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On injective and subdirectly irreducible

S-posets over left zero posemigroups

Gholam Reza Moghaddasi and Mahdieh Haddadi

Abstract. The notion of a Cauchy sequence in an S-poset is a useful tool to study algebraic

concepts, specially the concept of injectivity. This paper is concerned with the relations between

injectivity and Cauchy sequences in the category of S-posets in which S is a left zero posemi-

group. We characterize subdirectly irreducible S-posets over this posemigroup and by Birkhof's

Representation Theorem we get a description of such S-posets.

1. Introduction and preliminaries

The category of S-posets, as the ordered version of the category of S-acts, recently
have captured the interest of some mathematicians [4, 5]. And it is always inter-
esting to verify the counterpart results of S-acts in the category of S-posets (see
[1, 4, 8]). Cauchy sequences in an S-act �rst introduced by E. Giuli in [3] for a
particular class of acts, then generalized to S-acts, in [2]. Recently we generalized
this concept to S-posets, [4, 5].

Left zero semigroups, all of whose elements are left zero, are an important
class of semigroups, since every non-empty set S can be turned into a left zero
semigroup by de�ning st = s for all s, t ∈ S also this semigroup is applied in
automata theory, theory of computations, Boolean algebras.

Here we are going to use the notion of Cauchy sequences to study the dc-regular
injectivity of S-posets over a left zero posemigroup, as we did in [7] for injectivity
of S-acts. But the order here plays an important role and to get the counterpart
results here we need to modify (some times strongly) the S-act version of the
proofs. The aim of this paper is to determine the structure of dc-injective in the
category of S-posets and characterize the subdiretly irreducible S-posets over a
left zero semigroup. Therefore, throughout this article, we assume S to be a left
zero posemigroup. Now let us brie�y recall some necessary concepts.

A partially ordered semigroup (or simply, a posemigoup) is a semigroup which
is also a poset whose partial order is compatible with its binary operation (that is
s 6 s′ implies st 6 s′t, for every s, s′, t ∈ S).

For a posemigoup S, a (right) S-poset is a poset A equipped with a function
α : A×S → A, called the action of S on A, such that for a, b ∈ A, s, t ∈ S (denoting
α(a, s) by as): (1) a(st) = (as)t, (2) a 6 b⇒ as 6 bs, (3) s 6 t⇒ as 6 at.
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By an S-poset morphism f : A → B, we mean a monotone map between
S-posets which preserves the action (that is f(as) = f(a)s).

An element a of an S-poset A is called a �xed or zero element if as = a for all
s ∈ S. We denote the set of all �xed elements of an S-poset A by FixA, which is
in fact a sub-S-poset of A that is as ∈ FixA for all a ∈ FixA and s ∈ S.

We de�ne an S-poset A to be separated if it is separated as an S-act, that is
any two points a 6= b in A can be separated by at least one s ∈ S, by sa 6= sb.

We say that an S-poset A is subseparated if a 6 b in A whenever as 6 bs for
all s ∈ S. It is clear that every subseparated S-poset is a separated one.

A regular monomorphism or an embedding is an S-poset morphism (that is, a
monoton and action preserving map) f : A → B such that a 6 b if and only if
f(a) 6 f(b), for each a, b ∈ A.

2. Cauchy sequences

Our central object of study in this paper is the notion of Cauchy sequences in
S-posets [2, 3, 4].

First of all it is easy to check that:
• If S is a left zero semigroup, then for every S-poset A, AS ⊆ FixA.

De�nition 2.1. A Cauchy sequence in an S-poset A is an S-poset morphism
f : S → A. More explicitly, f : S → A is a Cauchy sequence when it is order
preserving and f(st) = f(s)t.

We denote a Cauchy sequence by (as)s∈S , which expresses the fact that the
element s ∈ S is mapped to the element as in A. Since S is a left zero posemigroup,
with this notation we have ast = ast = as and for s, t ∈ S if s 6 t then as 6 at.

It is worth noting that in an S-poset A (over the left zero posemigroup S) the
terms of a Cauchy sequence are �xed elements of A. So if we denote the set of
Cauchy sequences of A by C(A) then C(A) = (FixA)S in which (FixA)S is the
set of monotone mappings from S to FixA.

De�nition 2.2. Let (as)s∈S be a Cauchy sequence in an S-poset A. An element b
in an extension B of A is called a limit of (as)s∈S whenever bs = as for each s ∈ S.

Lemma 2.3. Given an S-poset A over a left zero posemigroup S, the set C(A) of
all Cauchy sequences in A, is a subseparated S-poset.

