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On intra-regular and some left regular

Γ-semigroups

Niovi Kehayopulu and Michael Tsingelis

Abstract. We characterize the intra-regular Γ-semigroups and the left regular Γ-semigroups M

in which xΓM ⊆MΓx for every x ∈M in terms of �lters and we prove, among others, that every

intra-regular Γ-semigroup is decomposable into simple components, and every Γ-semigroup M

for which xΓM ⊆MΓx is left regular, is decomposable into left simple components.

1. Introduction and prerequisites

A structure theorem concerning the intra-regular semigroups, another one con-
cerning some left regular semigroups have been given in [3]. These are the two
theorems in [3]:

Theorem II.4.9. The following conditions on a semigroup S are equivalent:

(1) Every N -class of S is simple.

(2) Every ideal of S is completely semiprime.

(3) For every x ∈ S, x ∈ Sx2S.
(4) For every x ∈ S, N(x) = {y ∈ S | x ∈ SyS}.
(5) N = I.
(6) Every ideal of S is a union of N -classes.

Theorem II.4.5. The following conditions on a semigroup S are equivalent:

(1) Every N -class of S is left simple.

(2) Every left ideal of S is completely semiprime and two-sided.

(3) For every x ∈ S, x ∈ Sx2 and xS ⊆ Sx.
(4) For every x ∈ S, N(x) = {y ∈ S | x ∈ Sy}.
(5) N = L.
(6) Every left ideal of S is a union of N -classes.

Note that we always use the term �semiprime" instead of �completely semiprime"
given by Petrich in [3]. So the condition (2) in the two theorems above should be
read as �Every ideal (resp. left ideal) of S is semiprime", meaning that if A is an
ideal (resp. left ideal) of S, then for every x ∈ S such that x2 ∈ A, we have x ∈ A.
In the present paper we generalize these results in case of Γ-semigroups.
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Let M be a Γ-semigroup. An equivalence relation σ on M is called left (resp.
right) congruence (on M) if (a, b) ∈ σ implies (cγa, cγb) ∈ σ (resp. (aγc, bγc) ∈ σ)
for every c ∈ M and every γ ∈ Γ. A relation σ which is both left and right
congruence on M is called a congruence on M . A congruence σ on M is called
semilattice congruence if (aγb, bγa) ∈ σ and (aγa, a) ∈ σ for every a, b ∈ M and
every γ ∈ Γ. A nonempty subset A of M is called a left (resp. right) ideal of M if
MΓA ⊆ A (resp. AΓM ⊆ A). A subset A ofM which is both a left and right ideal
of M is called an ideal of M . For an element a of M , we denote by L(a), R(a),
I(a) the left ideal, right ideal and the ideal ofM , respectively, generated by a, and
we have L(a) = a∪MΓa, R(a) = a∪aΓM , I(a) = a∪MΓa∪aΓM ∪MΓaΓM . We
denote by L the equivalence relation on M de�ned by L := {(a, b) | L(a) = L(b)},
by R the equivalence relation on M de�ned by R := {(a, b) | R(a) = R(b)} and
by I the equivalence relation on M de�ned by I := {(a, b) | I(a) = I(b)}. A
nonempty subset A of M is called a subsemigroup of M if a, b ∈ A and γ ∈ Γ
implies aγb ∈ A, that is, AΓA ⊆ A. A subsemigroup F of M is called a �lter

