Dynamic groups

Mohammad Reza Molaei

Abstract. In this essay we introduce a class of groups which any member of it has a dynamic product. We prove that any subgroup of a dynamic group is a dynamic group and the product of two dynamic groups is a dynamic group. We deduce a new equivalency on dynamical systems via Rees matrix semigroups.

1. Introduction

Groups with dynamic products are a class of groups which have important role in topological cocycles [5]. Cocycles [1, 2, 3] are time-dependent dynamical systems and they can describe by these kind of groups [5]. To present the definition of a dynamic group we first recall the definition of a dynamical system. We assume that (T, +) is the group of real numbers or the group of integer numbers. The binary operation + can be any group operation on this set. If Y is a non-empty set, then a family $\xi = \{\xi^t : t \in T\}$ of the maps $\xi^t : Y \to Y$ is called a *dynamical system* if

(i) $\xi^0 = i d_Y;$

(*ii*) $\xi^{t+s} = \xi^t \circ \xi^s$ for all $t, s \in T$.

(T, +) is called the *time group* of ξ , and T is called the *time set* of ξ . If (T, +) is a semigroup, and ξ satisfies the condition (ii), then it is called a *semi-dynamical system*.

Definition 1.1. Suppose ξ is a dynamical system (semi-dynamical system) on Y, and G is a group (semigroup). (G,ξ) is called a *dynamic group* (*dynamic semigroup*) if there is a one-to-one map $h: G \to \xi$ such that $h(b) \circ h(c) = h(cb)$.

If G is a group with the identity e, then the above definition implies that $h(e) = \xi^0$. One must pay attention to this point that: in the above definition if h is an onto map, and T is a commutative group, then h is a group isomorphism.

Example 1.2. We define a self map η on the circle S^1 by $\eta(e^{2\pi i\theta}) = e^{2\pi i(\theta + \frac{1}{4})}$, and we take $\xi = \{\eta^n : n \in Z\}$, where

²⁰¹⁰ Mathematics Subject Classification: 20F38, 37H05

Keywords: Dynamic product; dynamic group; Rees matrix semigroup; equivalent dynamical systems.

$$\eta^{n} = \begin{cases} \underbrace{\eta \circ \eta \circ \eta \circ \cdots \circ \eta}_{n \ times} & if \ n \in N, \\ id & if \ n = 0, \\ \underbrace{\eta^{-1} \circ \eta^{-1} \circ \eta^{-1} \circ \cdots \circ \eta^{-1}}_{-n \ times} & if \ -n \in N. \end{cases}$$

Let G be the additive group modulo 4. Then (G,ξ) is a dynamic group.

In the next section we present an example of a non trivial dynamic group.

Example 1.3. The set of integer numbers with the product m * n = n|m| is a semigroup. Z with the product $m \times n = m|n|$ is also a semigroup. If for given $n \in Z$, we define $\eta^n : Z \to Z$ by

$$\eta^{n}(m) = \begin{cases} n^{3}|m| & if \ m^{\frac{1}{3}} \in Z, \\ m & if \ m^{\frac{1}{3}} \notin Z, \end{cases}$$

then $\xi = \{\eta^n : n \in (Z, \times)\}$ is a semi-dynamical system, and $((Z, *), \xi)$ is a dynamic semigroup. In fact, if we define $h : Z \to \xi$ by $h(n) = \eta^n$, then $h(n) \circ h(m) = h(m*n)$ and h is one-to-one.

In the next section we present two methods for constructing dynamic groups (dynamic semigroups), and we show that a dynamic product is an algebraic property. We associate a completely simple semigroup to a dynamic group. By using of completely simple semigroups or Rees matrix semigroups we present an equivalence relation on dynamical systems.

2. Structural consideration

We begin this section by presenting a nontrivial example of a dynamic group.

