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The categories of actions of a dcpo-monoid

on directed complete posets

Mojgan Mahmoudi and Halimeh Moghbeli-Damaneh

Abstract. In this paper, some categorical properties of the category Cpo-S of all S-cpo's;

cpo's equipped with a compatible right action of a cpo-monoid S, with strict continuous action-

preserving maps between them is considered. We also de�ne and consider similarly, the category

Dcpo-S of all S-dcpo's, and continuous action-preserving maps between them. In particular,

we characterize products and coproducts in these categories. Also, epimorphisms and monomor-

phisms inDcpo-S are studied. Further, we show that Cpo-S is not cartesian closed butDcpo-S

is cartesian closed.

1. Introduction and preliminaries

The category Dcpo of directed complete partial ordered sets plays an important
role in Theoretical Computer Science, and specially in Domain Theory (see [1]).
This category is complete and cocomplete. The completeness of Dcpo has been
proved (in a constructive way) by Achim Jung ([1]) and it is stated there that to
describe colimits is quite di�cult. In [5], Fiech characterizes and describes colimits
in Dcpo, but his construction is rather complicated. The cartesian closeness of
Dcpo has also been proved by Achim Jung (see [7]). It is also shown that the
categoryCpo of directed complete partially ordered sets with bottom elements and
strict continuous maps between them is monoidal closed, complete and cocomplete
(see [1, 7]).

In this paper, we study some categorical properties of the categories Dcpo-
S (and Cpo-S) of the actions of a dcpo(cpo)-monoid S on dcpo's (cpo's). In
particular, we show that the category Dcpo-S is complete and cocomplete, and
describe products and coproducts in these categories. Also, epimorphisms and
monomorphisms in these categories are considered. Further, we show that Cpo-S
is not cartesian closed but Dcpo-S is so.

Let us now give some preliminaries needed in the sequel.
Let Pos denote the category of all partially ordered sets (posets) with order

preserving (monotone) maps between them. A nonempty subset D of a partially
ordered set is called directed, denoted by D ⊆d P , if for every a, b ∈ D there exists
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c ∈ D such that a, b 6 c; and P is called directed complete, or brie�y a dcpo, if for
every D ⊆d P , the directed join

∨d
D exists in P . A dcpo which has a bottom

element ⊥ is said to be a cpo.
A dcpo map or a continuous map f : P → Q between dcpo's is a map with the

property that for every D ⊆d P , f(D) is a directed subset of Q and f(
∨d

D) =∨d
f(D). A dcpo map f : P → Q between cpo's is called strict if f(⊥) = ⊥.

Thus we have the categories Dcpo (and Cpo) of all dcpo's (cpo's) with (strict)
continuous maps between them.

The following lemmas are frequently used in this paper.

Lemma 1.1. [3, 7] Let {Ai : i ∈ I} be a family of dcpo's. Then the directed join

of a directed subset D ⊆d
∏

i∈I Ai is calculated as
∨d

D = (
∨d

Di)i∈I where

Di = {a ∈ Ai : ∃d = (dk)k∈I ∈ D, a = di}

for all i ∈ I.

Lemma 1.2. [7] Let P , Q, and R be dcpo's, and f : P ×Q→ R be a function of

two variables. Then f is continuous if and only if f is continuous in each variable;

which means that for all a ∈ P, b ∈ Q, fa : Q → R (b 7→ f(a, b)) and fb : P → R
(a 7→ f(a, b)) are continuous.

Remark 1.3. The categories Dcpo and Cpo are both complete and cocomplete.
In fact,

(i) The product of a family of dcpo's (cpo's) is their cartesian product, with
componentwise order and ordinary projection maps. In particular, the terminal
object of Dcpo (and Cpo) is the singleton poset {θ}.

The equalizer of a pair f, g : P → Q of (strict) continuous maps is given by
E = {x ∈ P : f(x) = g(x)} with the order inherited from P .

Moreover, the pullback of (strict) continuous maps f : P → R and g : Q → R
is the sub-dcpo P = {(a, b) : f(a) = g(b)} of the product P ×Q together with the
restriction of projection maps.

(ii) The coproduct of a family of dcpo's is their disjoint union, with the order
arising from each factor. In particular, the initial object of Dcpo is the empty
poset.

The coproduct of a family of cpo's is their coalesced sum. Recall that the

coalesced sum of the family {Ai : i ∈ I} of cpo's is de�ned to be⊎
i∈I

Ai = ⊥⊕
⋃̇

i∈I
(Ai \ {⊥Ai

}).

In particular, the initial object of Cpo is the singleton poset {θ}.

