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Semidirect extensions of the Klein group

leading to automorphic loops of exponent 2

Premysl Jedlicka

Abstract. In this paper we study automorphic loops of exponent 2 which are semidirect products
of the Klein group with an elementary abelian group. It turns out that they fall into two classes:

extensions of index 2 and extension using a symmetric bilinear form.

1. Introduction

A loop is called automorphic if all inner mappings are automorphisms. An auto-
morphic loop of exponent 2 is always commutative due to the anti-automorphic
inverse property [7]. There are several papers dealing with the structure of com-
mutative automorphic loops, e.g. [1], [4] or [6]. It turns out that the structure
of commutative automorhic 2-loops differs much from the theory of commutative
automorphic p-loops, for odd primes p, and it is less understood.

The structure of commutative automorhic 2-loops is based on the structure of
automorphic loops of exponent 2. It is already known that they are solvable [2]
and that they need not be nilpotent [5]. Some constructions of automorphic loops
of exponent 2 appeared in [5] and [8].

In this paper we construct automorphic loops of exponent 2 via the nuclear
semidirect product defined in [3]. More precisely, we describe all the automorphic
loops of exponent 2 that are nuclear semidirect extensions of the Klein group by
an elementary abelian 2-group.

Theorem 1.1. Let Q be an automorphic loop of exponent 2, let K < Q be a 4-
element subgroup of N,(Q) and let H be a subgroup of Q such that KH = Q and
|[K N H|=1. Then one of the following situations occurs:

(a) Q is a group;
(b) [Q: N,(Q)] =2 and we can use Proposition 2.2;

(¢) Q is a semidirect product based on a symmetric bilinear form described in
Proposition 2.3.
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The paper is organized as follows: in Section 2 we present the notion of the
nuclear semidirect product of automorphic loops and also two situations when
the semidirect product gives a loop of exponent 2. In Section 3 we analyze the
semidirect product in the case when the image of the auxiliary mapping is a three-
element group. Finally, in Section 4 we focus on the case when the image is a
subgroup of order 2.

2. Preliminaries

We start, our paper by recalling the notion of the nuclear semidirect product defined
in [3] and by presenting two constructions that yield loops of exponent 2. Unlike
in most loop theory papers, we shall use the additive notation here rather than
the multiplicative one; the reason is that subgroups of our loops will appear as
additive groups of vector spaces.

A semidirect product is a configuration of subloops in a loop (@, +): we have
H < @ and K <@ such that K+ H =@ and KN H = 0. In [3] an external point
of view was given, assuming additionally that K’ < N,(Q) and K being an abelian
group. Such loops can be constructed given a special mapping .

Proposition 2.1 ([3]). Let H and K be abelian groups and let us have a mapping
0 : H?> — Aut(K). We define an operation x on Q = K x H as follows:

(avi) * (b’]) = (‘pi,j(a+b),i+j)-

This loop is denoted by K x, H. Let us denote @; j = @i j+k © @5 k. Then Q is
a commutative A-loop if and only if the following properties hold:

Pij = Pji (1)

wo,i = idg (2)

©ij © Pkin = Pkn O Pij (3)

Pijk = Piki = Phiij (4)

ik T Pjitk + kit = dx + 2 @i jk (5)

Moreover, K x 0 is a normal subgroup of Q, 0 x H is a subgroup of Q and
(Kx0)N(O0x H)=0x0and (K x0)+(0x H)=Q.

Q s associative if and only if p; ; = idg, for all i,j € H. The nuclei are
N,Q)=Kx{ieH; VjeH: ¢,; =idx} and
Ny={aeK; VjkeH: gjpla)=a} x{ic H; Vje H: ¢;,; =idk}.

On the other hand, if Q is a commutative automorphic loop, K<Q is a subgroup
of Nu(Q) and H is a subgroup of Q such that K+ H = Q and K N H = {0} then
there exists ¢ : H> — Aut K such that Q = K x, H.

The conditions (1) — (5) are not too transparent and therefore it is worthwhile
to present some special cases which are easier to describe. The simplest such a
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situation is probably the middle nucleus of index 2 which was described already
in [5], not using the notion of a semidirect product.

Proposition 2.2 ([5], [3], exponent 2 version). Let K be an elementary abelian
2-group and let H be a two-element group. Then a mapping ¢ : H> — Aut K
satisfies the conditions (1) — (5) if and only if ¢ satisfies (2).

On the other hand, if an automorphic loop Q has exponent 2 and [Q : N,(Q)] =
2 then there exists such a ¢ with Q = K x, H.

In this paper, we are interested in loops of exponent 2. Among several con-
figurations described in [3], there is one more that yields loops of exponent two:
when the mapping ¢ is a symmetric bilinear form.

Proposition 2.3 ([3], exponent p version). Let K and H be elementary abelian
p groups and let f € Aut K be an automorphism of order p. Let o : H? — (f) be
a symmetric bilinear form. Then o satisfies conditions (1) — (5).

In the rest of the paper we analyze the mapping ¢ when K is the Klein group.
It will eventually turn out that all the possible solutions of ¢ are already described
in Propositions 2.2 and 2.3.

3. Order 3 case

The automorphism group of the Klein group has only two non-trivial commutative
subgroups, up to conjugacy. Each case will be analyzed separately. In this section
we shall suppose that some of ¢; ; is an automorphism of order 3. All the results
can be proved under more general conditions.

