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Steiner loops satisfying the statement

of Moufang's theorem

Maria de Lourdes Merlini Giuliani, Giliard Souza dos Anjos

and Charles J. Colbourn

Abstract. Andrew Rajah posed at the Loops'11 Conference in Trest, Czech Republic, the

following conjecture: Is every variety of loops that satis�es Moufang's theorem contained in the

variety of Moufang loops? This paper is motivated by that problem. We give a partial answer

to this question and present two types of Steiner loops, one that satis�es Moufang's theorem and

another that does not, and neither is Moufang loop.

1. Introduction

A nonempty set L with a binary operation is a loop if there exists an identity
element 1 with 1x = x = x1 for every x ∈ L and both left and right multiplication
by any �xed element of L permutes every element of L.

A loop L has the inverse property (and is an IP loop), if and only if there is a
bijection L −→ L : x 7→ x−1 such whenever x, y ∈ L, x−1(xy) = y = (yx)x−1. It
can be seen that IP loops also satisfy (xy)−1 = y−1x−1. A Steiner loop is an IP
loop of exponent 2. A loop M is a Moufang loop if it satis�es any of the following
equivalent identities:

x(y · xz) = (xy · x)z,
y(x · zx) = (yx · z)x,
xy · zx = x(yz · x).

Such loops were introduced by Moufang [3] in 1934. The associator of elements
a, b, c ∈ L is the unique element (a, b, c) of L satisfying the equation: ab · c =
(a · bc)(a, b, c).

Theorem 1.1. [Moufang's Theorem [4]] Let M be a Moufang loop. If a, b, c ∈M
such that (a, b, c) = 1, then a, b, c generate a subgroup of M .

In view of Theorem 1.1, every Moufang loop is diassociative, that is, any two of
its elements generate a group. However, Theorem 1.1 was formulated for Moufang
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loops. We consider its statement for another class of loops, namely, for the variety
of Steiner loops.

Our motivation arises from the question posed by Andrew Rajah at the Loops'11
Conference concerning the relationship between Moufang loops and loops that sat-
isfy Moufang's theorem. The results in this paper were �rst presented at the Third
Mile High Conference on Nonassociative Mathematics in Denver, 2013. Later,
Stuhl [7] explored solutions based on Steiner Oriented Hall Loops, and a combina-
torial characterization of Steiner loops satisfying Moufang's theorem in terms of
con�gurations has been established [1]. Despite the combinatorial characterization
in [1], the algebraic treatment here remains useful for two reasons. First, these
results provide the foundational work for [1]; and second, they provide an alge-
braic framework to understand such loops, which complements the combinatorial
framework.

2. Steiner loops and Moufang's theorem

De�nition 2.1. A loop L satis�es Moufang's Property,MP, if L is not Moufang
loop, but it satis�es the statement of Moufang's theorem, i.e., if a, b, c ∈ L such
that (a, b, c) = 1, then a, b, c generate a subgroup of L.

It is known that there exists only one Steiner loop S of order 10. We prove
that this Steiner loop S satis�es Moufang's Property MP. Its Cayley table can
be found, for example, using the GAP Library [9], as seen below:

· 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 1 4 3 8 10 9 5 7 6
3 3 4 1 2 10 9 8 7 6 5
4 4 3 2 1 9 8 10 6 5 7
5 5 8 10 9 1 7 6 2 4 3
6 6 10 9 8 7 1 5 4 3 2
7 7 9 8 10 6 5 1 3 2 4
8 8 5 7 6 2 4 3 1 10 9
9 9 7 6 5 4 3 2 10 1 8
10 10 6 5 7 3 2 4 9 8 1

For any x, y, z ∈ S, such that x 6= y; y 6= z; z 6= x, x 6= 1, y 6= 1, z 6= 1,
x · yz = xy · z implies that z = xy. So < x, y, z >=< x, y >, and hence x, y, z
generate a group.

A Steiner triple system (Q,B), or STS(n), is a non-empty set Q with n elements
and a set B of unordered triples {a, b, c} such that

(i) a, b, c are distinct elements of Q;

(ii) when a, b ∈ Q and a 6= b, there exists a unique triple {a, b, c} ∈ B.
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A Steiner triple system (Q,B) with |Q| = n elements exists if and only if n > 1 and
n ≡ 1 or 3 (mod 6) [8]. Because there is a one-to-one correspondence between the
variety of Steiner triple systems and the variety of all Steiner Loops [2], Steiner
loops have order m ≡ 2 or 4 (mod 6). This underlies the study of Steiner triple
systems from an algebraic point of view as in [4], [5] and [6].