Recall that a po-monoid is a monoid with a partial order 6 which is compatible
with the monoid operation: for s, t, s′, t′ ∈ S, s 6 t, s′ 6 t′ imply ss′ 6 tt′.
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Similarly, a dcpo (cpo)-monoid is a monoid which is also a dcpo (cpo) whose
binary operation is a (strict) continuous map.

Now, we recall the preliminary notions of the action of a (po)monoid on a
set(poset). For more information, see [2, 4, 8].

Let S be a monoid. A (right) S-act or S-set is a set A equipped with an action
A × S → A, (a, s)  as, such that a1 = a and a(st) = (as)t, for all a ∈ A and
s, t ∈ S. Let Act-S denote the category of all S-acts with action-preserving maps
(maps f : A→ B with f(as) = f(a)s).

Also, recall that an element a of an S-act A is said to be a zero element if
as = a for all s ∈ S.

Let S be a po-monoid. A (right) S-poset is a poset A which is also an S-
act whose action λ : A × S → A is order-preserving, where A × S is considered
as a poset with componentwise order. The category of all S-posets with action-
preserving monotone maps between them is denoted by Pos-S.

Remark 1.4. Recall (see [2]) that:
(i) The product in the category of S-posets is the cartesian product with the

componentwise action and order. In particular, the terminal S-poset is the single-
ton S-poset.

Also, recall that the equalizer of a pair f, g : A → B of S-poset maps is given
by E = {a ∈ A : f(a) = g(a)} with action and order inherited from A.

The pullback of S-poset maps f : A → C and g : B → C is the sub-S-poset
P = {(a, b) : f(a) = g(b)} of A×B.

(ii) The coproduct is the disjoint union with the usual action and order. In
particular, the initial S-poset is the empty set.

Finally, we introduce the notion which we work on in this paper.

De�nition 1.5. Let S be a (cpo) dcpo-monoid. By a (right) S-dcpo (S-cpo) we
mean a dcpo (cpo) A which is also an S-act whose action λ : A×S → A is (strict)
continuous, where A× S is considered as a dcpo with componentwise order.

By an S-dcpo map (S-cpo map) between S-dcpo's (S-cpo's), we mean a map
f : A→ B which is both (strict) continuous and action-preserving.

We denote the categories of all S-dcpo's (S-cpo's) and S-dcpo (S-cpo) maps
between them by Dcpo-S (Cpo-S) .

Remark 1.6. (1) In the de�nition of an S-cpo, we can omit the property that the
action is strict. Notice that ⊥A×S = (⊥A,⊥S), and the action being strict means
that ⊥A⊥S = ⊥A. But, assumig that there is a continuous (monotone) action on
a cpo A, the fact that ⊥S 6 1 implies ⊥A⊥S 6 ⊥A1 = ⊥A. Also, since ⊥A is the
bottom element in A, we have ⊥A 6 ⊥A⊥S . Thus, ⊥A⊥S = ⊥A as required.

(2) Note that, by Lemma 1.2, the action λ : A × S → A is continuous if and
only if each λa : S → A, s 7→ as, and λs : A→ A, a 7→ as, is continuous.

(3) Notice that the above note is not true for strictness. For example, consider
the pomonoid S = {0 < 1} with the binary operation max. It is clear that max is
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strict continuous, so S is a cpo-monoid and hence an S-cpo. But the continuous
map λ1 : S → S, t 7→ max(t, 1) is not strict, because max(0, 1) = 1 6= 0 = ⊥S .

2. Limits and coproduts in Cpo-S and Dcpo-S

In this section, we give the description of products, equalizers, terminal object and
pullback in the categories Dcpo-S and Cpo-S. We also, �nd coproducts in these
two categories.

Remark 2.1. In both the categories Dcpo-S and Cpo-S, the terminal object is
the one element object.

Proposition 2.2. The product of a family of S-dcpo's (S-cpo's) is their cartesian
product with componentwise action and order.

Proof. Let {Ai : i ∈ I} be a family of S-dcpo's (S-cpo's). Let A =
∏

i∈I Ai.
First we see that A with componentwise action and order is a S-dcpo (S-cpo).
By Remark 1.4, A is an S-poset. Also, the action on A is continuous. Applying
Lemma 1.2, it is enough to check the continuity of the action in each component.
Let D ⊆d A and s ∈ S. We show that (