Proof. First we note that C(A) is an S-poset, by the action C(A) × S → C(A)
mapping each ((as)s∈S , t) ∈ C(A)× S to (as)s∈S · t = (ats)s∈S which is obviously
in C(A), for every t ∈ S. We should note that C(A) is a poset with point-wise
order and ((as)s∈S · t) · r = (as)s∈S · (tr). Indeed, (as)s∈S · (tr) = (as)s∈S · t =
(ats)s∈S = (at)s∈S , namely (as)s∈S · (tr) is the constant sequence (at)s∈S , also we
have ((as)s∈S · t) · r = (ats)s∈S · r = (at)s∈S · r = (at)s∈S ; the last equality is true
because (at)s∈S is a constant sequence. Now if r 6 t in S, then rs = r 6 t = ts,
for every s ∈ S and since (as)s∈S is a Cauchy sequence, ars = ar 6 at = ats. That
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is (as)s∈S · r 6 (as)s∈S · t. Finally if (as)s∈S 6 (bs)s∈S , then as 6 bs, for every
s ∈ S. Hence ats 6 bts for every s, t ∈ S. That is (as)s∈S · t 6 (bs)s∈S · t, for every
t ∈ S. To prove subseparatedness, let (as)s∈S · t 6 (bs)s∈S · t, for every t ∈ S.
Then ats 6 bts, for every t, s ∈ S. Now, since S is a left zero posemigroup, at 6 bt,
for every t ∈ S. That is (as)s∈S 6 (bs)s∈S .

Lemma 2.4. Let A be an S-poset over a left zero posemigroup S and (as)s∈S be
a sequence (indexed family of elements of A by s ∈ S). Then (as)s∈S has a limit
in some extension B of A if and only if it is a Cauchy sequence.

Proof. One way is clear. In fact the limit of the sequence (as)s∈S makes it to
have the Cauchy property in De�nition 2.1. For the converse, let (as)s∈S be a
Cauchy sequence in A. Then take the extension B of A to be A∪̇{(as)s∈S} with
the action (as)s∈S ·t = at for t ∈ S and no order between (as)s∈S and the elements
of A. The constructed B is an S-poset. This is because, for all t, r ∈ S, we have
((as)s∈S · t) · r = at · r = atr = (as)s∈S · (tr), and if t 6 r then at 6 ar follows from
this fact that (as)s∈S is a Cauchy sequence, and hence (as)s∈S · t 6 (as)s∈S · r.
Now, by the de�ned action, we have that (as)s∈S is a limit of (as)s∈S .

De�nition 2.5. An S-poset A is said to be complete if every Cauchy sequence
over A has a limit in A.

For a given left zero posemigroup S and an S-poset A Lemma 2.3 shows that
C(A) is an S-poset. In fact, C(A) is a complete S-poset.

Theorem 2.6. Let A be an S-poset over a left zero posemigroup S. The S-poset
C(A) is complete.

Proof. Let (fs)s∈S be a Cauchy sequence in C(A), in which fs = (asr)r∈S for each
s ∈ S. Hence for each s, t ∈ S we have fst = fst. Since S is a left zero semigroup,
fs = fst = fst, i.e., for each s ∈ S, fs is a �xed element in C(A). Now, by the
de�ned action of S over C(A) in Lemma 2.3, we have fs = fst = (astr)r∈S =
(ast )r∈S . So (asr)r∈S = (ast )r∈S for each r ∈ S. Namely, for each s ∈ S, fs is a
constant sequence. Now we de�ne the Cauchy sequence (as)s∈S to be as = ast , for
every s ∈ S and claim that (as)s∈S is a limit of (fs)s∈S . This is because (as)s∈S ·r
= (ast )s∈S · r = (asrt)s∈S = (asr)s∈S = (ast )r∈S = fs. Indeed, the third equation
follows from this fact that S is a left zero posemigroup. Also since fs is a constant
sequence and (asr)r∈S = (ast )r∈S , we have the fourth and �fth equations.

3. dc-injective of S-posets

A sub-S-poset A of an S-poset B is called down-closed in B if b 6 a for a ∈ A,
b ∈ B then b ∈ A. By a down-closed embedding or dc-regular monomorphism, we
mean an embedding f : A→ B such that f(A) is a down-closed sub-S-poset of B.
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An S-poset A is said to be down-closed injective or simply dc-injective if for
every down-closed embedding f : B → C and each S-poset morphism ϕ : B → A
there exists an S-poset morphism ϕ∗ : C → A making the diagram

B
f //

ϕ

��

C

ϕ∗~~
A

commutative.