Example 2.1. Let

 $Y = \{y : R^2 \to R : y(t, x) = 2x + g(t) \text{ where } g(t) \text{ is a continuous function}\},\$

and for given $s \in R$ let $\xi^t : Y \to Y$ be defined by $\xi^s(y)(t, x) = y(t + s, x)$. Then $\xi = \{\xi^s : s \in R\}$ is a dynamical system on Y. For given $x, t, s \in R$ and $y \in Y$ we take $\varphi^t(y(t + s, x), x) = e^{2t}[x + \int_0^t e^{-2u}g(u + s)du]$. Suppose $G = \{\varphi^t(y(t, .), .) : t \in R \text{ and } y \in Y\}$. We define a product on G by the following form

$$\varphi^{t}(y(t,.),.)\varphi^{s}(z(s,.),.) = \varphi^{t}(y(t+s,.),.)o\varphi^{s}(z(s,.),.).$$

Then G with this product is a group and (G,ξ) is a dynamic group. The map $h: G \to \xi$ defined by $h(\varphi^t(y(t,.),.)) = \xi^t$ has the properties of Definition 1.1. \Box

Dynamic group is a kind of groups which it's product is look alike to an evolution operator up to a one-to-one map. To see this let (G,ξ) be a dynamic group with a one-to-one mapping $h: G \to \xi$. Any member of ξ is called an *evolution operator*. If $P: G \times G \to G$ is the product of G, and if

$$A = \{ P_b = P(., b) : G \to G : b \in G \},\$$

then there is a bijection

 $\phi: G \longrightarrow A, \quad b \mapsto P_b.$

Under the map $h \circ \phi^{-1}$ any given P_b is look alike to the evolution operator $(h \circ \phi^{-1})(P_b)$. So there is a dynamics on the product of G.

Theorem 2.2. If H is a subgroup of a dynamic group (G, ξ) , then H is a dynamic group.

Proof. Suppose $h: G \to \xi$ is a one-to-one map with the properties of Definition 1.1, then $h|_H: H \to \xi$ has the properties of Definition 1.1 for (H, ξ) .

Theorem 2.3. If (G_1, ξ_1) and (G_2, ξ_2) are two dynamic groups with a common time set T, then $G_1 \times G_2$ is a dynamic group.

Proof. Suppose $h_1: G_1 \longrightarrow \xi_1, g \mapsto \xi_1^{t_g}$ and $h_2: G_2 \longrightarrow \xi_1, g \mapsto \xi_2^{t_g}$ are the one-to-one maps which satisfy the conditions of Definition 1.1. We know that $G_1 \times G_2$ with the multiplication $(g_1, g_2)(j_1, j_2) = (g_1j_1, g_2j_2)$ is a group, and we know that there is a bijection $\sigma: T \times T \to T$, where T = R or T = Z. We define the following binary operation on T:

$$+_{\sigma}: T \times T \longrightarrow T, \quad (t,s) \mapsto \sigma(t+s).$$

Clearly $(T, +_{\sigma})$ is a group. We assume that ξ_i is a dynamical system on Y_i for $i \in \{1, 2\}$. If $t \in T$, then we define

$$\xi^t: Y_1 \times Y_2 \longrightarrow Y_1 \times Y_2, \quad (y_1, y_2) \mapsto (\xi_1^{t_1}(y_1), \xi_2^{t_2}(y_2)),$$

where $t = \sigma(t_1, t_2)$. The straightforward calculations imply that

$$\xi = \{\xi^t : t \in T \text{ and the operation of } T \text{ is } +_{\sigma}\}$$

is a dynamical system on $Y_1 \times Y_2$. Now we define $h: G_1 \times G_2 \to \xi$ by $h(g_1, g_2) = \xi^{\sigma(t_{g_1}, t_{g_2})}$. Since σ, h_1, h_2 are one-to-one, then h is one-to-one.

For given $(g_1, g_2), (l_1, l_2) \in G_1 \times G_2$, we have

$$\begin{split} h(g_1,g_2) \circ h(l_1,l_2) &= \xi^{\sigma(t_{g_1},t_{g_2})} \circ \xi^{\sigma(t_{l_1},t_{l_2})} = \xi^{\sigma(t_{g_1}+t_{l_1},t_{g_2}+t_{l_2})} \\ &= (h_1(g_1) \circ h_1(l_1), h_2(g_2) \circ h_2(l_2)) = (h_1(l_1g_1), h_2(l_2g_2)) = (\xi_1^{t_{l_1}+t_{g_1}}, \xi_2^{t_{l_2}+t_{g_2}}) \\ &= \xi^{\sigma(t_{l_1}+t_{g_1},t_{l_2}+t_{g_2})} = h(l_1g_1, l_2g_2) = h((l_1,l_2)(g_1,g_2)). \end{split}$$

Thus $(G_1 \times G_2, \xi)$ is a dynamic group.