∨d
D)s =

∨
x∈D xs. By Lemma 1.1,∨d

D = (
∨d

Di)i∈I , where Di = {a ∈ Ai : ∃(dk)k∈I ∈ D, di = a} is a directed

subset of Ai, for all i ∈ I. Then we have (
∨d

D)s = (
∨d

Di)i∈Is = ((
∨d

Di)s)i∈I =

(
∨d

Dis)i∈I , where the latter equality is because the action on each Ai is continu-

ous. Now, we see that (
∨d

Dis)i∈I =
∨d

x∈D xs. First, notice that (
∨d

Dis)i∈I is an
upper bound of the set {xs : x ∈ D}, since for x = (di)i∈I ∈ D, we have di ∈ Di,

for all i ∈ I, and so xs = (dis)i∈I 6 ((
∨d

Di)s)i∈I = (
∨d

Dis)i∈I . Secondly, if
c = (ci)i∈I is any upper bound of the set {xs : x ∈ D}, then for i ∈ I and a ∈ Di,

taking x = (di)i∈I with di = a, we have as = dis 6 ci. Thus (
∨d

Dis)i∈I 6 c,
as required. Similarly, the action on A is continuous in the second component;
that is for T ⊆d S and a = (ai)i∈I ∈ A, a(

∨d
T ) =

∨d
t∈T at. Consequently,

A =
∏

i∈I Ai with the componentwise order and action is an S-dcpo (S-cpo).
Also, the projection maps pi : A→ Ai are S-dcpo (S-cpo) maps, since by Remark
1.3 they are (strict) continuous, also they are action-preserving (see [8]). To see
the universal property of products, notice that for every S-dcpo (S-cpo) B with
S-dcpo (S-cpo) maps fi : B → Ai, i ∈ I, the unique S-poset map f : B → A given
by f(b) = (fi(b))i∈I , b ∈ B which exists by the universal property of products
in Pos-S (see Remark 1.4), and satis�es pi ◦ f = fi, for all i ∈ I, is a (strict)
continuous map. This is because, f(⊥B) = (fi(⊥B))i∈I = (⊥Ai

)i∈I = ⊥A. Also,

it is straightforward to see that for D ⊆d B, f(
∨d

D) =
∨d

f(D).

Remark 2.3. (i) It is clear that the initial object in the category Dcpo-S is the
empty set.

(ii) The category Cpo-S has initial object if the identity of the cpo-monoid S
is its bottom element. In fact S is the initial object. Since, for every S-cpo A the
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map λ⊥ : S → A, de�ned by λ⊥(s) = ⊥As is the unique S-cpo map from S to A.
To show the uniqueness, let α : S → A be an S-cpo map, then α(s) = α(1s) =
α(1)s = ⊥As = λ⊥(s), for all s ∈ S. Thus, α = λ.

Now, we consider coproducts.

Theorem 2.4. The coproduct of a family of S-dcpo's is their disjoint union.

Proof. Let {Ai : i ∈ I} be a family of S-dcpo's. Let A =
⋃

i∈I Ai be the disjoint
union of Ai, i ∈ I. By Remark 1.4, A with the order and the action inherited from
Ai, i ∈ I; that is

x 6 y in A if and only if x 6 y in Ai, for some i ∈ I

and a.s = as for a ∈ Ai, s ∈ S, is an S-poset. Applying Lemma 1.2, we see that this
the action is also continuous. Therefore, A is an S-dcpo. Moreover, the injection
maps ui : Ai → A, de�ned by ui = idA|Ai , i ∈ I are S-poset maps, by Remark 1.4,
and they are continuous, by Remark 1.3. Finally, since A satis�es the universal
property of coproducts inPos-S, for every S-dcpoB and S-dcpo maps fi : Ai → B,
i ∈ I, the mapping f : A → B given by f(a) = fi(a) for a ∈ Ai, is the unique S-
poset map with f ◦ui = fi, for all i ∈ I. This map is also continuous, because if D
is a directed subset of A then by the de�nition of the order on A, D ⊆d Ai for some
i ∈ I, and

∨d
AD =

∨d
Ai
D. Thus f(

∨d
D) = fi(

∨d
D) =

∨d
fi(D) =

∨d
f(D).

To describe the coproduct in Cpo-S, using the coalesced sum of cpo's, we need
the following lemma.

Lemma 2.5. The coalesced sum of a family of S-cpo's in which the bottom element

is a zero element is an S-cpo.