Theorem 3.1. For a left zero posemigroup S every dc-injective S-poset is com-
plete.

Proof. Let (as)s∈S be a Cauchy sequence in a dc-injective S-poset A. Consider
the extension B = A∪̇{(as)s∈S} of A with the action (as)s∈S · t = at and no
order relation between (as)s∈S and the elements of A as introduced in the proof
of Lemma 2.4. It is clear that A is embedded in B, so the dc-injective property of
A completes the diagram

A
� � // B

ϕ
��

A

by an S-poset morphism ϕ. Now we claim that ϕ((as)s∈S) ∈ A is a limit of the
Cauchy sequence (as)s∈S . This is because ϕ((as)s∈S) · t = ϕ((as)s∈S · t) = ϕ(at) =
at, for every t ∈ S.

The converse of Theorem 3.1 is true if the S-poset has a �good� property. See
the next theorem as the counterpart of Theorem 2.3 of [7] with the compeletly
di�erent method of proof.

Theorem 3.2. If S is a left zero posemigroup S, then every complete subseparated
S-poset A with a top �xed element is dc-injective.

Proof. To prove, we show that A is a retract of each of its down-closed extensions
(that is, to say A is an absolute down-closed retract) (see [8]). To do so, let B be
a down-closed extension of A. De�ne g : B → A with g|A = idA and for b ∈ B \A
take g(b) = ab where ab is a limit of the Cauchy sequence (as)s∈S with as = bs for
bs ∈ A, and as = a0 for bs /∈ A, where a0 ∈ FixA is the top �xed element in A
mentioned in the hypotheses.

First we show that (as)s∈S is a Cauchy sequence. To do so, we note that
ast = ast. This is because, if as = bs, then ast = (bs)t = b(st) = bs also
ast = as = bs, and if as = a0, then ast = a0t = a0 also ast = as = a0. Also if
s 6 t, then bs 6 bt. This is because if bt ∈ A, then bs ∈ A, since A is down-closed
in B, therefore as 6 at, and if bt /∈ A, then at = a0 but a0 is a top �xed element
and hence bs 6 a0, that is as 6 at. Thus (as)s∈S is a Cauchy sequence.
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Now we show that g is order preserving. To do so, let b 6 b′. Then bs 6 b′s
for all s ∈ S. Therefore, by de�nition of ab, ab′ , we have abs 6 ab′s. But, since A
is subseparated, ab 6 ab′ . That is g(b) 6 g(b′). Finally g is equivariant on B \ A.
Because g(b)s = abs = as = bs = g(bs), if bs ∈ A, for every b ∈ B \ A and s ∈ S.
And if bs /∈ A, then, since (bs)t = bs for all t ∈ S, we get g(bs) = abs = a0 = a0s =
abs = g(b)s.

As a corollary of Theorems 3.1 and 3.2 we get the following Theorem.

Theorem 3.3. Let S be a left zero posemigroup S. Then a subseparated S-poset
A with a top �xed element is dc-injective if and only if it is complete.

Theorem 3.4. For each S-poset A over a left zero posemigroup S with a top �xed
element, C(A) is dc-injective.

Proof. Let a0 be a top �xed element in A. One can easily see that the constant
sequence (as = a0)s∈S is a Cauchy sequence and is a top �xed element in C(A).
Now Theorems 3.3 and 2.6 give the result.

Before the next de�nition it is worth noting that by a right down-closed ideal
I of a posemigroup S we mean a non-empty subset I of S such that (i) IS ⊂ I
and (ii) a 6 b ∈ I implies a ∈ I, for all a, b ∈ S.

De�nition 3.5. An S-poset A is said to be
• I-injective, for a right down-closed ideal I of S, if each S-poset morphism
f : I → A is of the form λa for some a ∈ A, that is f(s) = as for s ∈ I.
• S-injective, if each S-poset morphism f : S → A is of the form λa for some
a ∈ A, that is f(s) = as for s ∈ S.

In the next theorem we compare the concept of completeness with the di�erent
types of injectivity for some special S-poset over a left zero posemigroup S, and
we see that they are surprisingly equivalent to each other.

Theorem 3.6. For a subseparated S-poset A with a top �xed element a0, the
following are equivalent:

(1) A is dc-injective;
(2) A is dc-absolutely retract;
(3) A is complete;
(4) A is I-injective, for each right down-closed ideal I of S;
(5) A is S-injective.

