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Filter theory in EQ-algebras based on soft sets

Young Bae Jun, Seok-Zun Song and Ghulam Muhiuddin

Abstract. Int-soft pre�lters (�lters) of EQ-algebras are introduced, and related properties are

investigated. Characterizations of int-soft pre�lters (�lters) of EQ-algebras are provided.

1. Introduction

Many-valued logics are uniquely determined by the algebraic properties of the
structure of its truth values. As a precise logic to deal with uncertainty and ap-
proximate reasoning, one can consider fuzzy logics. As well-known fuzzy logics,
one can also take residuated lattices based on fuzzy logics such as �ukasiewicz
logic, BL-logic, R0-logic, MTL-logic, and so forth. In fuzzy logics, it is generally
accepted that the algebraic structure should be a residuated lattice. MV -algebras,
BL-algebras, R0-algebras, MTL-algebras, and so forth are well-known classes of
residuated lattices. A new class of algebras called EQ-algebras has been recently
introduced by V. Novák and B. De Baets [9] with the intent to develop an algebraic
structure of truth values for fuzzy type theory. From the point of view of logic,
the main di�erence between residuated lattices and EQ-algebras lies in the way
the implication operation is obtained. It is obtained from a (strong) conjuction
in residuated lattices, but it is obtained from equivalence in EQ-algebras. Conse-
quently, the two types of algebras di�er in several essential points, despite their
many similar or identical properties. An EQ-algebra has three binary operations:
meet (∧), multiplication (⊗), and fuzzy equality (∼), and a unit element, whereas
the implication (→) is derived from the fuzzy equality (∼). Filter theory plays a
vital role in studying several algebraic structures such as residuated lattices, MV -
algebras, BL-algebras, R0-algebras, MTL-algebras, BCK/BCI-algebras, lattice
implication algebras, and so forth. M. El-Zekey et al. [2] have introduced and
studied the pre�lters and �lters of EQ-algebras. Liu and Zhang [5] have intro-
duced and studied the implicative and positive implicative pre�lters (�lters) of
EQ-algebras.

Soft set theory [8] has been �rstly proposed by a Russian researcher Molodtsov
in 1999. This is a general mathematical tool for dealing with uncertain, fuzzy, not
clearly de�ned objects. Generally, the soft set theory is di�erent from traditional
tools for dealing with uncertainties, such as the theory of probability, the theory
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of fuzzy sets and the theory of rough sets. Nowadays, work on the soft set theory
is progressing rapidly. Maji et al. [7] has been �rstly de�ned some operations on
soft sets. They also have been introduced the soft set into the decision-making
problem [6] that is based on the concept of knowledge reduction in the rough set
theory [10]. Jun et al. [4] has been introduced and studied int-soft �lters, int-soft
G-�lters, regular int-soft �lters, andMV -int-soft �lters in residuated lattices. Jun
et al. has been studied (implicative) int-soft �lters of R0-algebras (see [3]).

The aim of this paper is to study pre�lters (�lters) and positive implicative pre-
�lters (�lters) of EQ-algebras based on soft set theory. We study characterizations
of positive implicative int-soft pre�lters (�lters) of EQ-algebras, and establish the
extension property for positive implicative int-soft �lters.

2. Preliminaries

We display basic de�nitions and properties of EQ-algebras that will be used in
this paper. For more details of EQ-algebras, we refer the reader to [1], [2], and [5].

By an EQ-algebra we mean an algebra E := (E,∧,⊗,∼, 1) of type (2, 2, 2, 0)
in which the following axioms are valid:

(E1) (E,∧, 1) is a commutative idempotent monoid (i.e., ∧-semilattice with top
element 1),

(E2) (E,⊗, 1) is a monoid and ⊗ is isotone with respect to 6 (with x 6 y de�ned
as x ∧ y = x),

(E3) x ∼ x = 1,

(E4) ((x ∧ y) ∼ z)⊗ (a ∼ x) 6 z ∼ (a ∧ y),
(E5) (x ∼ y)⊗ (a ∼ b) 6 (x ∼ a) ∼ (y ∼ b),
(E6) (x ∧ y ∧ z) ∼ x 6 (x ∧ y) ∼ x,
(E7) x⊗ y 6 x ∼ y
for all x, y, z, a, b ∈ E.

