩ Q(b) implies that Q(ab) ⊆ Q(a) ∩ Q(b).
Let x ∈ Q(a) ∩ Q(b). Then x ∈ R(a) implies that there exists s1 ∈ S such that
x = as1. Then x2 = (as1)x = a(s1x). Since Q(a) ∩ Q(b) is an ideal of S, so
s1x ∈ Q(a) ∩Q(b) and hence s1x ∈ R(b). Then s1x = bs2 for some s2 ∈ S. Then
x2 = abs2 which implies that x2 ∈ R(ab). Similarly, x2 ∈ L(ab). Thus x2 ∈ Q(ab)
which yields x ∈ Q(ab). Then Q(a)∩Q(b) ⊆ Q(ab) and hence Q(a)∩Q(b) = Q(ab).

(5) ⇒ (6). Let F = {x ∈ S | a ∈ Q(x)}. Consider x, y ∈ F . Then a ∈
Q(x) ∩Q(y) = Q(xy) implies that xy ∈ F . Thus F is a subsemigroup of S. If for
x, y ∈ S, xy ∈ F , then a ∈ Q(xy) = Q(x) ∩Q(y) implies that x, y ∈ F . Thus F is
a �lter of S.

Let T be a �lter of S containing a and u ∈ F . Then there exists s ∈ S such
that a = s1u. Then s1u ∈ T implies that u ∈ T . Hence F = N(a).

(6) ⇒ (7). Let Q =
⋂
λ∈MQλ. Then Q is a quasi-ideal of S. Let q ∈ Q and

s ∈ S. Now q ∈ N(qs) implies that qs ∈ Q(q) ⊆ Q. Similarly, sq ∈ Q. Let a2 ∈ Q.
Then a2 ∈ N(a) implies that a ∈ Q(a2) ⊆ Q. Thus Q is a semiprime ideal of S.

(7)⇒ (4). Obvious.
(6) ⇒ (8). Let a, b ∈ S. Then aHb implies that Q(a) = Q(b) and so a ∈ N(b)

and b ∈ N(a) . This implies that N(a) = N(b), i.e., aN b. Thus H ⊆ N . Similarly,
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N ⊆ H. Hence H = N is the least semilattice congruence on S. Then every H-
class is a group.

(8)⇒ (1). Obvious.

In the following theorem we characterize the semigroups which are chains of
groups.

Theorem 3.2. The following conditions are equivalent on a semigroup S:

(1) S is a chain of groups;

(2) for all a, b ∈ S, ab, ba ∈ Q(a); and a ∈ Q(ab) or b ∈ Q(ab);

(3) for all a ∈ S, Q(a) is a completely prime ideal of S;

(4) every quasi-ideal of S is a completely prime ideal of S;

(5) for all a, b ∈ S, Q(ab) = Q(a) ∩Q(b); and Q(a) ⊆ Q(b) or Q(b) ⊆ Q(a);

(6) for all a, b ∈ S, N(a) = {x ∈ S | a ∈ Q(x)} and N(ab) = N(a) ∪N(b);

(7) for every nonempty family {Qλ |λ ∈M} of quasi-ideals of S,
⋂
λ∈MQλ is a

completely prime ideal of S;

(8) H = N is the least chain congruence on S such that each of its congruence
classes is a group.

Proof. (1) ⇒ (2). Let S be a chain C of groups Gα(α ∈ C). Then the �rst part
follows from Theorem 3.1. For the second part, let a ∈ Gα, b ∈ Gβ , α, β ∈ C.
Since C is a chain, either αβ = α or αβ = β. If αβ = α, then a, ab ∈ Gα implies
that aHab and hence a ∈ Q(ab). Similarly, αβ = β implies that b ∈ Q(ab). Thus
either a ∈ Q(ab) or b ∈ Q(ab).

(2) ⇒ (3). Let a ∈ S. Then Q(a) is an ideal of S by Theorem 3.1. Consider
x, y ∈ S such that xy ∈ Q(a). Now x ∈ Q(xy) or y ∈ Q(xy) implies that x ∈ Q(a)
or y ∈ Q(a). Thus Q(a) is a semiprime ideal of S.

(3)⇒ (4). Follows similarly.
(4)⇒ (5). Let a, b ∈ S. Then Q(ab) = Q(a) ∩Q(b), by Theorem 3.1.
Again a ∈ Q(ab) or b ∈ Q(ab) implies that Q(a) ⊆ Q(ab) ⊆ Q(b) or Q(b) ⊆

Q(ab) ⊆ Q(a). Thus Q(a) ⊆ Q(b) or Q(b) ⊆ Q(a).
(5) ⇒ (6). Let a ∈ S. Then N(a) = {x ∈ S | a ∈ Q(x)}, by Theorem 3.1.