Proof. (1)⇔(2). It is given in [8].
(1)⇔(3). See Theorem 3.3.
(3)⇒(4). Let A be complete and I be a right down-closed ideal of S and

f : I → A be an S-poset morphism. Consider the sequence (as)s∈S to be as = f(s)
for s ∈ I, and as = a0 for s ∈ S − I. The sequence (as)s∈S is a Cauchy sequence.
This is because, if s 6 t then four cases may occur:
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◦ If s, t ∈ I then f(s) 6 f(t), since f is S-poset morphism, that is as 6 at.
◦ If s, t ∈ S − I, then as = at = a0, that is as 6 at.
◦ It may s ∈ S − I, t ∈ I. But since s 6 t and I is down-closed ideal, we must

have s ∈ I which is a contradiction. Hence this case is not possible.
◦ And �nally if s ∈ I and t ∈ S − I, then f(s) = as, f(t) = a0. But a0 is the

top �xed element, hence f(s) = as 6 a0 = f(t).
Also let s, t ∈ S. Then if s ∈ I, we have ast = f(s)t = f(st) = f(s) = as and

if s ∈ S − I, then f(s)t = a0t = a0 = f(s).
Now since (as)s∈S is a Cauchy sequence, it has a limit a in A. So as = as, for

all s ∈ S, which means f(s) = as = λa(s). That is f = λa.
(4)⇒ (5). It is trivial.
(5)⇒ (3). Let A be S-injective and (as)s∈S be a Cauchy sequence over A. So

f : S → A with f(s) = as is an S-poset morphism. Now (5) gives a ∈ A such that
f = λa, hence as = as for all s ∈ S, i.e., a is a limit of the given sequence.

4. Subdirectly irreducible

By Birkho�'s Representation Theorem (see [6]) every algebra is isomorphic to a
subdirect product of subdirectly irreducible algebras. This theorem, by analo-
gous proof is established in the category of S-posets. In [7], characterization of
subdirectly irreducible acts, respectively over the monoid (N∪ {∞},min,∞), and
left zero semigroups can be seen. In this section we give a characterization of
subdirectly irreducible S-posets over a left zero posemigroup.

De�nition 4.1. (see [6]) An equivalence relation ρ on an S-act A is called a
congruence on A, if aρa′ implies (as)ρ(a′s), for all s ∈ S. We denote the set of all
congruences on A by Con(A) .

A congruence on an S-poset A is a congruence θ on the S-act A with the
property that the S-act A/θ can be made into an S-poset in such a way that the
natural map A→ A/θ is an S-poset map (see [1]).

For any relation θ on A, de�ne the relation 6θ on A by

a 6θ a′ if and only if a 6 a1θa
′
1 6 a2θa

′
2 6 . . . 6 anθa

′
n 6 a′,

where ai, a
′
i ∈ A (such a sequence of elements is called a θ-chain). Then an S-

act congruence θ on an S-poset A is an S-poset congruence if and only if aθa′

whenever a 6θ a′ 6θ a.
For a, b ∈ A, ρa,b denotes the smallest S- act congruence on A containing (a, b).

It is in fact, the equivalence relation generated by {(as, bs) : s ∈ S ∪ {1}}. Its
elements are as follows:

xρa,by ⇔ ∃s1, s2, ..., sn ∈ S ∪ {1} , p1, p2, ..., pn, q1, q2, ..., qn ∈ A,

x = p1s1 q2s2 = p3s3 . . . qnsn = y
q1s1 = p2s2 q3s3 = p4s4 . . .

where (pi, qi) = (as, bs) or (pi, qi) = (bs, as) for some s ∈ S ∪ {1}.



On injective and subdirectly irreducible S-posets 115

Lemma 4.2. Let A be an S-act over a posemigroup S. Then ρx,y, for every
distinct x, y ∈ FixA, is an S-poset congruence.

Proof. To prove we show the equivalence condition of an S-poset congruence.
Namely, we show that if a 6ρx,y a

′ 6ρx,y a then aρx,ya
′. But �rst we note that

ρx,y = ∆
⋃
{(x, y), (y, x)} since x, y ∈ FixA. Now if a 6ρx,y

a′ 6ρx,y
a then two:

1) a 6 xρx,yy 6 yρx,yx 6 a′ 6 xρx,yy 6 yρx,yx 6 a. Therefore a 6 x 6 a′ 6
x 6 a and hence a = a′ thus aρx,ya

′; or
2) a 6 xρx,yy 6 yρx,yx 6 a′ 6 yρx,yx 6 xρx,yy 6 a. Therefore a 6 x 6 a′ 6

y 6 a and hence x = y which is a contradiction. Hence this case is not possible.
Thus we have a = a′, that is aρx,ya

′.