We use the following standard construction of Steiner triple systems [8], some-
times called the Bose construction. Let n = 2t + 1 and de�ne Q := Zn × Z3.
A Steiner triple system (Q,B) can be formed with B consisting of the following
triples

{(x, 0), (x, 1), (x, 2)} where x ∈ Zn, and

{(x, i), (y, i), (x+y
2 , i+ 1)} where x 6= y;x, y ∈ Zn, i ∈ Z3

The corresponding Steiner loops can be de�ned directly. Let S = Q∪ {1}. De�ne
a binary operation ∗ with identity element 1 as follows:

(x, i) ∗ (x, j) = (x, k) i 6= j, i 6= k, j 6= k,

(x, i) ∗ (y, i) = (x+y
2 , i+ 1) x 6= y,

(x, i) ∗ (y, i+ 1) = (2y − x, i) x 6= y,

(x, i) ∗ (y, i− 1) = (2x− y, i− 1) x 6= y,

(x, i) ∗ (x, i) = 1

Then (S, ∗) is commutative loop. However, (S, ∗) is not a Moufang loop. If we take
the elements x = (0, 0) y = (1, 0) and z = (0, 1) then (xy)(zx) = (−1/2, 1). On
the other hand, x((yz)x) = (−1, 0), so (S, ∗) does not satisfy one of the Moufang
identities.

Analyzing Steiner loops from the Bose construction, there are two types: one
that satis�es MP, and another that does not. Using computer calculations and
the Loops package in GAP [9], �rst we studied the Steiner loops of order k with
k ∈M1 where

M1={16, 28, 34, 40, 46, 52, 58, 79, 76, 82, 88, 94, 100, 112, 118, 124, 130, 136, 142, 154}

from the Bose construction. Each of these Steiner loops satis�es MP. However,
none of the Steiner loops of order k ∈ {22, 64, 106, 148} from the Bose construction
satis�esMP. The explanation for this follows.

Theorem 2.2. Let S be a Steiner loop from the Bose construction. Then S has

the propertyMP if and only if 7 is an invertible element in Zn.

Proof. Suppose S has property MP. If 7 is not invertible in Zn, then exists an
element a ∈ Zn, a 6= 0 such that 7a = 0. Hence 8a = a. Because n is odd,
2a = a/4. The associator ((0, 1), (0, 0), (a, 0)) = 1 while ((0, 1), (a, 0), (0, 0)) 6= 1,
thus the elements (0, 1), (0, 0), (a, 0) associate in some order, but not in every order,
a contradiction.
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Now, suppose that 7 is invertible in Zn. We consider all possible triples of
elements of S. Our strategy is to show that if the associator (a, b, c) = 1, then
a, b, c are in the same triple. There are 25 generic triple elements of S; here
x, y, z ∈ Zn are distinct and i, j, k ∈ Z3 are distinct:

{(x, i), (x, i), (x, i)}, {(x, i), (x, i), (x, j)}, {(x, i), (x, i), (y, i)}, {(x, i), (x, i), (y, j)},
{(x, i), (x, j), (x, i)}, {(x, i), (x, j), (x, j)}, {(x, i), (x, j), (y, i)}, {(x, i), (x, j), (y, j)},
{(x, i), (x, j), (x, k)}, {(x, i), (x, j), (y, k)}, {(x, i), (y, i), (x, i)}, {(x, i), (y, i), (x, j)},
{(x, i), (y, i), (y, i)}, {(x, i), (y, i), (y, j)}, {(x, i), (y, i), (z, i)}, {(x, i), (y, i), (z, j)},
{(x, i), (y, j), (x, i)}, {(x, i), (y, j), (x, j)}, {(x, i), (y, j), (y, i)}, {(x, i), (y, j), (y, j)},
{(x, i), (y, j), (z, i)}, {(x, i), (y, j), (z, j)}, {(x, i), (y, j), (x, k)}, {(x, i), (y, j), (y, k)},
{(x, i), (y, j), (z, k)}.

When we consider j 6= i, j 6= k, k 6= i, we assume that j = i+1 and k = i− 1
or j = i − 1 and k = i + 1. We identify 59 di�erent sets of triples of elements
and calculate the associators of each set. We found that in the �rst 37 triples the
associator is di�erent from 1, as listed below:

{(x, i), (x, i+ 1), (y, i)}, {(x, i), (x, i− 1), (y, i)}, {(x, i), (x, i+ 1), (y, i+ 1)},
{(x, i), (y, i), (x, i+ 1)}, {(x, i), (y, i), (x, i− 1)}, {(x, i), (y, i), (y, i− 1)},
{(x, i), (y, i), (z, i), where z 6= x+y