The operation �∧� is called meet (in�mum) and �⊗� is called multiplication. If
the multiplication is commutative in an EQ-algebra E , then we say that E is a
commutative EQ-algebra.

Let E be an EQ-algebra. For all x ∈ L, we put x̃ = x ∼ 1. We also de�ne the
derived operation, so called implication and denoted by →, as follows:

(∀x, y ∈ E) (x→ y = (x ∧ y) ∼ x) . (1)

An EQ-algebra E is said to be residuated if (x ⊗ y) ∧ z = x ⊗ y if and only if
x ∧ ((y ∧ z) ∼ y) = x for all x, y, z ∈ E.

Proposition 2.1. Every (commutative) EQ-algebra E satis�es the following con-

ditions for all a, b, c, d ∈ E:
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(1) If a 6 b, then a → b = 1, a ∼ b = b → a, ã 6 b̃, c → a 6 c → b and

b→ c 6 a→ c,

(2) a⊗ b 6 a ∧ b 6 a, b and b⊗ a 6 a ∧ b 6 a, b,

(3) a→ b = a→ (a ∧ b),
(4) (a→ b)⊗ (b→ c) 6 a→ c,

(5) a→ b 6 (a ∧ c)→ (b ∧ c).

A subset F of an EQ-algebra E is called a pre�lter of E if it satis�es the
following conditions:

1 ∈ F, (2)

(∀a, b ∈ E) (a→ b ∈ F, a ∈ F ⇒ b ∈ F ) . (3)

A subset F of an EQ-algebra E is called a �lter of E if it is a pre�lter of E
with the following additional condition:

(∀a, b, c ∈ E) (a→ b ∈ F ⇒ (a⊗ c)→ (b⊗ c) ∈ F, (c⊗ a)→ (c⊗ b) ∈ F ) . (4)

A pre�lter (resp. �lter) F of an EQ-algebra E is said to be positive implicative

if the following assertion is valid:

(∀x, y, z ∈ E) (x→ (y → z) ∈ F, x→ y ∈ F ⇒ x→ z ∈ F ) . (5)

A soft set theory is introduced by Molodtsov [8]. In what follows, let U be an
initial universe set and X be a set of parameters. Let P(U) denotes the power set
of U and A,B,C, . . . ⊆ X.

A soft set (f̃ , A) of X over U is de�ned to be the set of ordered pairs

(f̃ , A) := {(x, f̃(x)) : x ∈ X, f̃(x) ∈ P(U)},

where f̃ : X → P(U) such that f̃(x) = ∅ if x /∈ A.

3. Int-soft pre�lters (�lters)

In what follows, let E denote a commutative EQ-algebra unless otherwise speci�ed.

De�nition 3.1. A soft set (f̃ , E) on E over U is called an int-soft pre�lter (resp.
int-soft �lter) of E if the set

iE (f̃ ; γ) := {x ∈ E | γ ⊆ f̃(x)}

is a pre�lter (resp. �lter) of E for all γ ∈ P(U) with iE (f̃ ; γ) 6= ∅.

We say that iE (f̃ ; γ) is the γ-inclusive set of (f̃ , E).
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Example 3.2. Let E = {0, a, b, 1} be a chain. We de�ne two binary operations
`⊗' and `∼' by the following tables:

⊗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 0 b
1 0 a b 1

∼ 0 a b 1
0 1 a a a
a a 1 b b
b a b 1 1
1 a b 1 1

Then E := (E,∧,⊗,∼, 1) is an EQ-algebra (see [5]). The derived operation
�→� is described as the following table:

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b a b 1 1
1 a b 1 1

Then a soft set (f̃ , E) on E over U = Z de�ned by

f̃(x) :=

 4N if x ∈ {0, a},
4Z if x = b,
2Z if x = 1

is an int-soft pre�lter of E .

