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Actions over monoids and hypergroups

Abolghasem Karimi Feizabadi and Hamid Rasouli

Abstract. We construct the hypergroups by actions over monoids. Particularly, some non-unital

hypergroups are constructed. Here, hypergroups are obtained by orbit neighborhood collections

that make a complete lattice.

1. Introduction and preliminaries

A generating technique of examples in a theory can be very useful, in particular if
it is not given various fundamental examples in that theory. One of these theories
is the theory of hypergroups which was introduced in 1934 by Marty [3].

A hyperoperation on a set H is a map · : H × H → P ∗(H), where P ∗(H) is
the set of all non-empty subsets of H. The set H with a hyperoperation · is called
a hypergroup if for every x, y, z ∈ H, x · (y · z) = (x · y) · z (association law), and
x ·H = H · x = H. For more information, see [1] and [4].

In the sense of category theory, an action over monoids is a monoid in the
category T -Act of all T -acts for a monoid T . Let M be a monoid with no zero
element. For any monoid T , a homomorphism of monoids:

Φ : T → H(M); t 7→ ϕt : M →M,

where H(M) denotes the monoid of all endomorphisms ofM is said to be an action

over monoids. Note that H(M) has a (unique) zero element which is a constant
mapping equals 1. If T has a zero element 0, we impose the assumption that
T\{0} is a monoid. So letting ϕ0 be the zero element of H(M), Φ : T → H(M) is
a homomorphism of semigroups. In this case, mϕ0 = 1 for every m ∈M and then
Φ is called a zero faithful action.

In this paper a generating technique for constructing hypergroups is presented.
Using neighborhood collections, we construct a class of hypergroups, and describe
how an action over monoids can be applied to obtain a hypergroup. We consider
hypergroup actions over monoids, which are those actions Φ : T → H(M) over
monoids for which (M, •) is a hypergroup. It is obtained a necessary and su�cient
condition for a hypergroup action over monoids to be unital, that is, 1 ∈ x • y for
all x, y ∈M .
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For a monoidM , on the monoid H(M) of all endomorphisms ofM we consider
the operation ? : M → M de�ned by σ ? µ := µ ◦ σ, for each µ, σ ∈ H(M). To
denote the image of x ∈M under σ we will use the post�x notation. Also Sub(M)
denotes the set of all submonoids of M . Throughout M stands for a monoid with
no zero element unless otherwise stated.

2. Actions over monoids

In this section �rst we give some instances of actions over monoids

Example 2.1. Each of the following is an action over monoids:
(i) For any commutative monoidM and T = (N, ·),Φ :T→ H(M);mϕk = mk.
(ii) For any submonoid T of H(M),Φ : T → H(M); Φ := idT (natural action).
(iii) For any monoid T with zero, Φ : T → H(M);ϕt := idM for each 0 6= t ∈ T .

If t = 0,mϕ0 := 1, for each m ∈M .

Let M be a monoid. By a neighborhood collection on M we mean the sequence
V = {Vx : x ∈ M} indexed by M , such that for each x ∈ M , Vx ⊆ M and
x ∈ Vx. If V is a neighborhood collection, we de�ne a hyperoperation, called the

hyperoperation induced by V in the following way: for each x, y ∈M , x•y = VxVy,
where VxVy is the usual product of subsets Vx and Vy of M . It is clear that for
every x, y ∈ M , xy ∈ x • y. For every a ∈ M and a non-empty subset X of M ,
we put a •X :=

⋃
x∈X a • x and X • a :=

⋃
x∈X x • a. Clearly, a •M = VaM and

M • a = MVa for each a ∈M . Also we have:

Lemma 2.2. If M is a group, then (M, •) is a hypergroup.

Proof. LetM be a monoid and ∅ 6= A ⊆M . If there is an invertible element a ∈ A,
then AM = M = MA. Moreover, if M is a group, then the operation on subsets
of M is also associative. Therefore, if M is a group and • is a hyperoperation
induced by any neighborhood collection, then M is a hypergroup.

De�nition 2.3. Let Φ : T → H(M) be an action over monoids. Then the set
{mϕt : t ∈ T} of all images of an element m ∈ M under the mappings Φ(t) is
usually called the orbit of m and it is denoted by OrbT (m). It is obvious that for
each m ∈M,m ∈ OrbT (m). Hence, VT = {Vm = OrbT (m) : m ∈M} is the set of
all orbits of elements from M which is called the orbit neighborhood collection.