De�nition 4.3. (see [6])An S-poset A is called subdirectly irreducible if
⋂
i∈I ρi 6=

∆ for all congruences ρi on A with ρi 6= ∆. If A is not subdirectly irreducible,
then it is called subdirectly reducible.

It is worth noting that for each posemigroup S and an S-poset A with |A| = 2
there exist only two congruences ∆ and 5 on A and therefore these S-posets are
subdirectly irreducible.

Lemma 4.4. Every S-poset A over a left zero posemigroup S with |FixA| = 1 or
|FixA| > 3 is subdirectly reducible.

Proof. It is clear that for a left zero semigroup S, every S-poset with only one
�xed element is subirectly reducible. Also, let A be an S-poset with at least
three distinct �xed elements a, b, c. Then we consider the S-poset congruences
ρa,b and ρb,c , by Lemma 4.2. Since a, b, c ∈ FixA we obviously have ρa,b =
∆
⋃
{(a, b), (b, a)} and ρb,c = ∆

⋃
{(b, c), (c, b)}. Therefore ρa,b ∩ ρa,c = 4, and we

are done.

We give the following theorm as the counterpart of Theorem 3.2 of [7] in the
category of S-posets over a left zero posemigroup.

Theorem 4.5. An S-poset A over a left zero posemigroup S is subdirectly irre-
ducible if and only if it is separated and |FixA| = 2.

Proof. Let A be subdirectly irreducible. Then Lemma 4.4 ensures that |FixA| = 2
such as {a0, b0}. To show that A is separated, we suppose that there exists x 6=
y ∈ A such that xs = ys, for all s ∈ S, and �nd a contradiction. To do so, consider
the S-act congruence ρx,y. Since xs = ys, for all s ∈ S, ρx,y = ∆

⋃
{(x, y), (y, x)}.

By the analogous method of the proof of Lemma 4.2 one can see that ρx,y is an
S-poset congruence on A. Also since a0, b0 ∈ FixA, by Lemma 4.2, we have the
S-posset congruence ρa0,b0 on A. But ρa0,b0 ∩ ρx,y = ∆ which is a contradiction,
therefore A is separated.

For the converse, let A be separated, FixA = {a0, b0}, and θ( 6= ∆) be an
S-poset congruence on A. Then there exists x 6= y ∈ A such that (x, y) ∈ θ. Thus
(xs, ys) ∈ θ for every s ∈ S. But since xs, ys ∈ FixA = {a0, b0} and A is separated,
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there exists s ∈ S such that xs 6= ys. This means (a0, b0), (b0, a0) ∈ θ. Therefore⋂
θ 6=∆ θ contains ∆ ∪ {(a0, b0), (b0, a0)}, hence A is subdirectly irreducible.

Finally, by the above theorem, and Birkho�'s Representation Theorem we have:

Theorem 4.6. Every S-poset over a left zero posemigroup S is isomorphic to a
subdirect product of separated S-posets each of which has exactly two �xed elements.

It is worth noting that every S-poset A over a left zero posemigroup S with
one or two elements and |FixA| = 1 is dc-injective.

We close the paper by characterizing simple S-poset. Recall that an S-poset A
is called simple if ConA = {4,∇}. It is easy to check that every S-poset A with
|A| 6 2 is simple but no S-poset A with trivial action and |A| > 2 is simple.

Theorem 4.7. For a left zero posemigroup S, there exists no simple S-poset A
with |A| > 2.

Proof. Let a 6= b be elements of A. Then in the case where a, b ∈ FixA we have
ρa,b 6= ∇, (where ρa,b is an S-poset congruence that discussed in Lemma 4.2) since
|A| > 2, hence there exists (a, b 6=)x ∈ A and (a, x) /∈ ρa,b. Therefore, ρa,b is a
nontrivial congruence on A. Also in the case that one of a, b is not �xed, taking
a /∈ FixA, then ρa,b 6= ∇. Because otherwise, if ρa,b = ∇ then for each x 6= y ∈ A,
we have (x, y) ∈ ρa,b. Consequently there exist s, t ∈ S such that as = x, bt = y.
Hence x, y ∈ FixA. Thus (a, x) /∈ ρx,y, and so ρx,y is a nontrivial congruence.
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