Characterizations of Clifford semigroups and *t*-Putcha semigroups by their quasi-ideals

Anjan Kumar Bhuniya and Kanchan Jana

Abstract. There are bi-ideals of semigroups which are not quasi-ideals. In spite of this fact, here we show that a semigroup S is quasi-simple if and only if it is bi-simple, equivalently *t*-simple. Main results of this article are several equivalent characterizations of the Clifford semigroups and the semigroups which are semilattices of *t*-Archimedean semigroups by their quasi-ideals. A semigroup S is a Clifford semigroup if and only if every quasi-ideal of S is a semiprime ideal, whereas S is a semilattice of *t*-Archimedean semigroups if and only if \sqrt{Q} is an ideal for every quasi-ideal Q of S.

1. Introduction

In 1952, R.A. Good and D.R. Hughes [3] first defined the notion of bi-ideals of a semigroup. The notion of quasi-ideals in rings and semigroups was introduced and developed by Otto Steinfeld [12], [13], [14], [15]. Different classes of semigroups has been characterized by using bi-ideals and quasi-ideals by many authors [7], [8], [9], [10]. Later on different classes of semigroups has been characterized by using minimal and maximal left-ideals, bi-ideals and quasi-ideals by many authors [1], [17], [4], [2], [9], [6]. Here we characterize the Clifford semigroups and the semigroups which are semilattices of t-Archimedean semigroups by their quasi-ideals.

There are several characterizations for a semigroup S equivalent to be a Clifford semigroup and t-Putcha semigroup by their bi-ideals. Every quasi-ideal of a semigroup is a bi-ideal but the converse is not true. So if a semigroup S is bi-simple or equivalently t-simple then it is quasi-simple. Here we have a strange observation that every quasi-simple semigroup is also t-simple and thus quasi-simplicity and t-simplicity becomes equivalent in semigroups. Therefore we hope that it may turns out to be the case that the semigroups which are semilattices of groups or t-Archimedean semigroups will be characterized by their quasi-ideals. We show that a semigroup S is a semilattice of t-Archimedean semigroups.

Some elementary results together with prerequisites have been discussed in Section 2. In Section 3 we have studied semilattice of quasi-simple semigroups.

²⁰¹⁰ Mathematics Subject Classification: 20M12, 20M17 Keywords: ideals; quasi-ideals; simple; quasi-simple.

2. Preliminaries

A nonempty subset L of a semigroup S is called a *left ideal* of S if $SL \subseteq L$. The *right ideals* are defined dually. A subset I of S is called an *ideal* of S if it is both a left and a right ideal of S. For an element $a \in S$ the *principal left ideal* (*right ideal*) of S generated by $\{a\}$ is given by $Sa \cup \{a\}$ ($aS \cup \{a\}$) and are denoted by L(a) and R(a) respectively. A semigroup S is called *simple* (*left-simple, right-simple*) if it does not contain any proper ideal (left-ideal, right-ideal), and S is called *t-simple* if it is both left simple and right simple.

A nonempty subset Q is called a *quasi-ideal* of S if $QS \cap SQ \subseteq Q$. It follows that every quasi-ideal Q of S is a subsemigroup. Every nonempty intersection of a left ideal and a right ideal is a quasi ideal of S. Suppose Q is a quasi-ideal of S. Then $L = SQ \cup Q$ is a left ideal and $R = QS \cup Q$ is a right ideal of S such that $Q = L \cap R$. Thus a nonempty subset Q of S is a quasi-ideal if and only if it is an intersection of a left ideal and a right ideal. For $a \in S$, let Q(a) be the quasi-ideal generated by $\{a\}$.

A semigroup S is called *quasi-simple* if it has no proper quasi-ideal.

The Green's relations \mathcal{L} , \mathcal{R} and \mathcal{H} on a semigroup S are defined by, for $a, b \in S$,

 $a\mathcal{L}b$ if L(a) = L(b), $a\mathcal{R}b$ if R(a) = R(b) and $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$.

Now we have the following theorem (cf. [9]).

Theorem 2.1. Let S be a semigroup. Then \mathcal{H} can be given as follows: for $a, b \in S$,

$$a\mathcal{H}b \iff Q(a) = Q(b).$$

A nonempty subset A of S is called *semiprime* if for all $x \in S$ such that $x^2 \in A$ one has $x \in A$, and *completely prime* (resp. *semiprimary*) if for all $x, y \in S$ such that $xy \in A$ one has $x \in A$ or $y \in A$ (resp. $x^n \in A$ or $y^n \in A$ for some $n \in \mathbb{N}$). A subsemigroup F of S is called a *filter* of S if for any $a, b \in S$, $ab \in F \Rightarrow a, b \in F$. Let N(a) be the filter generated by $\{a\}$. Define an equivalence relation \mathcal{N} on S by: for $a, b \in S$,

$$a\mathcal{N}b$$
 if $N(a) = N(b)$.

The following lemma (proved in [9]) plays a crucial role in the main theorems of this article.