of M if a, b ∈ F and γ ∈ Γ such that aγb ∈ F implies a ∈ F and b ∈ F . We
denote by N the relation on M de�ned by N := {(a, b) | N(a) = N(b)} where
N(x) is the �lter of M generated by x (x ∈M). It is well known that the relation
N is a semilattice congruence on M . So, if z ∈ M and γ ∈ Γ, then we have
(zγz, z) ∈ N , (zγzγz, zγz) ∈ N , (zγzγzγz, zγzγz) ∈ N and so on. A subset A of
M is called semiprime if a ∈ M and γ ∈ Γ such that aγa ∈ A implies a ∈ A. A
Γ-semigroup (M,Γ, .) is called left simple if for every left ideal L of M , we have
L = M , that is, M is the only left ideal of M . A subsemigroup T of M is called
left simple if the Γ-semigroup (T,Γ, .) (that is, the set T with the same Γ and the
multiplication �." on M) is left simple. Which means that for every left ideal A
of T , we have A = T . A subsemigroup of M which is both left simple and right
simple is called simple. If M is a Γ-semigroup and σ a semilattice congruence
on M , then the class (a)σ of M containing a is a subsemigroup of M for every
a ∈ M . Let now M be a Γ-semigroup and σ a congruence on M . For a, b ∈ M
and γ ∈ Γ, we de�ne (a)σγ(b)σ := (aγb)σ. Then the set M/σ := {(a)σ | a ∈ M}
is a Γ-semigroup as well. A Γ-semigroup M is said to be a semilattice of simple

semigroups if there exists a semilattice congruence σ onM such that the class (x)σ
is a simple subsemigroup of M for every x ∈M .

2. Intra-regular Γ-semigroups

We characterize here the intra-regular Γ-semigroups in terms of �ltres and we prove
that every intra-regular Γ-semigroup is decomposable into simple subsemigroups.

De�nition 1. (cf. [2]) A Γ-semigroup M is called intra-regular if

x ∈MΓxγxΓM

for every x ∈M and every γ ∈ Γ.
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Lemma 2. (cf. [1]) If M is a Γ-semigroup, then I ⊆ N .

Theorem 3. Let M be a Γ-semigroup. The following are equivalent:

(1) M is intra-regular.

(2) N(x) = {y ∈M | x ∈MΓyΓM} for every x ∈M.
(3) N = I.
(4) For every ideal I of M, we have I =

⋃
x∈I

(x)N .

(5) (x)N is a simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of simple semigroups.

(7) Every ideal of M is semiprime.

Proof. (1) =⇒ (2). Let x ∈ M and T := {y ∈ M | x ∈ MΓyΓM}. T is a �lter of
M . In fact: Take an element γ ∈ Γ (Γ 6= ∅). Since M is intra-regular, we have

x ∈MΓxγxΓM = (MΓx)γxΓM ⊆ (MΓM)γxΓM ⊆MΓxΓM,

then x ∈ T , and T is a nonempty subset of M . Let a, b ∈ T and γ ∈ Γ. Then
aγb ∈ T . Indeed: Since b ∈ T , we have x ∈ MΓbΓM . Since a ∈ T , x ∈ MΓaΓM .
Since M is intra-regular, we have

x ∈MΓxγxΓM ⊆MΓ(MΓbΓM)γ(MΓaΓM)ΓM

= (MΓM)Γ(bΓMγMΓa)Γ(MΓM)

⊆MΓ(bΓMγMΓa)ΓM.

We prove that bΓMγMΓa ⊆MΓ(aγb)ΓM . Then we have

x ∈MΓ
(
MΓ(aγb)ΓM

)
ΓM ⊆MΓ(aγb)ΓM,

and aγb ∈ T . For this purpose, let bδuγvρa ∈ bΓMγMΓa, where u, v ∈ M and
δ, ρ ∈ Γ. Since M is intra-regular, bδuγvρa ∈M and γ ∈ Γ, we have

bδuγvρa ∈ MΓ(bδuγvρa)γ(bδuγvρa)ΓM

= (MΓbδuγv)ρ(aγb)δ(uγvρaΓM)