2 and x 6= y+z
2 },

{(x, i), (y, i), (z, i), where z 6= x+y
2 and x = y+z

2 },
{(x, i), (y, i), (z, i), where z = x+y

2 and x 6= y+z
2 },

{(x, i), (y, i), (z, i), where z = x+y
2 and x = y+z

2 },
{(x, i), (y, i), (z, i+ 1), where z 6= x+y

2 }, {(x, i), (y, i+ 1), (x, i+ 1)},
{(x, i), (y, i), (z, i− 1), where z 6= x+y

2 and x 6= 2y − z},
{(x, i), (y, i), (z, i− 1), where z = x+y

2 and x 6= 2y − z},
{(x, i), (y, i), (z, i− 1), where z = x+y

2 and x = 2y − z},
{(x, i), (y, i− 1), (x, i− 1)}, {(x, i), (y, i+ 1), (y, i)}, {(x, i), (y, i− 1), (y, i)},
{(x, i), (y, i+ 1), (z, i), where z 6= 2y − x},
{(x, i), (y, i− 1), (z, i), where z 6= 2x− y and x 6= 2z − y},
{(x, i), (y, i− 1), (z, i), where z 6= 2x− y and x = 2z − y},
{(x, i), (y, i− 1), (z, i), where z = 2x− y and x 6= 2z − y},
{(x, i), (y, i− 1), (z, i), where z = 2x− y and x = 2z − y},
{(x, i), (y, i+ 1), (z, i+ 1), where z 6= 2y − x and x 6= y+z

2 },
{(x, i), (y, i+ 1), (z, i+ 1), where z 6= 2y − x and x = y+z

2 },
{(x, i), (y, i+ 1), (z, i+ 1), where z = 2y − x and x = y+z

2 },
{(x, i), (y, i− 1), (z, i− 1), where z 6= 2x− y}, {(x, i), (y, i+ 1), (x, i− 1)},
{(x, i), (y, i− 1), (x, i+ 1)}, {(x, i), (y, i+ 1), (y, i− 1)},
{(x, i), (y, i+ 1), (z, i− 1), where z 6= 2y − x and x 6= 2z − y},
{(x, i), (y, i+ 1), (z, i− 1), where z = 2y − x and x 6= 2z − y},
{(x, i), (y, i+ 1), (z, i− 1), where z = 2y − x and x = 2z − y},
{(x, i), (y, i− 1), (z, i+ 1), where z 6= 2x− y and x 6= 2y − z},
{(x, i), (y, i− 1), (z, i+ 1), where z 6= 2x− y and x = 2y − z},
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{(x, i), (y, i− 1), (z, i+ 1), where z = 2x− y and x = 2y − z},
{(x, i), (x, i− 1), (y, i+ 1)}.

Next, there are 14 triples for which the associator is 1 and they are in the
same triple of the STS; consequently, they are in a Klein group (and so generate
a subgroup).

{(x, i), (x, i), (x, i)}, {(x, i), (x, i), (x, j)}, {(x, i), (x, i), (y, i)}, {(x, i), (x, i), (y, j)},
{(x, i), (x, j), (x, i)}, {(x, i), (x, j), (x, j)}, {(x, i), (y, i), (x, i)}, {(x, i), (y, i), (y, i)},
{(x, i), (y, i), (z, i+ 1), where z = x+y

2 }, {(x, i), (y, j), (x, i)}, {(x, i), (y, j), (y, j)},
{(x, i), (y, i+ 1), (z, i), where z = 2y − x},
{(x, i), (y, i− 1), (z, i− 1), where z = 2x− y}, {(x, i), (x, j), (x, k)}

There remain 8 cases to consider:

{(x, i), (x, i− 1), (y, i− 1)}, {(x, i), (y, i), (y, i+ 1)},
{(x, i), (y, i− 1), (y, i+ 1)}, {(x, i), (x, i+ 1), (y, i− 1)},
{(x, i), (y, i), (z, i− 1), where x = 2y − z, z 6= x+y

2 },
{(x, i), (y, i+ 1), (z, i+ 1) where z = 2y − x, x 6= y+z

2 },
{(x, i), (y, i+ 1), (z, i− 1) where z 6= 2y − x, x = 2z − y},
{(x, i), (y, i− 1), (z, i+ 1) where z = 2x− y, x 6= 2y − z}

Each has associator di�erent from 1 because 7 is invertible in Zn. Take for
instance the triple {(x, i), (x, i+ 1), (y, i− 1)} with x 6= y of the STS. Now (x, i) ∗
((x, i+ 1) ∗ (y, i− 1)) = (4y − 3x, i) and ((x, i) ∗ (x, i+ 1)) ∗ (y, i− 1) = (x+y

2 , i).
The associator ((x, i), (x, i+ 1), (y, i− 1)) is 1 if and only if 7x = 7y. Because 7 is
invertible in Zn, we obtain x = y, a contradiction.

3. Beyond Steiner loops

We have seen that certain Steiner loops from the Bose construction provide ex-
amples of loops satisfying MP. Further examples can be obtained by the direct
product of loops, the proof of which is straightforward:

Lemma 3.1. Let S and M be loops that satisfy Moufang's theorem. Then S×M
satis�es Moufang's theorem, and S ×M satis�esMP if one or both of S and M
satisfyMP.

Taking S to satisfy MP and M to be a group or a Moufang loop provides
numerous examples of loops that satisfyMP but are neither Steiner nor Moufang
loops. A characterization of loops that satisfy Moufang's theorem must therefore
consider loops beyond the varieties examined here.
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