Lemma 2.2. Let S be a semigroup. Then \mathcal{N} is the least semilattice congruence on S.

3. Semilattice of groups

In this section we characterize the semigroups which are semilattices (chains) of groups.

Theorem 3.1. The following conditions are equivalent on a semigroup S:

- (1) S is a semilattice of groups;
- (2) for all $a, b \in S$, $ab, ba \in Q(a)$ and $a \in Q(a^2)$;
- (3) for all $a \in S$, Q(a) is a semiprime ideal of S;
- (4) every quasi-ideal of S is a semiprime ideal of S;
- (5) for all $a, b \in S$, $Q(ab) = Q(a) \cap Q(b)$;
- (6) for all $a \in S$, $N(a) = \{x \in S | a \in Q(x)\};$
- (7) for every nonempty family $\{Q_{\lambda}|\lambda \in \Delta\}$ of quasi-ideals of S, $\bigcap_{\lambda \in \Delta} Q_{\lambda}$ is a semiprime ideal of S;
- (8) $\mathcal{H} = \mathcal{N}$ is the least semilattice congruence of S such that each of its congruence classes is a group.

Proof. (1) \Rightarrow (2). Let *S* be a semilattice *L* of groups G_{α} , $(\alpha \in L)$. Consider $a, b \in S$. Then there are $\alpha, \beta \in L$ such that $a \in G_{\alpha}$, $b \in G_{\beta}$ and so aba, ab, ba are in $G_{\alpha}G_{\beta} \subseteq G_{\alpha\beta}$. Since $G_{\alpha\beta}$ is a group, $ab \in Q(aba) \subseteq Q(a)$. Similarly, $ba \in Q(a)$. Also $a, a^2 \in G_{\alpha}$ implies that $a \in Q(a^2)$.

 $(2) \Rightarrow (3)$. Let $a \in S$. Consider $q \in Q(a)$ and $s \in S$. Then $sq, qs \in Q(q) \subseteq Q(a)$ implies that Q(a) is an ideal of S. Let $u \in S$ be such that $u^2 \in Q(a)$. Then $u \in Q(u^2) \subseteq Q(a)$. Thus Q(a) is a semiprime ideal of S.

 $(3) \Rightarrow (4)$. Follows similarly.

 $(4) \Rightarrow (5).$ Let $a, b \in S$. Since $a \in Q(a)$ is an ideal of S, so $ab \in Q(a)$ and similarly, $ab \in Q(b)$. Then $ab \in Q(a) \cap Q(b)$ implies that $Q(ab) \subseteq Q(a) \cap Q(b)$. Let $x \in Q(a) \cap Q(b)$. Then $x \in R(a)$ implies that there exists $s_1 \in S$ such that $x = as_1$. Then $x^2 = (as_1)x = a(s_1x)$. Since $Q(a) \cap Q(b)$ is an ideal of S, so $s_1x \in Q(a) \cap Q(b)$ and hence $s_1x \in R(b)$. Then $s_1x = bs_2$ for some $s_2 \in S$. Then $x^2 = abs_2$ which implies that $x^2 \in R(ab)$. Similarly, $x^2 \in L(ab)$. Thus $x^2 \in Q(ab)$ which yields $x \in Q(ab)$. Then $Q(a) \cap Q(b) \subseteq Q(ab)$ and hence $Q(a) \cap Q(b) = Q(ab)$.

(5) \Rightarrow (6). Let $F = \{x \in S \mid a \in Q(x)\}$. Consider $x, y \in F$. Then $a \in Q(x) \cap Q(y) = Q(xy)$ implies that $xy \in F$. Thus F is a subsemigroup of S. If for $x, y \in S, xy \in F$, then $a \in Q(xy) = Q(x) \cap Q(y)$ implies that $x, y \in F$. Thus F is a filter of S.

Let T be a filter of S containing a and $u \in F$. Then there exists $s \in S$ such that $a = s_1 u$. Then $s_1 u \in T$ implies that $u \in T$. Hence F = N(a).

(6) \Rightarrow (7). Let $Q = \bigcap_{\lambda \in \Delta} Q_{\lambda}$. Then Q is a quasi-ideal of S. Let $q \in Q$ and $s \in S$. Now $q \in N(qs)$ implies that $qs \in Q(q) \subseteq Q$. Similarly, $sq \in Q$. Let $a^2 \in Q$. Then $a^2 \in N(a)$ implies that $a \in Q(a^2) \subseteq Q$. Thus Q is a semiprime ideal of S.

 $(7) \Rightarrow (4)$. Obvious.

(6) \Rightarrow (8). Let $a, b \in S$. Then $a\mathcal{H}b$ implies that Q(a) = Q(b) and so $a \in N(b)$ and $b \in N(a)$. This implies that N(a) = N(b), i.e., $a\mathcal{N}b$. Thus $\mathcal{H} \subseteq \mathcal{N}$. Similarly, $\mathcal{N} \subseteq \mathcal{H}$. Hence $\mathcal{H} = \mathcal{N}$ is the least semilattice congruence on S. Then every \mathcal{H} class is a group.