Let a, b ∈ S. Then, N(a) ∩ N(b) ⊆ N(ab). Let x ∈ N(ab). Then ab ∈ Q(x).
Now we have Q(ab) = Q(a) or Q(ab) = Q(b) which implies that Q(a) ⊆ Q(x) or
Q(b) ⊆ Q(x). Then x ∈ N(a) or x ∈ N(b). Thus N(ab) ⊆ N(a) or N(ab) ⊆ N(b).
Then N(ab) ⊆ N(a) ∪N(b). Hence N(ab) = N(a) ∪N(b).

(6)⇒ (7). Let Q =
⋂
λ∈MQλ. In view of Theorem 3.1, we are only to show that

Q is completely prime. For a, b ∈ S, if ab ∈ Q, then ab ∈ N(ab) = N(a) ∪ N(b)
implies that a ∈ Q(ab) ⊆ Q or b ∈ Q(ab) ⊆ Q, i.e., a ∈ Q or b ∈ Q. Thus Q is a
completely prime ideal of S.
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(7)⇒ (4). Obvious.
(6) ⇒ (8). In view of Theorem 3.1, we are only to show that N is a chain

congruence on S. Let a, b ∈ S. Then ab ∈ N(ab) = N(a) ∪N(b). Thus ab ∈ N(a)
or ab ∈ N(b), i.e., N(ab) ⊆ N(a) ⊆ N(a) ∪ N(b) = N(ab) or N(ab) ⊆ N(b) ⊆
N(a) ∪ N(b) = N(ab). Then N(ab) = N(a) or N(ab) = N(b). Then abNa or
abN b.

(8)⇒ (1). Obvious.

4. Semilattice of t-Archimedean semigroups

In this section we characterize the semigroups which are semilattices of t-Archimedean
semigroups by their quasi-ideals. Also in this section the semigroups which are
chains of t-Archimedean semigroups are characterized.

Let A be a nonempty subset of a semigroup S. Then the radical of A in S is
given by √

A = {x ∈ S | (∃n ∈ N) xn ∈ A}.

A semigroup S is called left (right) Archimedean if for each a ∈ S, S =
√
Sa,

(S =
√
aS) and t-Archimedean semigroup if it is both a left Archimedean semi-

group and a right Archimedean semigroup. Thus a semigroup S is t-Archimedean
if and only if for a, b ∈ S there exist n ∈ N and x1, x2 ∈ S such that bn = x1a and
bn = ax2.

A semigroup S is called a semilattice (chain) of t-Archimedean semigroups if
there exists a congruence ρ on S such that S/ρ is a semilattice (chain) and each
ρ-class is a t-Archimedean semigroup.

Let S be a semigroup. De�ne a binary relation σ on S by : for a, b ∈ S,

aσb⇐⇒ b ∈
√
SaS ⇐⇒ bn ∈ SaS, for some n ∈ N.

Then a3 ∈ SaS shows that a ∈
√
SaS, i.e., σ is re�exive. So the transitive closure

ρ = σ∗ is re�exive and transitive and therefore the symmetric relation η = ρ∩ρ−1
is an equivalence relation. Thus the equivalence relation η is the least semilattice
congruence on S.

Recall that for every a ∈ S, Q(a) = L(a)∩R(a). In general neither L(a) = Sa
nor R(a) = aS. Also, Sa ∩ aS is a quasi-ideal of S which may not contain a. But
we have the following lemma.

Lemma 4.1. Let S be a semigroup. Then
√
Q(a)=

√
Sa ∩ aS=

√
Sa ∩

√
aS for

all a ∈ S.

Lemma 4.2. Let S be a semigroup such that for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS.

Then

(1) for all a, b ∈ S, a ∈ Sb ∩ bS ⇒ for every r ∈ N there are n ∈ N, x ∈ S such
that an = b2

r

xb2
r

and hence a ∈
√
Q(b2r );
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(2) for all a, b ∈ S, a ∈
√
Q(b) implies that

√
Q(a) ⊆

√
Q(b);

(3) the least semilattice congruence η on S is given by: for all a, b ∈ S,

aηb if b ∈
√
Q(a) and a ∈

√
Q(b).

Proof. (1). Let a, b ∈ S with a ∈ Sb ∩ bS. Then there exist s1, s2 ∈ S such that
a = s1b = bs2. Also, there exist n ∈ N and u1, u2 ∈ S such that (bs1)

n = u1b and
(s2b)

n = bu2. Then an+1 = s1(bs1)
nb = s1u1b

2 and an+1 = b(s2b)
ns2 = b2u2s2.