Proof. Let {Ai : i ∈ I} be a family of S-cpo's. By Remark 1.3, the coalesced sum
A =

⊎
i∈I Ai is a cpo. De�ne the action on A as:

a · s =
{
as if as 6= ⊥Ai

⊥A if as = ⊥Ai

for a ∈ Ai, i ∈ I, s ∈ S, and ⊥A · s = ⊥A. In particular, ⊥A · 1 = ⊥A. We see that
also for a 6= ⊥A, a · 1 = a, because, for some i ∈ I, a ∈ Ai, and so a · 1 = a1 = a.
Also, a · (st) = (a · s) · t, for a ∈ A, s, t ∈ S. This is because, ⊥A · (st) = (⊥A · s) · t,
by the de�nition, and for a 6= ⊥A, a ∈ Ai for some i ∈ A. If a(st) 6= ⊥Ai

, then
as 6= ⊥Ai

, (otherwise since ⊥Ai
is a zero element, a(st) = (as)t = ⊥Ai

t = ⊥Ai
);

also (as)t = a(st) 6=⊥Ai . So (aṡ) · t = (as) · t = (as)t = a(st) = a · (st). Secondly,
if a(st) = ⊥Ai , then a · (st) = ⊥A. Now, if as = ⊥Ai then a · s = ⊥A and
so (a · s) · t = ⊥A · t = ⊥A. Also, if as 6= ⊥Ai

then a · s = as, and since
(as)t = a(st) = ⊥Ai

, (a · s) · t = ⊥A. Thus (a · s) · t = (a · s) · t = ⊥A, as required.
Now, we show that the action is continuous. Notice that D ⊆d A is directed if

and only if D ⊆d Ai, for some i ∈ I, or D = D′ ∪ {⊥A}, where D′ = ∅ or D′ is a
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directed subset of Ai, for some i ∈ I. This is because, if D ⊆d A and ⊥A /∈ D, and
on the contrary, if there exist d1, d2 ∈ D such that d1 ∈ Ai and d2 ∈ Aj , i 6= j,
then there exists d3 ∈ D such that d1 6 d3 and d2 6 d3. Also, by the de�nition of
the order on A, d3 ∈ Ai ∩Aj = ∅, which is a contradiction. So D ⊆d Ai, for some
i ∈ I. Now, let ⊥A ∈ D. We show that D′ = D−{⊥A} is a directed subset of Ai,
for some i ∈ I. On the contrary, let there exist d1

′, d2
′ ∈ D′ such that d1

′ ∈ Ai

and d2
′ ∈ Aj , i 6= j. Since D is directed, there exists d3 ∈ D such that d1

′ 6 d3
and d2

′ 6 d3. By the de�nition of the order on A, d3 ∈ Ai ∩ Aj = ∅, which is
a contradiction. So D′ ⊆d Ai, for some i ∈ I. Now, applying Lemma 1.2, we
show that the action is continuous. Let D ⊆d

⊎
i∈I Ai and s ∈ S. By the above

discussion, two cases may occur:
Case (i): D ⊆d Ai, for some i ∈ I.
Subcase (i1): If (

∨d
D)s 6= ⊥Ai

, then we have (
∨d

D) · s = (
∨d

D)s =∨d
x∈D xs, where the last equality is because Ai is an S-cpo. Now we claim that

d∨
x∈D

xs =

d∨
x∈D

x · s (∗)

Let K = {x ∈ D : xs 6= ⊥Ai
}. Then K satis�es:

(1) K 6= ∅, because otherwise (
∨d

D)s =
∨d

x∈D xs = ⊥Ai
, which is a contra-

diction.
(2) For all x ∈ K, x · s = xs, by the de�nition of the action on A.
(3) For all x ∈ K and x′ ∈ D\K, there exists x′′ ∈ K with x 6 x′′ and x′ 6 x′′,

since D is directed. But, then xs 6 x′′s, and hence x′′ ∈ K, since x ∈ K.
Now to prove (∗), �rst we see that

∨d
x∈D xs is an upper bound of the set

{x · s : x ∈ D}. Also for all x ∈ K, x · s = xs 6
∨d

x∈D xs. For x ∈ D \ K,

x · s = ⊥A 6
∨d

x∈D xs, as required. Secondly, if c is an upper bound of the set
{x · s : x ∈ D}. For all x ∈ K, we have x · s = xs 6 c . For x ∈ D \K and x′ ∈ K
(which exists, since K 6= ∅), by (3) there exists x′′ ∈ K such that x < x′′ and
x′ 6 x′′. This gives xs 6 x′′s = x′′ · s 6 c. Then for all x ∈ D, we have xs 6 c,
and so

∨d
x∈D xs 6 c, as required.

Subcase (i2): If (
∨d

D)s = ⊥Ai
, then we again have (

∨d
D)s =

∨d
x∈D xs.

This is because, the action on Ai is continuous on the second component. Also,
(
∨d

D)s = ⊥Ai gives xs = ⊥Ai , for all x ∈ D. This is because, ⊥Ai = (
∨d

D)s =∨d
x∈D xs. Hence by the de�nition of the action on A, (

∨d
D)·s =

∨d
x∈D x·s = ⊥A.