 $(8) \Rightarrow (1)$. Obvious.

In the following theorem we characterize the semigroups which are chains of groups.

Theorem 3.2. The following conditions are equivalent on a semigroup S:

- (1) S is a chain of groups;
- (2) for all $a, b \in S$, $ab, ba \in Q(a)$; and $a \in Q(ab)$ or $b \in Q(ab)$;
- (3) for all $a \in S$, Q(a) is a completely prime ideal of S;
- (4) every quasi-ideal of S is a completely prime ideal of S;
- (5) for all $a, b \in S$, $Q(ab) = Q(a) \cap Q(b)$; and $Q(a) \subseteq Q(b)$ or $Q(b) \subseteq Q(a)$;
- (6) for all $a, b \in S$, $N(a) = \{x \in S \mid a \in Q(x)\}$ and $N(ab) = N(a) \cup N(b)$;
- (7) for every nonempty family $\{Q_{\lambda} \mid \lambda \in \Delta\}$ of quasi-ideals of S, $\bigcap_{\lambda \in \Delta} Q_{\lambda}$ is a completely prime ideal of S;
- (8) $\mathcal{H} = \mathcal{N}$ is the least chain congruence on S such that each of its congruence classes is a group.

Proof. (1) \Rightarrow (2). Let S be a chain C of groups $G_{\alpha}(\alpha \in C)$. Then the first part follows from Theorem 3.1. For the second part, let $a \in G_{\alpha}, b \in G_{\beta}, \alpha, \beta \in \mathcal{C}$. Since C is a chain, either $\alpha\beta = \alpha$ or $\alpha\beta = \beta$. If $\alpha\beta = \alpha$, then $a, ab \in G_{\alpha}$ implies that $a\mathcal{H}ab$ and hence $a \in Q(ab)$. Similarly, $\alpha\beta = \beta$ implies that $b \in Q(ab)$. Thus either $a \in Q(ab)$ or $b \in Q(ab)$.

 $(2) \Rightarrow (3)$. Let $a \in S$. Then Q(a) is an ideal of S by Theorem 3.1. Consider $x, y \in S$ such that $xy \in Q(a)$. Now $x \in Q(xy)$ or $y \in Q(xy)$ implies that $x \in Q(a)$ or $y \in Q(a)$. Thus Q(a) is a semiprime ideal of S.

 $(3) \Rightarrow (4)$. Follows similarly.

 $(4) \Rightarrow (5)$. Let $a, b \in S$. Then $Q(ab) = Q(a) \cap Q(b)$, by Theorem 3.1.

Again $a \in Q(ab)$ or $b \in Q(ab)$ implies that $Q(a) \subseteq Q(ab) \subseteq Q(b)$ or $Q(b) \subseteq$ $Q(ab) \subseteq Q(a)$. Thus $Q(a) \subseteq Q(b)$ or $Q(b) \subseteq Q(a)$.

 $(5) \Rightarrow (6)$. Let $a \in S$. Then $N(a) = \{x \in S \mid a \in Q(x)\}$, by Theorem 3.1. Let $a, b \in S$. Then, $N(a) \cap N(b) \subseteq N(ab)$. Let $x \in N(ab)$. Then $ab \in Q(x)$. Now we have Q(ab) = Q(a) or Q(ab) = Q(b) which implies that $Q(a) \subseteq Q(x)$ or $Q(b) \subseteq Q(x)$. Then $x \in N(a)$ or $x \in N(b)$. Thus $N(ab) \subseteq N(a)$ or $N(ab) \subseteq N(b)$. Then $N(ab) \subseteq N(a) \cup N(b)$. Hence $N(ab) = N(a) \cup N(b)$.

(6) \Rightarrow (7). Let $Q = \bigcap_{\lambda \in \Delta} Q_{\lambda}$. In view of Theorem 3.1, we are only to show that Q is completely prime. For $a, b \in S$, if $ab \in Q$, then $ab \in N(ab) = N(a) \cup N(b)$ implies that $a \in Q(ab) \subseteq Q$ or $b \in Q(ab) \subseteq Q$, i.e., $a \in Q$ or $b \in Q$. Thus Q is a completely prime ideal of S.

 $(7) \Rightarrow (4)$. Obvious.

 $(6) \Rightarrow (8)$. In view of Theorem 3.1, we are only to show that \mathcal{N} is a chain congruence on S. Let $a, b \in S$. Then $ab \in N(ab) = N(a) \cup N(b)$. Thus $ab \in N(a)$ or $ab \in N(b)$, i.e., $N(ab) \subseteq N(a) \subseteq N(a) \cup N(b) = N(ab)$ or $N(ab) \subseteq N(b) \subseteq N(a) \cup N(b) = N(ab)$. Then N(ab) = N(a) or N(ab) = N(b). Then $ab\mathcal{N}a$ or $ab\mathcal{N}b$.

 $(8) \Rightarrow (1)$. Obvious.