⊆MΓ(aγb)ΓM,

so bδuγvρa ∈ MΓ(aγb)ΓM . Let a, b ∈ M and γ ∈ Γ such that aγb ∈ T . Then
a, b ∈ T . Indeed: Since aγb ∈ T , we have

x ∈MΓ(aγb)ΓM = MΓaγ(bΓM) ⊆MΓaΓM and

x ∈ (MΓa)γbΓM ⊆MΓbΓM,

so a, b ∈ T . Let now F be a �lter of M such that x ∈ F . Then T ⊆ F . Indeed:
Let a ∈ T . Then x ∈ MΓaΓM , so x = uγaρv for some u, v ∈ M , γ, ρ ∈ Γ. Since
u, aρv ∈ M , uγ(aρv) ∈ F and F is a �lter of M , we have u ∈ F and aρv ∈ F .
Since a, v ∈M , aρv ∈ F and F is a �lter, we have a ∈ F and v ∈ F , so a ∈ F .



266 N. Kehayopulu and M. Tsingelis

(2) =⇒ (3). Let (a, b) ∈ N . Then a ∈ N(a) = N(b). Since a ∈ N(b), by (2), we
have b ∈ MΓaΓM ⊆ a ∪MΓa ∪ aΓM ∪MΓaΓM = I(a). Since I(a) is an ideal
of M containing b, we have I(b) ⊆ I(a). Since b ∈ N(a), by symmetry, we get
I(a) ⊆ I(b). Then I(a) = I(b), and (a, b) ∈ I. Thus we have N ⊆ I. On the
other hand, by Lemma 2, I ⊆ N . Thus N = I.
(3) =⇒ (4). Let I be an ideal of M . If y ∈ I, then y ∈ (y)N ⊆

⋃
x∈I

(x)N . Let

y ∈
⋃
x∈I

(x)N . Then y ∈ (x)N for some x ∈ I. Then, by (3), (y, x) ∈ N = I,

so I(y) = I(x). Since x ∈ I and I(x) is the ideal of M generated by x, we have
I(x) ⊆ I. Thus we have y ∈ I(y) = I(x) ⊆ I, and y ∈ I.
(4) =⇒ (5). Let x ∈ M . Since N is a semilattice congruence on M , (x)N is a
subsemigroup of M . Let I be an ideal of (x)N . Then I = (x)N . In fact: Let
y ∈ (x)N . Take an element z ∈ I and an element γ ∈ Γ (I,Γ 6= ∅). The set
MΓzγzγzΓM is an ideal of M . Indeed, it is a nonempty subset of M , and we
have

MΓ(MΓzγzγzΓM) = (MΓM)ΓzγzγzΓM ⊆MΓzγzγzΓM and

(MΓzγzγzΓM)ΓM = MΓzγzγzΓ(MΓM) ⊆MΓzγzγzΓM.

By hypothesis, we have MΓzγzγzΓM =
⋃

t∈MΓzγzγzΓM

(t)N .

Since zγzγzγzγz ∈ MΓzγzγzΓM , we have (zγzγzγzγz)N ⊆ MΓzγzγzΓM .
Since (zγz, z) ∈ N and z ∈ I ⊆ (x)N , we have (zγzγzγzγz)N = (z)N = (x)N .
Then y ∈ (x)N ⊆ MΓzγzγzΓM and y = aδzγzγzξb = (aδz)γzγ(zξb) for some
a, b ∈M , δ, ξ ∈ Γ.

We prove that aδz, zξb ∈ (x)N . Then, since I is an ideal of (x)N , we have
(aδz)γzγ(zξb) ∈ (x)NΓIΓ(x)N ⊆ I, and y ∈ I. We have

aδz ∈ (aδz)N := (a)N δ(z)N = (a)N δ(y)N (since (z)N = (x)N = (y)N )

= (a)N δ(aδzγzγzξb)N

= (a)N δ(a)N δ(zγzγzξb)N

= (a)N δ(zγzγzξb)N (since (aδa, a) ∈ N )

=
(
aδ(zγzγzξb)

)
N

= (y)N = (x)N

and

zξb ∈ (zξb)N := (z)N ξ(b)N = (y)N ξ(b)N = (aδzγzγzξb)N ξ(b)N

= (aδzγzγz)N ξ(b)N ξ(b)N

= (aδzγzγz)N ξ(bξb)N

= (aδzγzγz)N ξ(b)N

= (aδzγzγzξb)N = (y)N = (x)N .
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(5) =⇒ (6). Since N is a semilattice congruence on M .