Case (ii): D = D′ ∪ ⊥A, where D
′ ⊆d Ai, for some i ∈ I.

By case (i), we have (
∨d

D′) · s =
∨d

x′∈D′ x′ · s. Also, we have (
∨d

D) · s =

(
∨d

D′) · s =
∨d

x′∈D′ x′ · s =
∨d

x∈D x · s, as required.
Now to prove that the action is continuous in the second component, let T ⊆d S

and a ∈ A. We show that a ·
∨d

T =
∨d

t∈T a · t. Consider the following two cases:

(a): If a = ⊥A, then by the de�nition of the action on A, a ·
∨d

T =
∨d

t∈T a ·t =
⊥A.
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(b): If a 6= ⊥A, then for some i ∈ I, a ∈ Ai. We have the following two
situations:

(b1): If a(
∨d

T ) 6= ⊥Ai
then we have a · (

∨d
T ) = a(

∨d
T ) =

∨d
t∈T at, where

the last equality is true because Ai is an S-cpo. Now, we claim that

d∨
t∈T

a · t =
d∨

t∈T
at (∗∗).

Let L = {t ∈ T : at 6= ⊥Ai
}. Then one can prove (in a similar way to the set K in

the above discussion) that L satis�es:
(1) L 6= ∅.
(2) For all t ∈ L, a · t = at.
(3) For all t ∈ L and t′ ∈ T \ L, there exists t′′ ∈ L with t 6 t′′ and t′ 6 t′′.

Now to prove (∗∗), we see that �rst
∨d

t∈T at is an upper bound of the set

{a · t : t ∈ T}. Also for all t ∈ L, a · t = at 6
∨d

t∈T at. For t ∈ T \ L,
a · t = ⊥A 6

∨d
t∈T at, as required. Secondly, if c is an upper bound of the set

{a · t : t ∈ T}, then for all t ∈ L, we have at = a · t 6 c. Now, by (3) and in the
same way of Subcase (i1), for t ∈ T \L there exists t′′ ∈ L such that at 6 at′′ 6 c.
Then for all t ∈ T , we have at 6 c, and so

∨d
t∈T at 6 c. Therefore, (∗∗) has been

proved.
(b2): If a(

∨d
T ) = ⊥Ai

, we show that a · (
∨d

T ) =
∨d

t∈T a · t. Since Ai is an

S-cpo, we have
∨d

t∈T at = a(
∨d

T ) = ⊥Ai
. So for all t ∈ T , at = ⊥Ai

. Then by

the de�nition of the action on A, a · (
∨d

T ) =
∨d

t∈T a · t = ⊥A.
Therefore, the action on A is continuous, and so A =

⊎
i∈I Ai is an S-cpo.

Theorem 2.6. Let {Ai : i ∈ I} be a family of S-cpo's whose bottom elements are

zero elements. Then their coproduct exists in Cpo-S.

Proof. Let A =
⊎

i∈I Ai. By Proposition 2.5, A is an S-cpo and by Remark 1.3,
the injections ui : Ai → A, i ∈ I, de�ned by

ui(x) =

{
x if x 6= ⊥Ai

⊥A if x = ⊥Ai

are cpo maps. Also we show that ui : Ai → A, i ∈ I are action-preserving.
First notice that ui(⊥Ais) = ui(⊥Ai

) = ⊥A = ⊥A · s = ui(⊥Ai
) · s. Now, let

⊥Ai
6= x ∈ Ai and s ∈ S. If xs = ⊥Ai

, then by the de�nition of the action on A,
x · s = ⊥A, and so ui(xs) = ⊥A = x · s = ui(x) · s. If xs 6= ⊥Ai , then x · s = xs,
and so ui(xs) = xs = x · s = ui(x) · s. Moreover for every S-cpo B with S-cpo
maps fi : Ai → B, i ∈ I, the unique cpo map f : A→ B given by

f(a) =

{
fi(a) if a ∈ Ai

⊥B if x = ⊥A
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which exists by the universal property of coproducts in Cpo, and satis�es f ◦ui =
fi for all i ∈ I, is action-preserving. First notice that since each fi is action-
preserving and ⊥Ai

is a zero element, fi(⊥Ai
) = ⊥B is a zero element. Now,

f(⊥A · s) = f(⊥A) = ⊥B = ⊥Bs = f(⊥A)s, for all s ∈ S. Also, for a 6= ⊥A, we
have a ∈ Ai, for some i ∈ I. Therefore, if as = ⊥Ai

we get a · s = ⊥A, and so
f(a · s) = f(⊥A) = ⊥B = fi(⊥Ai

) = fi(as) = fi(a)s = f(a)s. If as 6= ⊥A, then we
have a · s = as, and so f(a · s) = f(as) = fi(as) = fi(a)s = f(a)s.