4. Semilattice of *t*-Archimedean semigroups

In this section we characterize the semigroups which are semilattices of *t*-Archimedean semigroups by their quasi-ideals. Also in this section the semigroups which are chains of *t*-Archimedean semigroups are characterized.

Let A be a nonempty subset of a semigroup S. Then the *radical of* A in S is given by

$$\sqrt{A} = \{ x \in S \mid (\exists n \in \mathbb{N}) \ x^n \in A \}.$$

A semigroup S is called *left (right)* Archimedean if for each $a \in S$, $S = \sqrt{Sa}$, $(S = \sqrt{aS})$ and t-Archimedean semigroup if it is both a left Archimedean semigroup and a right Archimedean semigroup. Thus a semigroup S is t-Archimedean if and only if for $a, b \in S$ there exist $n \in \mathbb{N}$ and $x_1, x_2 \in S$ such that $b^n = x_1 a$ and $b^n = ax_2$.

A semigroup S is called a *semilattice* (*chain*) of *t*-Archimedean semigroups if there exists a congruence ρ on S such that S/ρ is a semilattice (chain) and each ρ -class is a t-Archimedean semigroup.

Let S be a semigroup. Define a binary relation σ on S by : for $a, b \in S$,

$$a\sigma b \iff b \in \sqrt{SaS} \iff b^n \in SaS$$
, for some $n \in \mathbb{N}$.

Then $a^3 \in SaS$ shows that $a \in \sqrt{SaS}$, i.e., σ is reflexive. So the transitive closure $\rho = \sigma^*$ is reflexive and transitive and therefore the symmetric relation $\eta = \rho \cap \rho^{-1}$ is an equivalence relation. Thus the equivalence relation η is the least semilattice congruence on S.

Recall that for every $a \in S$, $Q(a) = L(a) \cap R(a)$. In general neither L(a) = Sa nor R(a) = aS. Also, $Sa \cap aS$ is a quasi-ideal of S which may not contain a. But we have the following lemma.

Lemma 4.1. Let S be a semigroup. Then $\sqrt{Q(a)} = \sqrt{Sa \cap aS} = \sqrt{Sa} \cap \sqrt{aS}$ for all $a \in S$.

Lemma 4.2. Let S be a semigroup such that for all $a, b \in S, ab \in \sqrt{Sa} \cap \sqrt{bS}$. Then

(1) for all $a, b \in S, a \in Sb \cap bS \Rightarrow$ for every $r \in \mathbb{N}$ there are $n \in \mathbb{N}, x \in S$ such that $a^n = b^{2^r} x b^{2^r}$ and hence $a \in \sqrt{Q(b^{2^r})}$;

- (2) for all $a, b \in S, a \in \sqrt{Q(b)}$ implies that $\sqrt{Q(a)} \subseteq \sqrt{Q(b)}$;
- (3) the least semilattice congruence η on S is given by: for all $a, b \in S$,

 $a\eta b$ if $b \in \sqrt{Q(a)}$ and $a \in \sqrt{Q(b)}$.

Proof. (1). Let $a, b \in S$ with $a \in Sb \cap bS$. Then there exist $s_1, s_2 \in S$ such that $a = s_1b = bs_2$. Also, there exist $n \in \mathbb{N}$ and $u_1, u_2 \in S$ such that $(bs_1)^n = u_1b$ and $(s_2b)^n = bu_2$. Then $a^{n+1} = s_1(bs_1)^n b = s_1u_1b^2$ and $a^{n+1} = b(s_2b)^n s_2 = b^2u_2s_2$. Then $a^{2(n+1)} = b^2u_2s_2s_1u_1b^2$ implies that the result is true for r = 1. Let for $k \in \mathbb{N}$, there is $p \in \mathbb{N}$ and $x \in S$ such that $a^p = b^{2^k}xb^{2^k}$. Then proceeding as above, we have $q \in \mathbb{N}$ and $y \in S$ such that $a^q = b^{2^{k+1}}yb^{2^{k+1}}$. Thus the result follows by the principle of Mathematical induction.

The last part follows by Lemma 4.1.

(2). For $a \in \sqrt{Q(b)}$, there are $n \in \mathbb{N}$ and $s_1, s_2 \in S$ such that $a^n = s_1 b = bs_2$. Let $x \in \sqrt{Q(a)}$. Then there exists $m \in \mathbb{N}$ such that $x^m \in Sa \cap aS$. Let $r \in \mathbb{N}$ be such that $2^r > n$. Then, by (1), we find $p \in \mathbb{N}$ and $u \in S$ such that $x^p = a^{2^r}ua^{2^r}$ which implies that $x^p = a^n a^{2^r - n}ua^{2^r - n}a^n = bs_2a^{2^r - n}ua^{2^r - n}s_1b$. Then $x \in \sqrt{Q(b)}$, by the Lemma 4.1.