(6) =⇒ (7). Suppose σ be a semilattice congruence on M such that (x)σ is a
simple subsemigroup of M for every x ∈ M . Let I be an ideal of M , x ∈ M and
γ ∈ Γ such that xγx ∈ I. The set I ∩ (x)σ is an ideal of (x)σ. In fact: Since
xγx ∈ I and xγx ∈ (x)σ, the set I ∩ (x)σ is a nonempty subset of (x)σ and, since
(x)σ is a subsemigroup of M , we have

(x)σΓ(I ∩ (x)σ) ⊆ (x)σΓI ∩ (x)σΓ(x)σ ⊆MΓI ∩ (x)σ ⊆ I ∩ (x)σ and

(I ∩ (x)σ)Γ(x)σ ⊆ IΓ(x)σ ∩ (x)σΓ(x)σ ⊆ IΓM ∩ (x)σ ⊆ I ∩ (x)σ.

Since (x)σ is a simple subsemigroup of M , we have I ∩ (x)σ = (x)σ, and x ∈ I.
(7) =⇒ (1). Let a ∈ M and γ ∈ Γ. Then a ∈ MΓaγaΓM . Indeed: The set
MΓaγaΓM is an ideal of M . This is because it is a nonempty subset of M and

MΓ(MΓaγaΓM) = (MΓM)ΓaγaΓM ⊆MΓaγaΓM ,

(MΓaγaΓM)ΓM = MΓaγaΓ(MΓM) ⊆MΓaγaΓM.

By hypothesis, MΓaγaΓM is semiprime. Since (aγa)γ(aγa) ∈ MΓaγaΓM , we
have aγa ∈MΓaγaΓM , and a ∈MΓaγaΓM . Thus M is intra-regular. �

3. On some left regular Γ-semigroups

Again using �lters, we characterize here the left regular Γ-semigroups M in which
xΓM ⊆ MΓx for every x ∈ M and we prove that this type of Γ-semigroups are
decomposable into left simple components. If xΓM ⊆ MΓx for every x ∈ M ,
then AΓM ⊆ MΓA for every A ⊆ M . Indeed: If a ∈ A, γ ∈ Γ and b ∈ M ,
then aγb ∈ aΓM ⊆ MΓa ⊆ MΓA. Thus if A is a left ideal of M , then A is a
right ideal of M as well. As a consequence, the left regular Γ-semigroups in which
xΓM ⊆MΓx for every x ∈M , are left regular and left duo. We also remark that
the left regular Γ-semigroups are intra-regular. Indeed: Let a ∈M . SinceM is left
regular, we have a ∈ MΓaγa ⊆ MΓ(MΓaγa)γa ⊆ MΓaγaΓM. The right regular
Γ-semigroups are also intra-regular, and the right regular Γ-semigroups for which
MΓx ⊆ xΓM for every x ∈M are right regular and right duo, and decomposable
into right simple subsemigroups.

De�nition 4. (cf. [2]) A Γ-semigroup M is called left (resp. right) regular if
x ∈MΓxγx (resp. x ∈ xγxΓM) for every x ∈M and every γ ∈ Γ.

Lemma 5. (cf. [1]) If M is a Γ-semigroup, then L ⊆ N and R ⊆ N .

Theorem 6. Let M be a Γ-semigroup. The following are equivalent:

(1) M is left regular and xΓM ⊆MΓx for every x ∈M .

(2) N(x) = {y ∈M | x ∈MΓy} for every x ∈M .

(3) N = L.
(4) For every left ideal L of M, we have L =

⋃
x∈L

(x)N .
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(5) (x)N is a left simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of left simple semigroups.