Example 3.3. Let E by as in the previous example an let

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

Then E := (E,∧,⊗,∼, 1) is an EQ-algebra (see [5]). The derived operation
�→� is described by table:

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a 1 1

Then a soft set (f̃ , E) on E over U = Z de�ned as follows:

f̃(x) :=

{
4Z if x ∈ {0, a},
2Z if x ∈ {b, 1}

is an int-soft �lter of E .
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Theorem 3.4. A soft set (f̃ , E) on E over U is an int-soft pre�lter of E if and

only if the following assertions are valid.

(∀x ∈ E)
(
f̃(x) ⊆ f̃(1)

)
, (6)

(∀x, y ∈ E)
(
f̃(x) ∩ f̃(x→ y) ⊆ f̃(y)

)
. (7)

Proof. Assume that (f̃ , E) is an int-soft pre�lter of E . For any x ∈ E, let f̃(x) =
γ. Then x ∈ iE (f̃ ; γ), and so iE (f̃ ; γ) 6= ∅. Thus iE (f̃ ; γ) is a pre�lter of E ,
and therefore 1 ∈ iE (f̃ ; γ). Hence f̃(1) ⊇ γ = f̃(x) for all x ∈ E. For any
x, y ∈ E, let f̃(x) ∩ f̃(x → y) = δ. Then f̃(x) ⊇ δ and f̃(x → y) ⊇ δ, that is,
x ∈ iE (f̃ ; δ) and x → y ∈ iE (f̃ ; δ). It follows from (3) that y ∈ iE (f̃ ; δ) and that
f̃(y) ⊇ δ = f̃(x) ∩ f̃(x→ y).

Conversely, let (f̃ , E) be a soft set on E over U that satis�es two conditions
(6) and (7). Let ε ∈ P(U) be such that iE (f̃ ; ε) 6= ∅. Then f̃(a) ⊇ ε for some
a ∈ iE (f̃ ; ε). Using (6), we have f̃(1) ⊇ f̃(a) ⊇ ε, and so 1 ∈ iE (f̃ ; ε). Let x, y ∈ E
be such that x ∈ iE (f̃ ; ε) and x→ y ∈ iE (f̃ ; ε). Then ε ⊆ f̃(x) and ε ⊆ f̃(x→ y).
It follows from (7) that ε ⊆ f̃(x) ∩ f̃(x→ y) ⊆ f̃(y) and that y ∈ iE (f̃ ; ε). Hence
iE (f̃ ; ε) is a pre�lter of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅, and therefore (f̃ , E)
is an int-soft pre�lter of E .

Theorem 3.5. A soft set (f̃ , E) on E over U is an int-soft �lter of E if and only

if it satis�es (6), (7) and

(∀x, y, z ∈ E)
(
f̃(x→ y) ⊆ f̃((x⊗ z)→ (y ⊗ z))

)
. (8)

Proof. Let (f̃ , E) be an int-soft �lter of E . Then (f̃ , E) is an int-soft pre�lter of
E , and so two conditions (6) and (7) are valid by Theorem 3.4. Let x, y ∈ E and
τ ∈ P(U) be such that f̃(x→ y) = τ . Then x→ y ∈ iE (f̃ ; τ). Since iE (f̃ ; τ) is a
�lter of E , we have (x⊗ z)→ (y ⊗ z) ∈ iE (f̃ ; τ) for all x, y, z ∈ E. It follows that

f̃((x⊗ z)→ (y ⊗ z)) ⊇ τ = f̃(x→ y)

for all x, y, z ∈ E.
Conversely, let (f̃ , E) be a soft set on E over U that satis�es (6), (7) and (8).

Then (f̃ , E) is an int-soft pre�lter of E by Theorem 3.4, and thus iE (f̃ ; γ) is a
pre�lter of E for all γ ∈ P(U) with iE (f̃ ; γ) 6= ∅. Let x, y ∈ E be such that
x→ y ∈ iE (f̃ ; γ). Then

f̃((x⊗ z)→ (y ⊗ z)) ⊇ f̃(x→ y) ⊇ γ

by (8), and so (x ⊗ z) → (y ⊗ z) ∈ iE (f̃ ; γ). Hence iE (f̃ ; γ) is a �lter of E , and
therefore (f̃ , E) is an int-soft �lter of E .