From now on, • stands for the hyperoperation induced by orbit neighborhood
collection. Also, for a submonoid S of H(M), by VS we mean the orbit neigh-
borhood collection induced by the natural action from S to H(M). In this case,
VS = {OrbS(m) : m ∈M}, where OrbS(m) = {mσ : σ ∈ S} for each m ∈M .

De�nition 2.4. An action Φ : T → H(M) over monoids is called right (left)
multiplicative if for each m ∈ M and 0 6= t ∈ T , there exists x ∈ M such that
mϕt = mx (mϕt = xm).
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The action over monoids in Example 2.1(i) is (left and right) multiplicative.
If Φ : T → H(M) is a (left) right multiplicative zero faithful action, then M is a
group.

Proposition 2.5. Let Φ : T → H(M) be a (left) right multiplicative action over

monoids. Then (M, •) is a hypergroup if and only if M is a group.

Proof. Suppose (M, •) is a hypergroup. Let m ∈ M . By assumption, for each
t ∈ T , mϕtM = mxM ⊆ mM for some x ∈M . Thus

M = m •M = OrbT (m)M =
⋃
t∈T

mϕtM ⊆ mM.

Then M = mM. Hence, M is a group. The converse follows from Lemma 2.2.

Remark 2.6. An action Φ : T → H(M) over monoids and the natural action
Ψ = idΦ(T ) : Φ(T )→ H(M) de�ned as in Example 2.1(ii) have the same orbits of
elements from M .

Let M be a monoid and V,W be two neighborhood collections on M . We say
V ≤ W if for every x ∈M , Vx ⊆Wx. Clearly, ≤ is a partial order relation on the
set of all neighborhood collections.

A neighborhood collection V = {Vx : x ∈ M} is called a basis neighborhood

collection if for every y ∈ Vx, Vy ⊆ Vx. For instance, if Φ : T → H(M) is an action
over monoids, then the orbit neighborhood collection VT is a basis neighborhood
collection. Indeed, for any x, y ∈ M , y ∈ OrbT (x) implies that y = xϕt for some
t ∈ T and then OrbT (y) = {xϕts : s ∈ T} ⊆ OrbT (x).

Lemma 2.7. Let V = {Vx : x ∈ M} be a basis neighborhood collection and

S = {σ ∈ H(M) : xσ ∈ Vx for all x ∈M}. The following statements hold:

(i) S is a submonoid of H(M) and VS ≤ V.
(ii) For every action Φ : T → H(M) over monoids satisfying VT ≤ V, we have

VT ≤ VS.

Proof. (i) For every x ∈ M , x idM = x ∈ Vx, so idM ∈ S. Let σ, µ ∈ S. Then
xσ ∈ Vx and xσµ ∈ Vxσ for all x ∈ M , and so xσµ = (xσ)µ ∈ Vxσ ⊆ Vx because
V is a basis. Therefore, σµ ∈ S. (ii) It follows from Remark 2.6.

For a monoid M, let ONC(M) denote the set of all orbit neighborhood collec-
tions VT , for all monoids T such that there is an action over monoids T and M.

Theorem 2.8. For a monoid M , (ONC(M),≤) is a complete lattice.

Proof. Let {Ti : i ∈ I} be a non-empty family of monoids such that Φi : Ti →
H(M) is an action over monoids for all i ∈ I. For every x ∈ M , let Vx =⋂
i∈I OrbTi(x). Also take V = {Vx : x ∈ M}. It is easy to check that V is a

basis neighborhood collection. Put S := {σ ∈ H(M) : xσ ∈ Vx for all x ∈ M}.
We claim that VS =

∧
i∈I VTi . By Lemma 2.7(i), VS ≤ V. So VS ≤ VTi for all
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i ∈ I. Suppose VT ∈ ONC(M) and VT ≤ VTi for all i ∈ I. Let x ∈ M . We have
OrbT (x) ⊆ OrbTi(x) for all i ∈ I. Then OrbT (x) ⊆

⋂
i∈I OrbTi(x) = Vx. Since V

is a basis neighborhood collection, VT ≤ VS by Lemma 2.7(ii), as desired. Note
that V{idM} is the bottom element, and VH(M) is the top element ofONC(M).