Corollary 2.7. Let S be a cpo-monoid in which the identity element is the top

element. Then Cpo-S has all coproducts.

Proof. By Theorem 2.6, it is enough to show that the bottom element of every
S-cpo A is a zero element. For all s ∈ S, we have s 6 1, and so ⊥As 6 ⊥A1 = ⊥A.
But, ⊥A is the bottom element of A and so ⊥As = ⊥A.

Theorem 2.8. Pullbacks and equalizers exist in the categories Cpo-S and Dcpo-

S.

Proof. Let f, g : A→ B be S-cpo (S-dcpo) maps. Then

E = {x ∈ A : f(x) = g(x)}

is a sub S-cpo (S-dcpo) of A, and the inclusion map satis�es f ◦ i = g ◦ i. Also, if
e : K → L is an S-cpo (S-dcpo) map with f ◦ e = g ◦ e then the map γ : K → E
given by γ(x) = e(x) is the unique S-cpo (S-dcpo) map such that i ◦ γ = e.

Also, it is easily seen that the pullback of S-cpo (S-dcpo) maps f : A→ C and
g : B → C is the sub-S-cpo (S-dcpo) P = {(a, b) : f(a) = g(b)} of A×B, together
with the restricted projection maps.

As a consequence of Theorems 2.2 and 2.8, we get the following result.

Proposition 2.9. The categories Cpo-S and Dcpo-S are complete.

3. Cocompleteness and cartesian closedness

In this section, we consider some other categorical properties of Cpo-S andDcpo-
S. We show that monomorphism in Dcpo-S are exactly one-one S-dcpo maps,
while epimorphisms are not necessarily onto S-dcpo maps. Also, we prove that
Dcpo-S is a cocomplete category. Further, it is proved that Dcpo-S is cartesian
closed while Cpo-S is not so, and hence it is neither a topos nor a quasitopos (see
[9]).

Lemma 3.1. A morphism in Dcpo-S is a monomorphism if and only if it is

one-one.
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Proof. Let h : A→ B be a monomorphism inDcpo-S, and h(a) = h(a′). Consider
the S-dcpo maps f, g : S → A given by f(s) = as and g(s) = a′s, for s ∈ S. Then,
h ◦ f = h ◦ g and so f = g. Thus, a = a′.

In the following we show that the category Dcpo-S is cocomplete.
Recall that an object C of a category C is called a coseparator if the func-

tor hom(−, C) : Cop → Set is faithful; in other words, for each distinct arrows
f, g : A→ B there exists an arrow h : B → C such that h ◦ f 6= h ◦ g.

Also, recall from [6], Theorem 23.14 that a complete well-powered category
which has a coseparator, is cocomplete. Therefore, we show that Dcpo-S has a
coseparator and is well-powered.

Proposition 3.2. The forgetful functor U1 : Dcpo-S → Dcpo has a right adjoint.

Proof. We de�ne the cofree functor K1 : Dcpo → Dcpo-S as K1(P ) = P (S),
where P (S) is the set of all dcpo maps from S to P . We give it the pointwise order
and the action by (fs)(t) = f(st), for s, t ∈ S and f ∈ P (S). Then, P (S) is an
S-dcpo. We know that P (S) is a dcpo (see [7]). Now, we show that the action
de�ned above is a continuous map. Applying Lemma 1.2, let F ⊆d P (S). Then

((

d∨
F )s)(t) = (

d∨
F )(st) =

d∨
f∈F

f(st) =

d∨
f∈F

(fs)(t) = (

d∨
f∈F

fs)(t)

so we have (
∨d

F )s =
∨d

(Fs). Now, assume that T ⊆d S and f ∈ P (S), then

(f(
∨d

T ))(s) = f((
∨d

T )s) = f(
∨d

t∈T ts)

=
∨d

t∈T f(ts) =
∨d

t∈T (ft)(s) = (
∨d

t∈T ft)(s)

and so f(
∨d

T ) =
∨d

t∈T ft, as required. Consequently P
(S) is an S-dcpo.

Now, consider the cofree map (the counit of the adjunction) σ : P (S) → P ,
given by σ(f) = f(1). We show that it is continuous. Let F ⊆d P (S). Then

σ(

d∨
f∈F

f) = (

d∨
f∈F

f)(1) =

d∨
f∈F

f(1) =

d∨
f∈F

σ(f).