Then a2(n+1) = b2u2s2s1u1b
2 implies that the result is true for r = 1. Let for

k ∈ N, there is p ∈ N and x ∈ S such that ap = b2
k

xb2
k

. Then proceeding as

above, we have q ∈ N and y ∈ S such that aq = b2
k+1

yb2
k+1

. Thus the result
follows by the principle of Mathematical induction.

The last part follows by Lemma 4.1.
(2). For a ∈

√
Q(b), there are n ∈ N and s1, s2 ∈ S such that an = s1b = bs2.

Let x ∈
√
Q(a). Then there exists m ∈ N such that xm ∈ Sa ∩ aS. Let r ∈ N

be such that 2r > n. Then, by (1), we �nd p ∈ N and u ∈ S such that xp =
a2

r

ua2
r

which implies that xp = ana2
r−nua2

r−nan = bs2a
2r−nua2

r−ns1b. Then
x ∈

√
Q(b), by the Lemma 4.1.

(3). Consider a ∈ S. Then x ∈
√
Q(a) implies that xn = s1a = as2 for

some n ∈ N and s1, s2 ∈ S. Then xn+n = s1a
2s2 implies that x ∈

√
SaS. Thus√

Q(a) ⊆
√
SaS. Let y ∈

√
SaS. Then there are m ∈ N and t1, t2 ∈ S such

that ym = t1at2. Again t1at2 ∈
√
St1a ⊆

√
Sa and t1at2 ∈

√
at2S ⊆

√
aS implies

that ym ∈
√
aS ∩

√
Sa =

√
Q(a) and so y ∈

√
Q(a), by the Lemma 4.1. Thus√

SaS ⊆
√
Q(a) and hence

√
Q(a) =

√
SaS.

Now for a, b ∈ S, aηb implies that there are c1, c2, . . . , cn, d1, d2, . . . , dm ∈ S
such that aσc1, c1σc2, . . . , cn−1σcn, cnσb and bσd1, d1σd2, . . . , dm−1σdm, dmσa.
These give c1 ∈

√
Q(a), c2 ∈

√
Q(c1), . . . , b ∈

√
Q(cn) and d1 ∈

√
Q(b), d2 ∈√

Q(d1), . . . , a ∈
√
Q(dm) so that b ∈

√
Q(a) and a ∈

√
Q(b), by (2).

Recall that for a, b ∈ S,

aHb ⇐⇒ Q(a) = Q(b).

Let us de�ne
√
H, the radical of H on S by: for a, b ∈ S,

a
√
Hb ⇐⇒

√
Q(a) =

√
Q(b).

Now we have the main theorem of this section:

Theorem 4.3. The following conditions are equivalent on a semigroup S:

(1) S is a t-Putcha semigroup;

(2) for all a, b ∈ S, b ∈ SaS implies b ∈
√
Q(a);
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(3) for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS;

(4)
√
Q is an ideal of S for every quasi-ideal Q of S;

(5)
√
Q(a) is an ideal of S, for all a ∈ S;

(6) N(a) = {x ∈ S | a ∈
√
Q(x)} for all a ∈ S;

(7) N =
√
H is the least semilattice congruence and the congruence classes are

t-Archimedean semigroups.

Proof. (1) ⇒ (2). Let ρ be a semilattice congruence on S such that the ρ-classes
Tα, α ∈ S/ρ are t-Archimedean semigroups. Let a, b ∈ S be such that b ∈ SaS.
Then there are s1, s2 ∈ such that b = s1as2. Now s1as2ρas1s2ρs1s2a implies that
b, as1s2, s1s2a ∈ Tα for some α ∈ S/ρ. Since Tα is a t-Archimedean semigroup,
there exist n ∈ N and u1, u2 ∈ Tα such that bn = as1s2u1 and b

n = u2s1s2a. Thus
b ∈

√
Q(a), by Lemma 4.1.

(2) ⇒ (3). Let a, b ∈ S. Now (ab)2 = abab implies (ab)2 ∈ SaS ∩ SbS. Then
(ab)2 ∈

√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS and hence ab ∈

√
Sa ∩

√
bS.