(3). Consider $a \in S$. Then $x \in \sqrt{Q(a)}$ implies that $x^n = s_1 a = as_2$ for some $n \in \mathbb{N}$ and $s_1, s_2 \in S$. Then $x^{n+n} = s_1 a^2 s_2$ implies that $x \in \sqrt{SaS}$. Thus $\sqrt{Q(a)} \subseteq \sqrt{SaS}$. Let $y \in \sqrt{SaS}$. Then there are $m \in \mathbb{N}$ and $t_1, t_2 \in S$ such that $y^m = t_1 a t_2$. Again $t_1 a t_2 \in \sqrt{St_1 a} \subseteq \sqrt{Sa}$ and $t_1 a t_2 \in \sqrt{at_2 S} \subseteq \sqrt{aS}$ implies that $y^m \in \sqrt{aS} \cap \sqrt{Sa} = \sqrt{Q(a)}$ and so $y \in \sqrt{Q(a)}$, by the Lemma 4.1. Thus $\sqrt{SaS} \subseteq \sqrt{Q(a)}$ and hence $\sqrt{Q(a)} = \sqrt{SaS}$.

Now for $a, b \in S$, $a\eta b$ implies that there are $c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_m \in S$ such that $a\sigma c_1, c_1\sigma c_2, \ldots, c_{n-1}\sigma c_n, c_n\sigma b$ and $b\sigma d_1, d_1\sigma d_2, \ldots, d_{m-1}\sigma d_m, d_m\sigma a$. These give $c_1 \in \sqrt{Q(a)}, c_2 \in \sqrt{Q(c_1)}, \ldots, b \in \sqrt{Q(c_n)}$ and $d_1 \in \sqrt{Q(b)}, d_2 \in \sqrt{Q(d_1)}, \ldots, a \in \sqrt{Q(d_m)}$ so that $b \in \sqrt{Q(a)}$ and $a \in \sqrt{Q(b)}$, by (2).

Recall that for $a, b \in S$,

$$a\mathcal{H}b \iff Q(a) = Q(b).$$

Let us define $\sqrt{\mathcal{H}}$, the radical of \mathcal{H} on S by: for $a, b \in S$,

$$a\sqrt{\mathcal{H}}b \iff \sqrt{Q(a)} = \sqrt{Q(b)}.$$

Now we have the main theorem of this section:

Theorem 4.3. The following conditions are equivalent on a semigroup S:

(1) S is a t-Putcha semigroup;

(2) for all $a, b \in S$, $b \in SaS$ implies $b \in \sqrt{Q(a)}$;

- (3) for all $a, b \in S$, $ab \in \sqrt{Sa} \cap \sqrt{bS}$;
- (4) \sqrt{Q} is an ideal of S for every quasi-ideal Q of S;
- (5) $\sqrt{Q(a)}$ is an ideal of S, for all $a \in S$;
- (6) $N(a) = \{x \in S \mid a \in \sqrt{Q(x)}\}$ for all $a \in S$;
- (7) $\mathcal{N} = \sqrt{\mathcal{H}}$ is the least semilattice congruence and the congruence classes are *t*-Archimedean semigroups.

Proof. (1) \Rightarrow (2). Let ρ be a semilattice congruence on S such that the ρ -classes $T_{\alpha}, \alpha \in S/\rho$ are t-Archimedean semigroups. Let $a, b \in S$ be such that $b \in SaS$. Then there are $s_1, s_2 \in$ such that $b = s_1as_2$. Now $s_1as_2\rho as_1s_2\rho s_1s_2a$ implies that $b, as_1s_2, s_1s_2a \in T_{\alpha}$ for some $\alpha \in S/\rho$. Since T_{α} is a t-Archimedean semigroup, there exist $n \in \mathbb{N}$ and $u_1, u_2 \in T_{\alpha}$ such that $b^n = as_1s_2u_1$ and $b^n = u_2s_1s_2a$. Thus $b \in \sqrt{Q(a)}$, by Lemma 4.1.

(2) \Rightarrow (3). Let $a, b \in S$. Now $(ab)^2 = abab$ implies $(ab)^2 \in SaS \cap SbS$. Then $(ab)^2 \in \sqrt{Q(a)} \cap \sqrt{Q(b)} \subseteq \sqrt{Sa} \cap \sqrt{bS}$ and hence $ab \in \sqrt{Sa} \cap \sqrt{bS}$.

 $(3) \Rightarrow (4)$. Let Q be a quasi-ideal of S and let $u \in \sqrt{Q}$ and $c \in S$. Then $u^n = q$ for some $n \in \mathbb{N}, q \in Q$. Also by (3), there is $m \in \mathbb{N}$ such that $(uc)^m \in Su$ and $(uc)^{m+1} \in uSu$. Consider $r \in \mathbb{N}$ such that $2^r > n$. Then by Lemma 4.2, there are $m_1 \in \mathbb{N}$ and $x \in S$ such that $(uc)^{m_1} = u^2 x u^{2^r} = q u^{2^r - n} x u^{2^r - n} q$ which implies that $uc \in \sqrt{qS \cap Sq} = \sqrt{Q(q)} \subseteq \sqrt{Q}$, by Lemma 4.1. Similarly, $cu \in \sqrt{Q}$. Thus \sqrt{Q} is an ideal of S.