(7) Every left ideal of M is semiprime and two-sided.

Proof. (1) =⇒ (2). Let x ∈ M and T := {y ∈ M | x ∈ MΓy}. The set T is a
�lter of M containing x. In fact: Take an element γ ∈ Γ (Γ 6= ∅). Since M is left
regular, we have

x ∈MΓxγx = (MΓx)γx ⊆ (MΓM)γx ⊆MΓx,

then x ∈ T , and T is a nonempty subset of M . Let a, b ∈ T and γ ∈ Γ. Then
aγb ∈ T . Indeed: Since b, a ∈ T , we have x ∈MΓb and x ∈MΓa. Since M is left
regular, we have

x ∈MΓxγx ⊆MΓ(MΓb)γ(MΓa) = (MΓM)Γ(bγMΓa)

⊆MΓ(bγMΓa).

We prove that bγMΓa ⊆MΓaγb. Then we have

x ∈MΓ(MΓaγb) = (MΓM)Γ(aγb) ⊆MΓ(aγb),

and aγb ∈ T . Let now bγuµa ∈ bγMΓa for some u ∈ M , µ ∈ Γ. Since M is left
regular, we have

bγuµa ∈ MΓ(bγuµa)γ(bγuµa) = (MΓbγu)µ(aγb)γ(uµa)

⊆MΓ
(

(aγb)ΓM
)

⊆MΓ(MΓaγb) (since xΓM ⊆MΓx ∀x ∈M)

⊆MΓaγb.

Let a, b ∈ M and γ ∈ Γ such that aγb ∈ T . Then a, b ∈ T . Indeed: Since
aγb ∈ T , we have x ∈ MΓaγb ⊆ (MΓM)Γb ⊆ MΓb, so b ∈ T . By hypothesis,
aγb ∈ aΓM ⊆ MΓa. Then x ∈ MΓaγb ⊆ MΓ(MΓa) ⊆ MΓa, so a ∈ T . Let now
F be a �lter of M such that x ∈ F . Then T ⊆ F . Indeed: Let a ∈ T . Then
x ∈ MΓa, that is x = uρa for some u ∈ M , ρ ∈ Γ. Since u ∈ M , ρ ∈ Γ, uρa ∈ F
and F is a �lter of M , we have u ∈ F and a ∈ F , then a ∈ F .
(2) =⇒ (3). Let (a, b) ∈ N . Then a ∈ N(a) = N(b). Since a ∈ N(b), by (2), we
have b ∈MΓa ⊆ a ∪MΓa = L(a), so L(b) ⊆ L(a). Since b ∈ N(a), by symmetry,
we get L(a) ⊆ L(b). Then we have L(a) = L(b), and (a, b) ∈ L. By Lemma 5,
L ⊆ N , so L = N .

(3) =⇒ (4). Let L be a left ideal of M . If y ∈ L, then y ∈ (y)N ⊆
⋃
x∈L

(x)N . Let

y ∈
⋃
x∈L

(x)N . Then y ∈ (x)N for some x ∈ L. Then, by (3), (y, x) ∈ N = L, so

L(y) = L(x). Since x ∈ L and L(x) is the left ideal of M generated by x, we have
L(x) ⊆ L. Then y ∈ L(y) = L(x) ⊆ L, so y ∈ L.
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(4) =⇒ (5). Let L be a left ideal of (x)N . Then L = (x)N . In fact: Let y ∈ (x)N .
Take an element z ∈ L and an element γ ∈ Γ (L,Γ 6= ∅). SinceMΓzγz is a left ideal
of M , by hypothesis, we have MΓzγz =