(3)⇒ (4). Let Q be a quasi-ideal of S and let u ∈
√
Q and c ∈ S. Then un = q

for some n ∈ N, q ∈ Q. Also by (3), there is m ∈ N such that (uc)m ∈ Su and
(uc)m+1 ∈ uSu. Consider r ∈ N such that 2r > n. Then by Lemma 4.2, there are
m1 ∈ N and x ∈ S such that (uc)m1 = u2

r

xu2
r

= qu2
r−nxu2

r−nq which implies
that uc ∈

√
qS ∩ Sq =

√
Q(q) ⊆

√
Q, by Lemma 4.1. Similarly, cu ∈

√
Q. Thus√

Q is an ideal of S.
(4)⇒ (5). Trivial.
(5) ⇒ (3). Let a, b ∈ S. Then

√
Q(a) and

√
Q(b) are ideals of S. Then

ab ∈
√
Q(a) ∩

√
Q(b) and hence ab ∈

√
Sa ∩

√
bS.

(3) ⇒ (6). Let a ∈ S and F = {x ∈ S|a ∈
√
Q(x)}. Consider y, z ∈ F .

Then there exist n ∈ N, u1, u2 ∈ S such that an = u1z and an = yu2. Also,
by (3), there are m1,m2 ∈ N, w1, w2 ∈ S such that (u2u1zy)

m1 = zyw1 and
(zyu2u1)

m2 = w1zy. Now a2n = yu2u1z implies a2n(m1+1) = (yu2u1z)
m1+1 =

y(u2u1zy)
m1u2u1z = (yz)yw1u2u1z. Also, a2n(m2+1) = yu2u1zw2z(yz). Thus

yz ∈ F , by Lemma 4.1; and hence F is a subsemigroup of S.
Let y, z ∈ S be such that yz ∈ F . Then a ∈

√
Q(yz) =

√
yzS ∩

√
Syz ⊆√

yS ∩
√
Sz. Now, by (3), yz ∈

√
Sy, and so yz ∈

√
yS ∩

√
Sy =

√
Q(y), by

Lemma 4.1. Then
√
Q(yz) ⊆

√
Q(y), by Lemma 4.2. Thus a ∈

√
Q(y) and hence

y ∈ F . Similarly, z ∈ F . Thus F is a �lter that contains a. Let T be a �lter of
S containing a and y ∈ F . Then am = sy for some m ∈ N, s ∈ S. Now am ∈ T
implies sy ∈ T and hence y ∈ T . Thus F = N(a).

(6)⇒ (7). Consider a, b ∈ S. Then ab ∈ N(ab) implies that a, b ∈ N(ab). Then,
by (6), ab ∈

√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS. If aN b then N(a) = N(b) implies

that b ∈
√
Q(a) and a ∈

√
Q(b). So,

√
Q(b) ⊆

√
Q(a) and

√
Q(a) ⊆

√
Q(b),

by Lemma 4.2. Thus a
√
Hb and hence N ⊆

√
H. Similarly,

√
H ⊆ N . Hence

N =
√
H is the least semilattice congruence.
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Let T be an N -class in S. Since N is a semilattice congruence, T is a sub-
semigroup. Consider a, b ∈ T . Then a2N b implies that N(a2) = N(b); and by (6)
we have b ∈

√
Q(a2). Thus there are n ∈ N and s1, s2 ∈ S such that bn = s1a

2

and bn = a2s2 which implies that bn+1 = bs1a
2 and bn+1 = a2s2b. Since N is

a semilattice congruence, t1 = bs1aN bs1a2N bn+1N b and t2 = as2bN b which im-
plies that t1 = bs1a ∈ T and t2 = as2b ∈ T . Thus b ∈

√
Ta ∩

√
aT and hence T is

a t-Archimedean semigroup.
(7)⇒ (1). Follows directly.

Theorem 4.4. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups.

(2) S is a t-Putcha semigroup and for all a, b ∈ S, b ∈
√
Q(a) or a ∈

√
Q(b).

(3) For all a, b ∈ S, N(a) = {x ∈ S | a ∈
√
Q(x)} and N(ab) = N(a) ∪N(b).

(4) N =
√
H is the least chain congruence on S such that each of its congruence

classes is t-Archimedean.

Proof. (1)⇒ (2). Let S be a chain C of t-Archimedean semigroups Sα(α ∈ C). Let
a, b ∈ S. Then a ∈ Sα and a ∈ Sβ for some α, β ∈ C. Since C is a chain, either
αβ = α or αβ = β. If αβ = α, then a, ab ∈ Sα; and since Sα is a t-Archimedean
semigroup, there exist n ∈ N and x1, x2 ∈ Sα such that an = x1ab and a

n = abx2.
Now, by Theorem 4.3, since S is a semilattice of t-Archimedean semigroup, there
are m ∈ N and s ∈ S such that (abx2)

m = bx2s. Then we have anm = s1b and
anm = bx2s for some s1 ∈ S and hence a ∈

√
Q(b), by Lemma 4.1. If αβ = β,

then b, ab ∈ Sβ and similarly as above we have b ∈
√
Q(a).