To see the universal property, let α : A→ P be a continuous map from an S-dcpo
A. Then the unique S-poset map α : A → P (S) given by α(a)(s) = α(as) and
satisfying σ ◦ α = α (see [2]) is continuous. To show this, let D ⊆d A and s ∈ S.
Then

α(
∨d

D)(s) = α((
∨d

D)s) = α(
∨d

x∈D xs)

=
∨d

x∈D α(xs) =
∨d

x∈D α(x)(s) = (
∨d

x∈D α(x))(s)

as required.
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Notice that the forgetful functor U : Cpo-S → Cpo does not necessarily have
a right adjoint. This is because, U does not preserve initial object in general. For
example, let S be the 2-element chain {1, a} with 1 < a, and aa = a, 1a = a = a1.
Then S is an S-cpo, and it is the initial object of Cpo-S (see Remark 2.3), whereas
the initial object in the category Cpo is the singleton cpo.

Corollary 3.3. The category Dcpo-S has a coseparator.

Proof. We show that for each dcpo P with |P | ≥ 2 and non discrete order, the
cofree object P (S) described in Proposition 3.2 is a coseparator.

Let f, g : A → B be S-dcpo maps with f 6= g. We should de�ne an S-dcpo
map h : B → P (S) with h◦f 6= h◦g. To this end, we de�ne a dcpo map k : B → P
such that k ◦ f 6= k ◦ g.

Since f 6= g, there exists a ∈ A with f(a) 6= g(a). We consider three cases

(1) f(a) < g(a) (2) g(a) < f(a) (3) f(a) ‖ g(a)

Let f(a) < g(a). Take B′ = {b ∈ B | b 6 f(a)}. De�ne k : B → P by

k(b) =

{
x if b ∈ B′
y otherwise

where x, y ∈ P and x < y (such x, y exist since |P | ≥ 2 and the order on P is
not discrete). First we show that k is order-preserving, and hence it take directed
subsets to directed ones. Let b1, b2 ∈ B with b1 6 b2. If b1 ∈ B′, then for
the case where b2 ∈ B′, x = k(b1) = k(b2); and for the case where b2 6∈ B′,
x = k(b1) < y = k(b2). Also, if b1 /∈ B′ then b2 /∈ B′, and so k(b1) = k(b2) = y.

To prove the continuity of k, let D ⊆d B. Notice that
∨d

D ∈ B′ if and only if

D ⊆ B′. Now, if
∨d

D ∈ B′, then D ⊆ B′ and so k(
∨d

D) = x =
∨d

z∈D k(z).

Also, if
∨d

D /∈ B′ then k(
∨d

D) = y, and D 6⊆ B′. Thus D \B′ 6= ∅, and

d∨
z∈D

k(z) =

d∨
z∈(D\B′)∪(B′∩D)

k(z) = y ∨ x = y

as required. Finally, since P (S) is the cofree S-dcpo on P , there exists a unique
S-dcpo map h : B → P (S) such that σ◦h = k, where σ is the cofree map de�ned in
the above proposition. This gives that h ◦ f 6= h ◦ g, and so P (S) is a coseparator.

The cases (2) and (3) are proved similarly.

Lemma 3.4. The category Dcpo-S is well-powered.

Proof. We should prove that the class of isomorphic subobjects of any S-dcpo
is a set. Let B be an S-dcpo and A be a suboject of B; that is there exists a
monomorphism f : A → B. By Lemma 3.1, f is one-one and so A is isomorphic
to a subset of B. Hence the class of isomorphic subobjects of B is a subset of the
powerset of B, and therefore is a set.
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Theorem 3.5. The category Dcpo-S is cocomplete.

Proof. By Theorem 23.14 of [6], Corollary 3.3, Lemma 3.4, and Proposition 2.9,
Dcpo-S is cocomplete.

The following example shows that epimorphisms in the categories Dcpo-S and
Cpo-S are not necessarily surjective.

Example 3.6. Let S be an arbitrary dcpo(cpo)-monoid. Take A to be the
dcpo(cpo) ⊥ ⊕ N in which the order on N is discrete and B = ⊥ ⊕ N ⊕ > in
which the order on N is the usual order. Then both of A and B with the trivial
action are S-dcpo's (cpo's). Let h : A → B be the inclusion map. Then h clearly
preserves the action. Also, h is (strict) continuous. To see this, let D ⊆d ⊥ ⊕ N.
Then D = {⊥}, or there exists n ∈ N such that D = {⊥, n}, or there exists n ∈ N
such that D = {n}. If D = {⊥, n} for some n ∈ N, then

h(
d∨
D) = h(n) = n =

d∨
{⊥, n} =

d∨
{h(⊥), h(n)} =

d∨
h(D).