Lemma 3.1. Let K, H be elementary abelian 2-groups and let ¢ : H> — Aut K
satisfy (1) — (5). Then, for all i,5 € H,

=)
=

Pii t @55+ Pitjirs = dr (
Pijitj = Pii © %_,jl (

- S |
Pij = Pisi © L5 © Pitjits

—
(S|
L =

Proof. (6) is obtained from (5) via k =i + j. Then (4) gives
Pi,i 01dK = ©i,i 0 Q0. = Pisij = Pi,j © Pijits
which is (7). Finally (4) again gives
Pi+ji+j © Pij = Pigi+ti = Pii+j © Pij
and substituting (7) yields (8). O

If an automorphism of order 3 is contained within Im ¢, it turns out that the
whole mapping ¢ is determined by its behavior on the planes of H.
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Lemma 3.2. Let K, H be elementary abelian 2-groups and let ¢ : H> — Aut K
satisfy (1) — (5). Let Im ¢ C {idxk, f, f*}, for some f € Aut K with f3 = idg,
f #idg. Then, for alli,j € H,

(1) Ha €{pii, vig, Piriivits = f} €{0,2};
(ii) there exists k € (i,j) and g € {idgk, f, f*} such that, for all v,w € (i, j),

~Jidg  ifv e (k) orw e (k),
=Yg ifud (k) andw ¢ (k).
Proof. (i) We find all the possible solutions of (6) within {idg, f, f2}. They are,
up to reordering, (idg,idx,idx), (idg, f, f) and (idg, f2, f?).

(#4) We know from (¢) all the possible choices of ¢; ;, ¢;,; and ;4 i+;. We
put g to be that automorphism that appears at least twice within ¢;;, ¢;; and
©itj,i+; and we choose k € {i,j,i + j} such that ¢y = idg.

Then (8) gives

2 _ —1 s
Pl = Pkl © Puu © Pr iy ktu = idrg,

for each u € (3, j), since Yy, 4 = Prtu,k+u = g and hence ¢y, = idg. On the other
hand, if u,v ¢ (k) then

Pruso = Puu © Poo © Putosute = 97
for each u € (i, j), since u + v € (k) and therefore ¢, , = g. O

Proposition 3.3. Let K, H be elementary abelian 2-groups and let ¢ : H?> —
Aut K satisfy (1) — (5). Let Imp C {idg, f, f?}, for some f € Aut K with f3 =
idg. Then

(i

i # idi if and only if v;; = @;; # idx and then ; ; = p;;;

(#7) |Imy| < 3;

)
)

(13i) the set M = {k; pr =idk} is a subspace of H of Co-dimension at most 1;
v)

(i

Proof. For (i) we can restrict our focus to the subspace of dimension 2 and this
was solved in Lemma 3.2.

(i) Suppose ¢; ; = f and @k, = f2. Due to (i) we can suppose j = i and
m = k. But this situation contradicts Lemma 3.2 (ii).

(#4i) The set M is closed on addition due to Lemma 3.2 (ii). Moreover, every 2-
dimensional subspace of H intersects M non-trivially and hence M is a hyperplane
or M =H.

(tv) According to to Proposition 2.1, we have N, (K x, H) = K x M. O

the middle nucleus of K x, H is a subloop of index at most 2.
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4. Involutory case

In this section we analyze the second case, namely some ¢; ; being an involution.
Most lemmas can be pronounced in a more general setting again.

Lemma 4.1. Let K, H be elementary abelian 2-groups and let ¢ : H> — Aut K
satisfy (1) — (5). Moreover, let cpf’j =idg, for each i,j € H. Then

it Pkt ik = Pijk 9)
Pij+k = (Pij + Pik + Pjk) © Pjik (10)
foralli,j, ke H.
Proof. When we multiply (5) by ¢; j k, we obtain

Pi gk © Pij+k T Pigk © Piitk T Pijk © Phiti = Pijk
which is (9) since @; jx © i j+x = ;. due to (4). And plugging (9) into (4),
namely ©; j+x = ik © Pjk, gives (10). O

Corollary 4.2. Let K and H be elementary abelian 2-groups and let B be a basis
of H. Suppose that we have a mapping ¢’ : B> — Aut K such that (gog,j)z =idg,
for each i,j € B. Then there ewists at most one mapping ¢ : H?> — AutK,

/

satisfying (1) — (5) such that cp?’j =1idg, for each i,j € H, and |z = ¢'.
Proof. By an induction using (10). O

Corollary 4.2 claims that ¢ is uniquely determined whenever we know its values
on a basis. It need not exist though, e.g. conditions (1) or (3) may be violated
already by ¢’. But it exists if ¢’ is a symmetric matrix with two different entries.

Proposition 4.3. Let K and H be two elementary abelian 2-groups and let
¢ : H?* — AutK satisfy (1) — (5). Suppose that Imp = {idg, f}, for some
involutory f € Aut K. Then ¢ is a bilinear mapping.

Proof. Let us take a basis B of the space H. The restriction |2 is symmetric and
hence induces a symmetric bilinear form, let us say ¢’, from H? to {idg, f} = Zs.
According to Proposition 2.3, the mapping ¢’ satisfies the conditions (1) — (5).
Since ¢'|g2 = ¢|gz, Corollary 4.2 gives ¢ = ¢'. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Conditions of Proposition 2.1 are met and hence there ex-
ists a mapping ¢ : H? — Aut K satisfying (1)—(5).

If ¢, ; is an involution, for some i,j € H, then |Im¢| = 2, due to (1), since
involutions in Aut Z% commute only with themselves and with the identity. Then
Proposition 4.3 gives that ¢ is bilinear.

On the other hand, if no involution appears in Im ¢ then Im ¢ C {idg, f, f},
where f and f2? are the automorphisms of order 3. And Proposition 3.3 states
that the middle nucleus is a subgroup of index at most 2. O
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What if K is a larger elementary abelian group? There are three more types
of subgroups even in Aut Z3 and therefore it is likely that some new construction
type will be needed.
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