We say that a property is an *algebraic property* if it preserves under algebraic isomorphisms. The next theorem show that the concept of dynamic product is an algebraic concept.

Theorem 2.4. If (G,ξ) is a dynamic group, and if $f: G \to H$ is a group isomorphism, then (H,ξ) is a dynamic group.

Proof. Suppose $h: G \to \xi$ has the properties of Definition 1.1. We define $\tilde{h}: H \to \xi$ by $\tilde{h}(a) = h(f^{-1}(a))$. Clearly \tilde{h} is one-to-one. If $a, b \in H$, then

$$\widetilde{h}(ab) = h(f^{-1}(ab)) = h(f^{-1}(a)f^{-1}(b)) = h(f^{-1}(b)) \circ h(f^{-1}(a)) = \widetilde{h}(b) \circ \widetilde{h}(a).$$

We also have $\tilde{h}(e_H) = h(e_G) = id$. Thus (H, ξ) is a dynamic group.

3. Dynamic mappings

We begin this section by definition of a Rees matrix semigroup which is defined first in [6]. Suppose that G is a group and Λ and I are two sets. If $p: \Lambda \times I \to G$ is a mapping then $I \times G \times \Lambda$ with the product $(i, a, \lambda)(j, b, \mu) = (i, ap(\lambda, j)b, \mu)$ is a completely simple semigroup [4]. $I \times G \times \Lambda$ with this product is denoted by $M(G, I, \Lambda, p)$ and it is called a *Rees matrix semigroup*. Rees proved in [6] that any completely simple semigroup is isomorphic to a Rees matrix semigroup.

Now we are going to associate a Rees matrix semigroup to a dynamic group. We assume that (G,ξ) is a dynamic group with the mapping $h: G \to \xi$, and ξ is a dynamical system on Y, then the mapping $p: Y \times Y \to G$ defined by

$$p(y,z) = \begin{cases} h^{-1}(\xi^{t_0}) & \text{if } A = \{|t| : \xi^t(y) = z\} \neq \emptyset \text{ and } t_0 = \inf A, \\ e & \text{if } A = \emptyset \end{cases}$$

is a well defined map. In this case the Rees matrix M(G, Y, Y, p) is associated to (G, ξ) .

Definition 3.1. If (G,ξ) and (H,η) are two dynamic groups, and ξ and η are dynamical systems on Y and X respectively, then we say that (G,ξ) and (H,η) are equivalent if their associated Rees matrices M(G,Y,Y,p) and M(H,X,X,q) are isomorphic semigroups.

Theorem 3.2. Suppose (G,ξ) and (H,η) are two dynamic groups with the time set T and one-to-one maps $h: G \to \xi$ and $g: H \to \eta$. If there exists a bijection $f: Y \to X$ such that $f \circ \xi^t = \eta^t \circ f$ for all $t \in T$, then (G,ξ) is equivalent to (H,η) .

Proof. We define $w : h(G) \to g(H)$ by $w(\xi^t) = \eta^t$. The condition $f \circ \xi^t = \eta^t \circ f$ implies that w is a bijection. If $l = g^{-1} \circ w \circ h$, then $l : G \to H$ is an isomorphism. Because if $a, b \in G$, then

$$l(ab) = (g^{-1} \circ w)(h(ab)) = (g^{-1} \circ w)(h(b) \circ h(a)) = g^{-1}(w(h(b)) \circ w(h(a)))$$

$$= (g^{-1}(w(h(a))))(g^{-1}(w(h(b)))) = l(a)l(b).$$

Since l is a bijection, by similar method we can show that l^{-1} is a homomorphism. So it is an isomorphism.

Now we show that the mapping $\psi : M(G, Y, Y, p) \to M(H, X, X, q)$ defined by $\psi(y, s, z) = (f(y), l(s), f(z))$ is a semigroup isomorphism. If $(y_1, s_1, z_1), (y_2, s_2, z_2)$ are in M(G, Y, Y, p), then

$$\psi((y_1, s_1, z_1), (y_2, s_2, z_2)) = \psi(y_1, s_1 p(z_1, y_2) s_2, z_2)$$
$$= (f(y_1, l(s_1) l(p(z_1), y_2)) l(s_2), f(z_2))$$

 and

$$\begin{aligned} (\psi(y_1, s_1, z_1))(\psi(y_2, s_2, z_2)) &= (f(y_1), l(s_1), f(z_1))((f(y_2), l(s_2), f(z_2))) \\ &= (f(y_1), l(s_1)q(f(z_1), f(z_2))l(s_2), f(z_2)). \end{aligned}$$

So ψ is a homomorphism if we prove that $l(p(z_1, y_2)) = q(f(z_1), f(y_2))$. To prove this we have the following two cases.