Proposition 3.6. Every int-soft pre�lter (f̃ , E) of E for all x, y ∈ E satis�es the

following assertions:
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(1) if x 6 y, then f̃(x) ⊆ f̃(y),

(2) f̃(x⊗ y) ⊆ f̃(x) ∩ f̃(y).

Proof. (1). Let x, y ∈ E be such that x 6 y. Then x→ y = 1 by Proposition 2.1.
It follows from (6) and (7) that f̃(y) ⊇ f̃(x) ∩ f̃(x→ y) = f̃(x) ∩ f̃(1) = f̃(x).

(2). Using Proposition 2.1(2) and item (1), we have f̃(x⊗y) ⊆ f̃(x)∩ f̃(y).

Theorem 3.7. For a soft set (f̃ , E) on E over U , the following are equivalent.

(1) (f̃ , E) is an int-soft pre�lter of E .

(2) (∀x, y, z ∈ E)
(
x 6 y → z ⇒ f̃(x) ∩ f̃(y) ⊆ f̃(z)

)
.

(3) (∀x, y, z ∈ E)
(
x→ (y → z) = 1 ⇒ f̃(x) ∩ f̃(y) ⊆ f̃(z)

)
.

Proof. (1) ⇒ (2). Let x, y, z ∈ E be such that x 6 y → z. Then f̃(x) ⊆ f̃(y → z)
by Proposition 3.6(1). Using (7), we get

f̃(z) ⊇ f̃(y) ∩ f̃(y → z) ⊇ f̃(x) ∩ f̃(y).

(2) ⇒ (3). Let x, y, z ∈ E be such that x→ (y → z) = 1. Then

x 6 1 = x→ (y → z),

and so f̃(x) ⊆ f̃(y → z) by (2). Since y → z 6 y → z, it follows from (2) that

f̃(z) ⊇ f̃(y → z) ∩ f̃(y) ⊇ f̃(x) ∩ f̃(y).

(3) ⇒ (1). Since x → (x → 1) = 1 for all x ∈ E, it follows from (3) that
f̃(x) ⊆ f̃(1) for all x ∈ E. Note that (x → y) → (x → y) = 1 for all x, y ∈ E.
Thus f̃(x) ∩ f̃(x → y) ⊆ f̃(y) for all x, y ∈ E by (3). Therefore (f̃ , E) is an
int-soft pre�lter of E by Theorem 3.4.

Proposition 3.8. For any int-soft �lter (f̃ , E) of E , for all x, y, z ∈ E the fol-

lowing assertions are valid.

(1) f̃(x⊗ y) = f̃(x) ∩ f̃(y),
(2) f̃(x→ z) ⊇ f̃(x→ y) ∩ f̃(y → z).

Proof. (1). The inclusion f̃(x⊗ y) ⊆ f̃(x) ∩ f̃(y) follows from Proposition 3.6(2).
Note that y 6 1→ y for all y ∈ E. It follows from Proposition 3.6(1) and (8) that

f̃(y) ⊆ f̃(1→ y) ⊆ f̃((x⊗ 1)→ (x⊗ y)) = f̃(x→ (x⊗ y))

and from (7) that f̃(x⊗ y) ⊇ f̃(x)∩ f̃(x→ (x⊗ y)) ⊇ f̃(x)∩ f̃(y) for all x, y ∈ E.
(2). Combining Proposition 2.1(4), Proposition 3.6(1) and item (1) induces

f̃(x→ z) ⊇ f̃((x→ y)⊗ (y → z)) = f̃(x→ y) ∩ f̃(y → z)

for all x, y, z ∈ E.
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4. Int-soft pre�lters (�lters)

De�nition 4.1. A soft set (f̃ , E) on E over U is called a positive implicative

int-soft pre�lter (�lter) of E if the nonempty γ-inclusive set of (f̃ , E) is a positive
implicative pre�lter (�lter) of E for all γ ∈ P(U).

Example 4.2. The int-soft �lter (f̃ , E) in Example 3.3 is positive implicative,
but the int-soft pre�lter (f̃ , E) in Example 3.2 is not positive implicative because
if we take τ ∈ P(U) with 4N ( τ ⊆ 4Z, then iE (f̃ ; τ) = {b, 1} is not a positive
implicative pre�lter of E .