(2) ⇒ (3). By Theorem 4.3, we have N(a) = {x ∈ S | a ∈
√
Q(x)}, since S

is a t-Putcha semigroup. Let a, b ∈ S. Then ab ∈ N(ab) implies that a ∈ N(ab)
and b ∈ N(ab), and hence N(a) ∪ N(b) ⊆ N(ab). Again, either a ∈

√
Q(b) or

b ∈
√
Q(a). If a ∈

√
Q(b), then there are n ∈ N and s ∈ S such that an = bs

and so an+1 = abs. Since S is a semilattice of t-Archimedean semigroups, there
exist m ∈ N and t ∈ S such that (abs)m = tab, by Theorem 4.3. Then we have
a(n+1)m = tab and a(n+1)m = abt1 for some t1 ∈ S. Then a ∈

√
Q(ab) which

implies that ab ∈ N(a). Thus N(ab) ⊆ N(a). If b ∈
√
Q(a), then similarly we

have N(ab) ⊆ N(b), which shows that N(ab) ⊆ N(a) ∪ N(b). Hence N(ab) =
N(a) ∪N(b).

(3) ⇒ (4). It follows by Theorem 4.3 that N =
√
H is the least semilattice

congruence on S and each N -class is a t-Archimedean semigroup.
Now consider a, b ∈ S. Then ab ∈ N(a) ∪ N(b) shows that ab ∈ N(a) or

ab ∈ N(b). Again N(a) ⊆ N(ab) and N(b) ⊆ N(ab). Thus either N(ab) ⊆ N(a) ⊆
N(ab) or N(ab) ⊆ N(b) ⊆ N(ab). i.e., either aNab or bNab. Hence N is a chain
congruence on S. Since every chain is a semilattice and N is the least semilattice
congruence, it is the least chain congruence on S.

(4)⇒ (1). Trivial.
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Theorem 4.5. The following conditions on a semigroup S are equivalent:

(1) S is a chain of t-Archimedean semigroups;

(2)
√
Q is a completely prime ideal of S for every quasi-ideal Q of S;

(3)
√
Q(a) is a completely prime ideal of S for every a ∈ S;

(4)
√
Q(ab) =

√
Q(a) ∩

√
Q(b) for all a, b ∈ S and every quasi-ideal of S is

semiprimary .

Proof. (1)⇒ (2). Let S be a chain C of t-archimedean semigroups {Sα |α ∈ C}. We
take a quasi-ideal Q of S. Then

√
Q is an ideal of S, by Theorem 4.3. Let x, y ∈ S

be such that xy ∈
√
Q. Then there is n ∈ N such that (xy)n = u ∈ Q. Suppose

x ∈ Sα and y ∈ Sβ ,α, β ∈ C . Since C is a chain, either αβ = α or αβ = β.

If αβ = α, then x, u ∈ Sα. Since Sα is t-Archimedean, so x ∈
√
Q(u) ⊆

√
Q.

Similarly, if αβ = β, then y ∈
√
Q. Hence

√
Q is a completely prime ideal of S.

(2)⇒ (3). Obvious.
(3) ⇒ (4). Let a, b ∈ S. Then

√
Q(a) and

√
Q(b) are ideals of S and hence

ab ∈
√
Q(a) ∩

√
Q(b). This implies

√
Q(ab) ⊆

√
Q(a) ∩

√
Q(b), by Lemma 4.2

and Theorem 4.3. Since
√
Q(ab) is completely prime, so a, b ∈

√
Q(ab) which

implies
√
Q(a) ∩

√
Q(b) ⊆

√
Q(ab). Thus

√
Q(ab) =

√
Q(a) ∩

√
Q(b).

Let Q be a quasi-ideal of S and x, y ∈ S be such that xy ∈ Q. Then xy ∈√
Q(xy) implies that x ∈

√
Q(xy) or y ∈

√
Q(xy). Thus xn ∈

√
Q(xy) ⊆ Q or

yn ∈
√
Q(xy) ⊆ Q for some n ∈ N. Hence Q is semiprimary.

(4) ⇒ (1). Let a, b ∈ S. Then ab ∈
√
Q(a) ∩

√
Q(b) ⊆

√
Sa ∩

√
bS. Then

by Theorem 4.3, S is a t-Putcha semigroup. Since
√
Q(ab) is a semiprimary,

ab ∈ Q(ab) implies that a ∈
√
Q(ab) =

√
Q(a)∩

√
Q(b) ⊆

√
Q(b) or b ∈

√
Q(ab) ⊆√

Q(a). Thus S is a chain of t-Archimedean semigroups by Theorem 4.4.
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