Remark 2.9. Let {Ti : i ∈ I} be a non-empty family of submonoids of a monoid
T and Φ : T → H(M) be an action over monoids. Then, using Lemma 2.7
and Theorem 2.8, V⋂

i∈I Ti
≤

∧
i∈I VTi ≤ V, where Vx =

⋂
i∈I OrbTi(x) and V =

{Vx : x ∈ M}. But, V⋂
i∈I Ti

and V are not necessarily equal. For instance, let

M = (Z100, ·) and T = (N, ·). Consider the action Φ : T → H(M) over monoids
de�ned by aϕn := an for each n ∈ N and a ∈ Z100. Let T1 = {2k : k ∈ N ∪ {0}}
and T2 = {3k : k ∈ N ∪ {0}}. Then T1 and T2 are submonoids of T such that
T1 ∩ T2 = {1}. Let a = 5 ∈ Z100. We have a2 6= a, a3 6= a and a2 = a3.
So a2 ∈ OrbT1

(a) ∩ OrbT2
(a), but a2 6∈ OrbT1∩T2

(a). Therefore, OrbT1∩T2
(a) 6=

OrbT1(a) ∩OrbT2(a).

Question: The map ψ : Sub(H(M)) → ONC(M) given by T 7→ VT is a poset
homomorphism. Is ψ a lattice homomorphism? Generally: Let Φ : S → H(M)
be an action over monoids. When is the map φ : Sub(S) → ONC(M), given by
φ(T ) = VT , a lattice homomorphism?

3. Non-unital hypergroup actions over monoids

In this section, we introduce and study the notion of hypergroup action over
monoids and construct two kinds of non-unital hypergroup actions over monoids.

De�nition 3.1. An action over monoids Φ : T → H(M) is called a hypergroup

action over monoids if (M, •) is a hypergroup, where the hyperoperation • is
induced by orbit neighborhood collection.

In view of Lemma 2.2, any action Φ : T → H(M) is a hypergroup action over
monoids provided M is a group.

Proposition 3.2. For every monoids T and M, Φ : T → H(M) is a hypergroup

action over monoids if and only if for every m ∈M there exist s, t ∈ T such that

mϕs is right invertible and mϕt is left invertible in M .

Proof. clearly Φ : T → H(M) is a hypergroup action over monoids if and only if
for each m ∈M , OrbT (m)M = M = MOrbT (m). Then the assertion holds.

Example 3.3. Consider the monoid T = {0, 1}. For a zero faithful action Φ : T →
H(M) over monoids, (M, •) is a hypergroup by Proposition 3.2. To describe the
hyperoperation • induced by VT , let x, y ∈M . We have x•y = OrbT (x)OrbT (y) =
{1, x}{1, y} = {1, x, y, xy}.
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De�nition 3.4. Let M be a monoid without zero and � be a hyperoperation on
M . Then (M,�) is called unital if for every x, y ∈ M , 1 ∈ x � y. A hypergroup
action Φ : T → H(M) over monoids is called unital if (M, •) is unital, where • is
the hyperoperation induced by VT .

Lemma 3.5. A hypergroup action Φ : T → H(M) over monoids is unital if and

only if 1 ∈ OrbT (x) for any x ∈M .

Proof. Let Φ :T → H(M) be a hypergroup action over monoids. If Φ is non-unital,
then there are x, y ∈M such that 1 /∈ x • y ⊇ OrbT (xy) which is a contradiction.
The converse follows from the fact that x • 1 = OrbT (x) for each x ∈M .

By virtue of Proposition 3.2 and Lemma 3.5, the following is immediate:

Corollary 3.6. Every zero faithful action is a unital hypergroup action over

monoids.

Corollary 3.6 provides an easy construction of a unital hypergroup action over
monoids. But, �nding a non-unital hypergroup action over monoids is not so easy.