CASE 1. If $p(z_1, y_2) = e_G$, then $\xi^t(z_1) \neq y_2$ for all $t \in T$. So $f^{-1} \circ \eta^t \circ f(z_1) \neq y_2$ for all $t \in T$. Thus $\eta^t(f(z_1)) \neq f(y_2)$ for all $t \in T$. Hence $q(f(z_1), f(y_2)) = e_H$. Thus $l(p(z_1, y_2)) = l(e_G) = e_H = q(f(z_1), f(y_2))$.

CASE 2. If there is $t \in T$ such that $\xi^t(z_1) = y_2$, then $(f^{-1} \circ \eta^t \circ f)(z_1) = y_2$. So $\eta^t(f(z_1)) = f(y_2)$. Thus

$$A = \{ |t| : \xi^t(z_1) = y_2 \} = \{ |t| : \eta^t(f(z_1)) = f(y_2) \}.$$

Hence $p(z_1, y_2) = h^{-1}(\xi^{t_0})$ and $q(f(z_1), f(y_2)) = g^{-1}(\eta^{t_0})$, where $t_0 = infA$. Thus $l(p(z_1, y_2)) = l(h^{-1}(\xi^{t_0})) = g^{-1}(\eta^{t_0}) = q(f(z_1), f(y_2))$. So ψ is a homomorphism.

Since ψ is one-to-one and onto, then by similar method we can show that ψ^{-1} is a homomorphism. Hence it is an isomorphism.

If a finite set Y and a finite group G are given and if a is the cardinality of the set $\{p : p : Y \times Y \to G \text{ is a mapping}\}$, then the number of non-equivalent dynamical systems on Y which can make G a dynamic group is at most a.

One must attention to this point that there exist completely simple semigroups which are not associated to any dynamic group. For example, if Y and G have more than two elements, and if $p: Y \times Y \to G$ is the constant mapping p(y, z) = e, then there is no any dynamical system on Y such that M(G, Y, Y, p) can be associated to it. Because if there is a ξ and a one-to-one mapping $h: G \to \xi$, then the condition p(y, z) = e implies that ξ can not have more than one element, and it's element is the identity mapping on Y. Since h is one-to-one, then the order of G is 1, and this is a contradiction.

To determine dynamical systems on Y which can prove a group G is a dynamic group is basically related to the number of M(G, Y, Y, .). In fact when we determine M(G, Y, Y, p), then we must check the existence of h.

4. Conclusion

We introduce dynamic groups, and we consider their properties. We show that if (G_1, ξ_1) and (G_2, ξ_2) are two dynamic groups, then there is a dynamical system ξ such that $(G_1 \times G_2, \xi)$ is a dynamic group. In Theorem 2.2 time sets of ξ_1 and ξ_2 can be different groups. Now let us to pose a problem.

Problem. Suppose that the time groups of ξ_1 and ξ_2 are equal, and it is a group (T, +). Is it possible to find a dynamical system ξ with the time group (T, +) such that $(G_1 \times G_2, \xi)$ be a dynamic group?

We present an equivalence relation on a set of dynamical systems. The characterization of dynamical systems via this kind of equivalency can be a topic for further research.

References

- A. Avila, A. Santamaria, M. Viana and A. Wilkinson, Cocycles over partially hyperbolic maps, Asterisque 358 (2013), 1-12.
- [2] I.V. Ermakov, Yu. N. Kalinin and V. Reitmann, Determining modes and almost periodic integrals for cocycles, Differ. Equations 47(13) (2011), 1837-1852.
- [3] P. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms 14 (1997), 141 – 152.
- [4] M.R. Molaei, Mathematical structures based on completely simple semigroups, Hadronic press, 2005.
- [5] M.R. Molaei, Topological cocycles, Submitted for publication.
- [6] D. Rees, On semigroups, Proceedings of the Cambridge philosophical society, 36 (1940), 387-400.

Received May 15, 2015

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran E-mail: mrmolaei@uk.ac.ir