This is clearly true for other kinds of D. Now we claim that h is an S-dcpo(cpo)
map which is an epimorphism but is not surjective. The latter is because > is
not in the image of h. To show that h is an epimorphism, let f1, f2 : B → P
be S-dcpo(cpo) maps with f1 ◦ h = f2 ◦ h, and P be an S-dcpo(cpo). Then
f1(⊥) = f1(h(⊥)) = f2(h(⊥)) = f2(⊥) and f1(n) = f1(h(n)) = f2(h(n)) = f2(n),
for all n ∈ N. Also

f1(>) = f1(

d∨
N) =

d∨
n∈N

f1(n) =

d∨
n∈N

f2(n) = f(

d∨
N) = f2(>).

Therefore, f1 = f2, and so h is an epimorphism.

Finally, we consider cartesian closedness. Recall that a category C which has
�nite products, is called cartesian closed if, for every pair of objects A and B of C,
an object BA and a morphism eυ : A×BA → B exist with the universal property
that for every morphism f : A × C → B in C, there exists a unique morphism
f̂ : C → BA such that eυ ◦ (idA × f̂) = f . In this de�nition, the objects BA are
called power objects or exponentials, and eυ is said to be the evaluation map, and
f̂ is called the exponential map associated to f .

Theorem 3.7. The category Cpo-S is not necessarily cartesian closed.

Proof. Let S = {1}, then the category Cpo-S is isomorphic to the category Cpo
which is not cartesian closed (See [4]).

For an example in which S is not trivial, let S be the 2-element chain {1, a}
with identity 1, 1 < a and aa = a. Then S is an S-cpo, and by Remark 2.3,
it is the initial object of Cpo-S. Then for a non trivial S-cpo A, the functor
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A×− : Cpo-S → Cpo-S does not have preserve the initial object (since |A|×2 6=
2), and so does not have a right adjoint. Therefore, the category Cpo-S is not
cartesian closed.

In the following, we show that Dcpo-S is cartesian closed.

Theorem 3.8. The category Dcpo-S is cartesian closed.

Proof. By Proposition 2.9, Dcpo-S has �nite products. Given S-dcpo's A,B, we
de�ne the exponential object BA to be Hom(S×A,B), the set of all S-dcpo maps
from the product object S ×A to B. This set is an S-dcpo with pointwise order,
and action given by (fs)(t, a) = f(st, a). The evaluation arrow eυ : A× BA → B
is de�ned by eυ(a, f) = f(1, a), is an S-dcpo map. It is an S-poset map (see [2]),
to prove continuity, let D ⊆d A and f ∈ BA, then

eυ(

d∨
D, f) = f(1,

d∨
D) =

d∨
x∈D

f(1, x) =

d∨
x∈D

eυ(x, f)

since f is continuous. Also, for F ⊆d BA and a ∈ A, we have

eυ(a,

d∨
F ) = (

d∨
F )(1, a) =

d∨
f∈F

f(1, a) =

d∨
f∈F

eυ(a, f)

To prove the universal property, take an S-dcpo C and an S-dcpo map f : A×C →
B. De�ne the map f̂ : C → BA by f̂(x)(s, a) = f(a, xs), for x ∈ C, a ∈ A, and
s ∈ S. As in the case of S-sets (see [4]), it can be shown that f̂ and f̂(x), for

each x ∈ C, preserve the action. Also, we show that each f̂(x) is continuous. Let
T ⊆d S and a ∈ A. Then

f̂(x)(

d∨
T, a) = f(a, x(

d∨
T )) = f(a,

d∨
t∈T

xt) =

d∨
t∈T

f(a, xt) =

d∨
t∈T

f̂(x)(t, a)

Now, let D ⊆d A and s ∈ S. Then

f̂(x)(s,

d∨
D) = f(

d∨
D,xs) =

d∨
d∈D

f(d, xs) =

d∨
d∈D

f̂(x)(s, d)

as required. Further, f̂ is continuous, because for every D ⊆d C and (s, a) ∈ S×A,
we have

f̂(
∨d

D)(s, a) = f(a, (
∨d

D)s) = f(a,
∨d

x∈D xs)

=
∨d

x∈D f(a, xs) =
∨d

x∈D f̂(x)(s, a)

as required.



S-dcpo and S-cpo 295

Remark 3.9. The above proof for the case where S is a one-element dcpo-monoid
shows that the exponential object BA in Dcpo is the set of all continuous maps
from A into B, with pointwise order (for another proof of this fact, see [7]).

Open Problems:

1. Is the category Cpo-S cocomplete? If yes, what is the description of co-

equalizers and pushouts?

2. For which class of semigroups S, the category cpo-S is cartesian closed?
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