 $(4) \Rightarrow (5)$. Trivial.

 $(5) \Rightarrow (3)$. Let $a, b \in S$. Then $\sqrt{Q(a)}$ and $\sqrt{Q(b)}$ are ideals of S. Then $ab \in \sqrt{Q(a)} \cap \sqrt{Q(b)}$ and hence $ab \in \sqrt{Sa} \cap \sqrt{bS}$.

(3) \Rightarrow (6). Let $a \in S$ and $F = \{x \in S | a \in \sqrt{Q(x)}\}$. Consider $y, z \in F$. Then there exist $n \in \mathbb{N}, u_1, u_2 \in S$ such that $a^n = u_1 z$ and $a^n = y u_2$. Also, by (3), there are $m_1, m_2 \in \mathbb{N}, w_1, w_2 \in S$ such that $(u_2 u_1 z y)^{m_1} = z y w_1$ and $(z y u_2 u_1)^{m_2} = w_1 z y$. Now $a^{2n} = y u_2 u_1 z$ implies $a^{2n(m_1+1)} = (y u_2 u_1 z)^{m_1+1} = y(u_2 u_1 z y)^{m_1} u_2 u_1 z = (y z) y w_1 u_2 u_1 z$. Also, $a^{2n(m_2+1)} = y u_2 u_1 z w_2 z (y z)$. Thus $y z \in F$, by Lemma 4.1; and hence F is a subsemigroup of S.

Let $y, z \in S$ be such that $yz \in F$. Then $a \in \sqrt{Q(yz)} = \sqrt{yzS} \cap \sqrt{Syz} \subseteq \sqrt{yS} \cap \sqrt{Sz}$. Now, by (3), $yz \in \sqrt{Sy}$, and so $yz \in \sqrt{yS} \cap \sqrt{Sy} = \sqrt{Q(y)}$, by Lemma 4.1. Then $\sqrt{Q(yz)} \subseteq \sqrt{Q(y)}$, by Lemma 4.2. Thus $a \in \sqrt{Q(y)}$ and hence $y \in F$. Similarly, $z \in F$. Thus F is a filter that contains a. Let T be a filter of S containing a and $y \in F$. Then $a^m = sy$ for some $m \in \mathbb{N}, s \in S$. Now $a^m \in T$ implies $sy \in T$ and hence $y \in T$. Thus F = N(a).

(6) \Rightarrow (7). Consider $a, b \in S$. Then $ab \in N(ab)$ implies that $a, b \in N(ab)$. Then, by (6), $ab \in \sqrt{Q(a)} \cap \sqrt{Q(b)} \subseteq \sqrt{Sa} \cap \sqrt{bS}$. If $a\mathcal{N}b$ then N(a) = N(b) implies that $b \in \sqrt{Q(a)}$ and $a \in \sqrt{Q(b)}$. So, $\sqrt{Q(b)} \subseteq \sqrt{Q(a)}$ and $\sqrt{Q(a)} \subseteq \sqrt{Q(b)}$, by Lemma 4.2. Thus $a\sqrt{\mathcal{H}b}$ and hence $\mathcal{N} \subseteq \sqrt{\mathcal{H}}$. Similarly, $\sqrt{\mathcal{H}} \subseteq \mathcal{N}$. Hence $\mathcal{N} = \sqrt{\mathcal{H}}$ is the least semilattice congruence. Let T be an \mathcal{N} -class in S. Since \mathcal{N} is a semilattice congruence, T is a subsemigroup. Consider $a, b \in T$. Then $a^2 \mathcal{N} b$ implies that $N(a^2) = N(b)$; and by (6) we have $b \in \sqrt{Q(a^2)}$. Thus there are $n \in \mathbb{N}$ and $s_1, s_2 \in S$ such that $b^n = s_1 a^2$ and $b^n = a^2 s_2$ which implies that $b^{n+1} = bs_1 a^2$ and $b^{n+1} = a^2 s_2 b$. Since \mathcal{N} is a semilattice congruence, $t_1 = bs_1 a \mathcal{N} bs_1 a^2 \mathcal{N} b^{n+1} \mathcal{N} b$ and $t_2 = as_2 b \mathcal{N} b$ which implies that $t_1 = bs_1 a \in T$ and $t_2 = as_2 b \in T$. Thus $b \in \sqrt{Ta} \cap \sqrt{aT}$ and hence T is a *t*-Archimedean semigroup.

 $(7) \Rightarrow (1)$. Follows directly.

Theorem 4.4. The following conditions on a semigroup S are equivalent:

- (1) S is a chain of t-Archimedean semigroups.
- (2) S is a t-Putcha semigroup and for all $a, b \in S, b \in \sqrt{Q(a)}$ or $a \in \sqrt{Q(b)}$.
- (3) For all $a, b \in S$, $N(a) = \{x \in S \mid a \in \sqrt{Q(x)}\}$ and $N(ab) = N(a) \cup N(b)$.
- (4) $\mathcal{N} = \sqrt{\mathcal{H}}$ is the least chain congruence on S such that each of its congruence classes is t-Archimedean.