Theorem 4.3. A soft set (f̃ , E) on E over U is a positive implicative int-soft

pre�lter (�lter) of E if and only if it is an int-soft pre�lter (�lter) of E that

satis�es an additional condition:

(∀x, y, z ∈ E)
(
f̃(x→ (y → z)) ∩ f̃(x→ y) ⊆ f̃(x→ z)

)
. (9)

Proof. Assume that (f̃ , E) is a positive implicative int-soft pre�lter (�lter) of E .
Then iE (f̃ ; τ) is a positive implicative pre�lter (�lter) of E for all τ ∈ P(U) with
iE (f̃ ; τ) 6= ∅, and therefore iE (f̃ ; τ) is a pre�lter (�lter) of E . Hence (f̃ , E) is an
int-soft pre�lter (�lter) of E . Let x, y, z ∈ E be such that f̃(x→ (y → z))∩ f̃(x→
y) = ε. Then x → (y → z) ∈ iE (f̃ ; ε) and x → y ∈ iE (f̃ ; ε), which implies from
(5) that x→ z ∈ iE (f̃ ; ε). Thus

f̃(x→ z) ⊇ ε = f̃(x→ (y → z)) ∩ f̃(x→ y).

Conversely, let (f̃ , E) be an int-soft pre�lter (�lter) of E that satis�es (9).
Then iE (f̃ ; ε) is a pre�lter (�lter) of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅. Let
x, y, z ∈ E be such that x → (y → z) ∈ iE (f̃ ; ε) and x → y ∈ iE (f̃ ; ε). Then
ε ⊆ f̃(x→ (y → z)) and ε ⊆ f̃(x→ y). It follows from (9) that

ε ⊆ f̃(x→ (y → z)) ∩ f̃(x→ y) ⊆ f̃(x→ z)

and that x → z ∈ iE (f̃ ; ε). Hence iE (f̃ ; ε) is a positive implicative pre�lter
(�lter) of E for all ε ∈ P(U) with iE (f̃ ; ε) 6= ∅, and therefore (f̃ , E) is a positive
implicative int-soft pre�lter (�lter) of E .

Theorem 4.4. If an int-soft �lter of E satis�es the following assertion

(∀x, y ∈ E)
(
f̃(((x→ y) ∧ x)→ y) = f̃(1)

)
, (10)

then it is a positive implicative int-soft �lter of E .

Proof. Let (f̃ , E) be an int-soft �lter of E that satis�es the condition (10). Using
Proposition 2.1(5) and Proposition 2.1(3), we have

x→ (y → z) 6 (x ∧ y)→ ((y → z) ∧ y) and x→ y = x→ (x ∧ y).
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It follows from (6), Proposition 3.6, Proposition 3.8(2) and (10) that

f̃(x→ y) ∩ f̃(x→ (y → z)) = f̃(x→ y) ∩ f̃(x→ (y → z)) ∩ f̃(1)
⊆ f̃(x→ (x ∧ y)) ∩ f̃((x ∧ y)→ ((y → z) ∧ y)) ∩ f̃(1)
⊆ f̃(x→ ((y → z) ∧ y)) ∩ f̃(((y → z) ∧ y)→ z) ⊆ f̃(x→ z).

Therefore (f̃ , E) is a positive implicative int-soft �lter of E by Theorem 4.3.

Theorem 4.5. Let (f̃ , E) and (g̃, E) be int-soft �lters of E such that f̃(1) = g̃(1)
and f̃(x) ⊆ g̃(x) for all x ∈ E. If (f̃ , E) is positive implicative, then so is (g̃, E).

Proof. Indeed, g̃(((x → y) ∧ x) → y) ⊇ f̃(((x → y) ∧ x) → y) = f̃(1) = g̃(1), and
thus g̃(((x → y) ∧ x) → y)) = g̃(1) for all x, y ∈ E. Therefore (g̃, E) is a positive
implicative int-soft �lter of E by Theorem 4.4.
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