Let G be a non-trivial group. For any ∗ 6∈ G, put G∗ := G ∪ {∗}. De�ne
∗a = a∗ = ∗ for all a ∈ G∗. Then G∗ is a monoid in which ∗ is a zero element,
and every non-zero element is invertible. For a non-empty set X, let GX denote
the set of all mappings f : X → G∗ satisfying xf 6= ∗ for some x ∈ X. For every
f, g ∈ GX and x ∈ X, de�ne (x)fg := (xf)(xg). Under this multiplication, GX
is a monoid with no zero element. Also the identity of GX is the map IGX given
by xIGX = 1, for each x ∈ X. Note that H(GX) has a zero element given by the
endomorphism O : GX → GX such that for any f ∈ GX , fO = IGX .

Now, take a map α : X → X. De�ne α̃ : GX → GX by fα̃ := αf and put
TX := {α̃ | α : X → X is a map}. Then we get the following:

Lemma 3.7.

(i) α̃ ∈ H(GX), and TX is a submonoid of H(GX) such that O 6∈ TX .

(ii) An f ∈ GX is invertible if and only if for every x ∈ X, xf 6= ∗. In this

case, xf−1 = (xf)−1 for all x ∈ X.

Proof. (i) For every g, h ∈ GX , (gh)α̃ = α(gh) = (αg)(αh) = (gα̃)(hα̃). So α̃ is an
endomorphism of GX . To prove TX is a submonoid of H(GX), let α, β : X → X

be two maps. For every f ∈ GX we have fα̃β̃ = (αf)β̃ = β(αf) = (βα)f = fβ̃α.

Then α̃β̃ = β̃α ∈ TX . Also idGX = ĩdX ∈ TX . Finally, if O ∈ TX , then there is
a mapping α : X → X such that α̃ = O. Take an f ∈ GX satisfying xf 6= 1 for
each x ∈ X. Then αf = fα̃ = fO = IGX which is a contradiction.

(ii) Note that f ∈ GX is invertible if and only if xf is invertible for all x ∈ X.
Since every a 6= ∗ in G∗ is invertible, the assertion holds.

In light of Lemma 3.7(i), we have the natural action ΦX : TX → H(GX) over
monoids. Now the following result is obtained.
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Theorem 3.8. The natural action ΦX : TX → H(GX) is a non-unital hypergroup

action over monoids.

Proof. First we show that for every f ∈ GX there exists an endomorphism σ :
GX → GX such that σ ∈ TX and fσ is invertible. To this end, let f ∈ GX ,
Y = {x ∈ X : xf 6= ∗} 6= ∅ and α : X → X be a mapping such that Xα = Y .
Considering σ = α̃ ∈ TX , we have xfσ = xfα̃ = xαf 6= ∗ for each x ∈ X. Then it
follows from Lemma 3.7(ii) that fσ is invertible. Now, using Proposition 3.2, ΦX
is a hypergroup action over monoids. To complete the proof, using Lemma 3.5, it
su�ces to �nd an f ∈ GX such that IGX 6∈ OrbTX (f). Take any a ∈ G such that
a 6= 1, and the constant map f corresponding to a such that xf = a for all x ∈ X.
For every map α : X → X and x ∈ X, xfα̃ = xαf = a. Thus fα̃ 6= IGX , and
hence IGX 6∈ OrbTX (f).

Let M be a monoid and G be a non-trivial group. Then M × G is a monoid
without zero under the usual componentwise binary operation. De�ne ξ : M×G→
M ×G by (m, g)ξ = (1, g) for every m ∈M, g ∈ G. Clearly, ξ is an endomorphism
of M × G such that for every x ∈ M × G, xξ is invertible, and ξ2 = ξ. Now we
have the following:

Proposition 3.9. If T is a submonoid of H(M ×G) without zero that contains ξ,
then the natural action Φ : T → H(M×G) is a hypergroup action over monoids. In

particular, Φξ : Tξ → H(M ×G) is a non-unital hypergroup action over monoids,

where Tξ = {id, ξ}.

Proof. We have ξ ∈ T and xξ is invertible for all x ∈ M × G. It follows from
Proposition 3.2 that Φ : T → H(M × G) is a hypergroup action over monoids.
Consider Tξ, and let x = (1, g) ∈ M × G such that g 6= 1. Then we get (1, 1) /∈
OrbTξ(x) = {x}. Using Lemma 3.5, Φξ is a non-unital hypergroup action over
monoids.
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