Proof. (1) \Rightarrow (2). Let S be a chain C of t-Archimedean semigroups $S_{\alpha}(\alpha \in C)$. Let $a, b \in S$. Then $a \in S_{\alpha}$ and $a \in S_{\beta}$ for some $\alpha, \beta \in C$. Since C is a chain, either $\alpha\beta = \alpha$ or $\alpha\beta = \beta$. If $\alpha\beta = \alpha$, then $a, ab \in S_{\alpha}$; and since S_{α} is a t-Archimedean semigroup, there exist $n \in \mathbb{N}$ and $x_1, x_2 \in S_{\alpha}$ such that $a^n = x_1 ab$ and $a^n = abx_2$. Now, by Theorem 4.3, since S is a semilattice of t-Archimedean semigroup, there are $m \in \mathbb{N}$ and $s \in S$ such that $(abx_2)^m = bx_2s$. Then we have $a^{nm} = s_1b$ and $a^{nm} = bx_2s$ for some $s_1 \in S$ and hence $a \in \sqrt{Q(b)}$, by Lemma 4.1. If $\alpha\beta = \beta$, then $b, ab \in S_{\beta}$ and similarly as above we have $b \in \sqrt{Q(a)}$.

 $(2) \Rightarrow (3)$. By Theorem 4.3, we have $N(a) = \{x \in S \mid a \in \sqrt{Q(x)}\}$, since S is a t-Putcha semigroup. Let $a, b \in S$. Then $ab \in N(ab)$ implies that $a \in N(ab)$ and $b \in N(ab)$, and hence $N(a) \cup N(b) \subseteq N(ab)$. Again, either $a \in \sqrt{Q(b)}$ or $b \in \sqrt{Q(a)}$. If $a \in \sqrt{Q(b)}$, then there are $n \in \mathbb{N}$ and $s \in S$ such that $a^n = bs$ and so $a^{n+1} = abs$. Since S is a semilattice of t-Archimedean semigroups, there exist $m \in \mathbb{N}$ and $t \in S$ such that $(abs)^m = tab$, by Theorem 4.3. Then we have $a^{(n+1)m} = tab$ and $a^{(n+1)m} = abt_1$ for some $t_1 \in S$. Then $a \in \sqrt{Q(ab)}$ which implies that $ab \in N(a)$. Thus $N(ab) \subseteq N(a)$. If $b \in \sqrt{Q(a)}$, then similarly we have $N(ab) \subseteq N(b)$, which shows that $N(ab) \subseteq N(a) \cup N(b)$. Hence $N(ab) = N(a) \cup N(b)$.

(3) \Rightarrow (4). It follows by Theorem 4.3 that $\mathcal{N} = \sqrt{\mathcal{H}}$ is the least semilattice congruence on S and each \mathcal{N} -class is a t-Archimedean semigroup.

Now consider $a, b \in S$. Then $ab \in N(a) \cup N(b)$ shows that $ab \in N(a)$ or $ab \in N(b)$. Again $N(a) \subseteq N(ab)$ and $N(b) \subseteq N(ab)$. Thus either $N(ab) \subseteq N(a) \subseteq N(ab)$ or $N(ab) \subseteq N(b) \subseteq N(ab)$. i.e., either $a\mathcal{N}ab$ or $b\mathcal{N}ab$. Hence \mathcal{N} is a chain congruence on S. Since every chain is a semilattice and \mathcal{N} is the least semilattice congruence, it is the least chain congruence on S.

 $(4) \Rightarrow (1)$. Trivial.

Theorem 4.5. The following conditions on a semigroup S are equivalent:

- (1) S is a chain of t-Archimedean semigroups;
- (2) \sqrt{Q} is a completely prime ideal of S for every quasi-ideal Q of S;
- (3) $\sqrt{Q(a)}$ is a completely prime ideal of S for every $a \in S$;
- (4) $\sqrt{Q(ab)} = \sqrt{Q(a)} \cap \sqrt{Q(b)}$ for all $a, b \in S$ and every quasi-ideal of S is semiprimary.

Proof. (1) \Rightarrow (2). Let *S* be a chain *C* of *t*-archimedean semigroups $\{S_{\alpha} \mid \alpha \in C\}$. We take a quasi-ideal *Q* of *S*. Then \sqrt{Q} is an ideal of *S*, by Theorem 4.3. Let $x, y \in S$ be such that $xy \in \sqrt{Q}$. Then there is $n \in \mathbb{N}$ such that $(xy)^n = u \in Q$. Suppose $x \in S_{\alpha}$ and $y \in S_{\beta,\alpha}, \beta \in C$. Since *C* is a chain, either $\alpha\beta = \alpha$ or $\alpha\beta = \beta$. If $\alpha\beta = \alpha$, then $x, u \in S_{\alpha}$. Since S_{α} is *t*-Archimedean, so $x \in \sqrt{Q(u)} \subseteq \sqrt{Q}$. Similarly, if $\alpha\beta = \beta$, then $y \in \sqrt{Q}$. Hence \sqrt{Q} is a completely prime ideal of *S*.