⋃
t∈MΓzγz

(t)N . Since zγzγz ∈ MΓzγz,

we have (zγzγz)N ⊆ MΓzγz. Since (zγz, z) ∈ N and z ∈ L ⊆ (x)N , we have
(zγzγz)N = (z)N = (x)N . Then y ∈ (x)N ⊆ MΓzγz, thus y = aµzγz for some
a ∈ M and µ ∈ Γ. We prove that aµz ∈ (x)N . Then, since L is a left ideal of
(x)N , we have (aµz)γz ∈ (x)NΓL ⊆ L, and y ∈ L. We have

aµz ∈ (aµz)N = (a)Nµ(z)N = (a)Nµ(y)N (since (z)N = (x)N = (y)N )

= (a)Nµ(aµzγz)N = (a)Nµ(a)Nµ(zγz)N

= (a)Nµ(zγz)N = (aµzγz)N

= (y)N = (x)N .

(5) =⇒ (6). Since N is a semilattice congruence on M .

(6) =⇒ (7). Let σ be a semilattice congruence onM such that (x)σ is a left simple
subsemigroup of M for every x ∈ M . Let L be a left ideal of M and x ∈ M ,
γ ∈ Γ such that xγx ∈ L. The set L∩ (x)σ is a left ideal of (x)σ. Indeed: The set
L ∩ (x)σ is a nonempty subset of (x)σ (since xγx ∈ L and xγx ∈ (x)σ) and

(x)σΓ(L ∩ (x)σ) ⊆ (x)σΓL ∩ (x)σΓ(x)σ ⊆MΓL ∩ (x)σ ⊆ L ∩ (x)σ.

Since (x)σ is a left simple subsemigroup of M , we have L ∩ (x)σ = (x)σ, then
x ∈ L. Thus L is semiprime. Let now L be a left ideal of M . Then LΓM ⊆ L.
Indeed: Let y ∈ L, γ ∈ Γ and x ∈ M . Since L is a left ideal of M , we have
xγy ∈MΓL ⊆ L. The set L ∩ (xγy)σ is a left ideal of (xγy)σ. Indeed:

∅ 6= L ∩ (xγy)σ ⊆ (xγy)σ (since xγy ∈ L and xγy ∈ (xγy)σ) and

(xγy)σΓ(L ∩ (xγy)σ) ⊆ (xγy)σΓL ∩ (xγy)σΓ(xγy)σ ⊆MΓL ∩ (xγy)σ.

Since (xγy)σ is left simple, we have L ∩ (xγy)σ = (xγy)σ = (yγx)σ, so yγx ∈ L.
(7) =⇒ (1). Let x ∈ M and γ ∈ Γ. Since MΓxγx is a left ideal of M , by
hypothesis it is semiprime. Since (xγx)γ(xγx) ∈MΓxγx, we have xγx ∈MΓxγx,
and x ∈ MΓxγx, thus M is left regular. Let now x ∈ M . Then xΓM ⊆ MΓx.
Indeed: Since M is left regular, we have x ∈ MΓxγx ⊆ (MΓM)Γx ⊆ MΓx, so
MΓx is a nonempty subset of M . In addition, MΓ(MΓx) = (MΓM)Γx ⊆ MΓx,
soMΓx is a left ideal ofM . By hypothesis,MΓx is a right ideal ofM as well. Since
MΓx is an ideal of M containing x, we have I(x) ⊆ MΓx. On the other hand,
xΓM ⊆ x ∪MΓx ∪ xΓM ∪MΓxΓM = I(x). Thus we obtain xΓM ⊆MΓx.

The right analogue of Theorem 6 also holds, and we have the following:

Theorem 7. Let M be a Γ-semigroup. The following are equivalent:

(1) M is right regular and MΓx ⊆ xΓM for every x ∈M .

(2) N(x) = {y ∈M | x ∈ yΓM} for every x ∈M .
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(3) N = R.
(4) For every right ideal R of M, we have R =

⋃
x∈R

(x)N .

(5) (x)N is a right simple subsemigroup of M for every x ∈M .

(6) M is a semilattice of right simple semigroups.
(7) Every right ideal of M is semiprime and two-sided.
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