 $(2) \Rightarrow (3)$. Obvious.

 $(3) \Rightarrow (4)$. Let $a, b \in S$. Then $\sqrt{Q(a)}$ and $\sqrt{Q(b)}$ are ideals of S and hence $ab \in \sqrt{Q(a)} \cap \sqrt{Q(b)}$. This implies $\sqrt{Q(ab)} \subseteq \sqrt{Q(a)} \cap \sqrt{Q(b)}$, by Lemma 4.2 and Theorem 4.3. Since $\sqrt{Q(ab)}$ is completely prime, so $a, b \in \sqrt{Q(ab)}$ which implies $\sqrt{Q(a)} \cap \sqrt{Q(b)} \subseteq \sqrt{Q(ab)}$. Thus $\sqrt{Q(ab)} = \sqrt{Q(a)} \cap \sqrt{Q(b)}$.

Let Q be a quasi-ideal of S and $x, y \in S$ be such that $xy \in Q$. Then $xy \in \sqrt{Q(xy)}$ implies that $x \in \sqrt{Q(xy)}$ or $y \in \sqrt{Q(xy)}$. Thus $x^n \in \sqrt{Q(xy)} \subseteq Q$ or $y^n \in \sqrt{Q(xy)} \subseteq Q$ for some $n \in \mathbb{N}$. Hence Q is semiprimary.

(4) \Rightarrow (1). Let $a, b \in S$. Then $ab \in \sqrt{Q(a)} \cap \sqrt{Q(b)} \subseteq \sqrt{Sa} \cap \sqrt{bS}$. Then by Theorem 4.3, S is a *t*-Putcha semigroup. Since $\sqrt{Q(ab)}$ is a semiprimary, $ab \in Q(ab)$ implies that $a \in \sqrt{Q(ab)} = \sqrt{Q(a)} \cap \sqrt{Q(b)} \subseteq \sqrt{Q(b)}$ or $b \in \sqrt{Q(ab)} \subseteq \sqrt{Q(ab)}$. Thus S is a chain of *t*-Archimedean semigroups by Theorem 4.4. \Box

References

- Y. Cao and X. Xu, On minimal and maximal left ideals in ordered semigroups, Semigroup Forum 60 (2000), 202 - 207.
- [2] R. Chinram and K. Tinpum, A note on minimal bi-ideal in ordered Γ -semigroups, Intern. Math. Forum 4 (2009), 1-5.
- [3] R.H. Good and D.R. Hughes, Associated groups for semigroup, Bull. Amer. Math. Soc. 58 (1952), 624 - 625.
- [4] A. Iampan, On bi-ideals of semigroups, Lobachevskii J. Math.29 (2008), 68-72.
- [5] R.D. Jagatap and Y.S. Pawar, Quasi-ideals and minimal quasi-ideals in Γ-semigroups, Navi Sad J. Math. 39 (2009), no.2, 79-87.
- [6] C. Jirokul, R. Sripakorn and R. Chinram, Minimal quasi-ideals in Γ-semigroups, Intern. Math. Forum 15 (2009), 7-11.

- [7] K.M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecan 16 (1969), 179-185.
- [8] K.M. Kapp, Green's relations and quasi-ideals, Czechoslovak Math. J. 19(94) (1969), 80-85.
- [9] N. Kehayopulu, On minimal quasi-ideals in ordered semigroups, Abstract AMS 15 (1994) no.6, 1-5.
- [10] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proc. Intern. Conf. Algebra and its Appl. (2002), 30 - 46.
- [11] M.M. Miccoli, Bi-ideals in regular semigroups and in orthogroups, Acta. Math. Hung. 47(1-2) (1986), 3-6.
- [12] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecan, 4 (1956), 262 - 275.
- [13] O. Steinfeld, Über die Quasiideale von Ringen, Acta Sci. Math. Szeged 17 (1956), 170 - 180.
- [14] O. Steinfeld, Über die Quasiideale von Haibgruppen mit eigentlichem Suschkewitsch-Kern, Acta Sci. Math. Szeged 18 (1957), 235 – 242.
- [15] O. Steinfeld, Quasi-ideals in rings and regular semigroups, Akademiai Kiado, Budapest, 1978.
- [16] O. Steinfeld, On completely regular semigroups, Semigroup Forum 21 (1980), 93-94.
- [17] X. Xu and J. Ma, A note on minimal bi-ideals in ordered semigroups, Southeast Asian Bull. Math. 27 (2003), 149 154.

Received September 5, 2015

A. K. Bhuniya Department of Mathematics Visva-Bharati Santiniketan-731235 India E-mail: anjankbhuniya@gmail.com

K. Jana Department of Mathematics Katwa College Katwa, Burdwan-713130 India E-mail: kjana76@gmail.com