Semidirect extensions of the Klein group leading to automorphic loops of exponent 2

Přemysl Jedlička

Abstract. In this paper we study automorphic loops of exponent 2 which are semidirect products of the Klein group with an elementary abelian group. It turns out that they fall into two classes: extensions of index 2 and extension using a symmetric bilinear form.

1. Introduction

A loop is called *automorphic* if all inner mappings are automorphisms. An automorphic loop of exponent 2 is always commutative due to the anti-automorphic inverse property [7]. There are several papers dealing with the structure of commutative automorphic loops, e.g. [1], [4] or [6]. It turns out that the structure of commutative automorphic 2-loops differs much from the theory of commutative automorphic p-loops, for odd primes p, and it is less understood.

The structure of commutative automorphic 2-loops is based on the structure of automorphic loops of exponent 2. It is already known that they are solvable [2] and that they need not be nilpotent [5]. Some constructions of automorphic loops of exponent 2 appeared in [5] and [8].

In this paper we construct automorphic loops of exponent 2 via the nuclear semidirect product defined in [3]. More precisely, we describe all the automorphic loops of exponent 2 that are nuclear semidirect extensions of the Klein group by an elementary abelian 2-group.

Theorem 1.1. Let Q be an automorphic loop of exponent 2, let $K \triangleleft Q$ be a 4element subgroup of $N_{\mu}(Q)$ and let H be a subgroup of Q such that KH = Q and $|K \cap H| = 1$. Then one of the following situations occurs:

- (a) Q is a group;
- (b) $[Q: N_{\mu}(Q)] = 2$ and we can use Proposition 2.2;
- (c) Q is a semidirect product based on a symmetric bilinear form described in Proposition 2.3.

²⁰¹⁰ Mathematics Subject Classification: 20N05

Keywords: automorphic loop, semidirect product, middle nucleus, exponent 2

P. Jedlička

The paper is organized as follows: in Section 2 we present the notion of the nuclear semidirect product of automorphic loops and also two situations when the semidirect product gives a loop of exponent 2. In Section 3 we analyze the semidirect product in the case when the image of the auxiliary mapping is a threeelement group. Finally, in Section 4 we focus on the case when the image is a subgroup of order 2.

2. Preliminaries

We start our paper by recalling the notion of the nuclear semidirect product defined in [3] and by presenting two constructions that yield loops of exponent 2. Unlike in most loop theory papers, we shall use the additive notation here rather than the multiplicative one; the reason is that subgroups of our loops will appear as additive groups of vector spaces.

A semidirect product is a configuration of subloops in a loop (Q, +): we have H < Q and $K \triangleleft Q$ such that K + H = Q and $K \cap H = 0$. In [3] an external point of view was given, assuming additionally that $K \leq N_{\mu}(Q)$ and K being an abelian group. Such loops can be constructed given a special mapping φ .

Proposition 2.1 ([3]). Let H and K be abelian groups and let us have a mapping $\varphi: H^2 \to \operatorname{Aut}(K)$. We define an operation * on $Q = K \times H$ as follows:

$$(a, i) * (b, j) = (\varphi_{i, j}(a + b), i + j).$$

This loop is denoted by $K \rtimes_{\varphi} H$. Let us denote $\varphi_{i,j,k} = \varphi_{i,j+k} \circ \varphi_{j,k}$. Then Q is a commutative A-loop if and only if the following properties hold:

$$\varphi_{i,j} = \varphi_{j,i} \tag{1}$$

$$\varphi_{0,i} = \mathrm{id}_K \tag{2}$$

$$\varphi_{i,j} \circ \varphi_{k,n} = \varphi_{k,n} \circ \varphi_{i,j} \tag{3}$$

$$\varphi_{i,j,k} = \varphi_{j,k,i} = \varphi_{k,i,j} \tag{4}$$

$$\varphi_{i,j+k} + \varphi_{j,i+k} + \varphi_{k,i+j} = \mathrm{id}_K + 2 \cdot \varphi_{i,j,k} \tag{5}$$

Moreover, $K \times 0$ is a normal subgroup of Q, $0 \times H$ is a subgroup of Q and $(K \times 0) \cap (0 \times H) = 0 \times 0$ and $(K \times 0) + (0 \times H) = Q$.

Q is associative if and only if $\varphi_{i,j} = \mathrm{id}_K$, for all $i, j \in H$. The nuclei are $N_\mu(Q) = K \times \{i \in H; \forall j \in H : \varphi_{i,j} = \mathrm{id}_K\}$ and

 $N_{\lambda} = \{a \in K; \ \forall j, k \in H : \ \varphi_{j,k}(a) = a\} \times \{i \in H; \ \forall j \in H : \ \varphi_{i,j} = \mathrm{id}_K\}.$

On the other hand, if Q is a commutative automorphic loop, $K \triangleleft Q$ is a subgroup of $N_{\mu}(Q)$ and H is a subgroup of Q such that K + H = Q and $K \cap H = \{0\}$ then there exists $\varphi : H^2 \to \operatorname{Aut} K$ such that $Q \cong K \rtimes_{\varphi} H$.

The conditions (1) - (5) are not too transparent and therefore it is worthwhile to present some special cases which are easier to describe. The simplest such a situation is probably the middle nucleus of index 2 which was described already in [5], not using the notion of a semidirect product.

Proposition 2.2 ([5], [3], exponent 2 version). Let K be an elementary abelian 2-group and let H be a two-element group. Then a mapping $\varphi : H^2 \to \operatorname{Aut} K$ satisfies the conditions (1) - (5) if and only if φ satisfies (2).

On the other hand, if an automorphic loop Q has exponent 2 and $[Q : N_{\mu}(Q)] = 2$ then there exists such a φ with $Q \cong K \rtimes_{\varphi} H$.

In this paper, we are interested in loops of exponent 2. Among several configurations described in [3], there is one more that yields loops of exponent two: when the mapping φ is a symmetric bilinear form.

Proposition 2.3 ([3], exponent p version). Let K and H be elementary abelian p groups and let $f \in \operatorname{Aut} K$ be an automorphism of order p. Let $\varphi : H^2 \to \langle f \rangle$ be a symmetric bilinear form. Then φ satisfies conditions (1) - (5).

In the rest of the paper we analyze the mapping φ when K is the Klein group. It will eventually turn out that all the possible solutions of φ are already described in Propositions 2.2 and 2.3.

3. Order 3 case

The automorphism group of the Klein group has only two non-trivial commutative subgroups, up to conjugacy. Each case will be analyzed separately. In this section we shall suppose that some of $\varphi_{i,j}$ is an automorphism of order 3. All the results can be proved under more general conditions.

Lemma 3.1. Let K, H be elementary abelian 2-groups and let $\varphi : H^2 \to \operatorname{Aut} K$ satisfy (1) - (5). Then, for all $i, j \in H$,

$$\varphi_{i,i} + \varphi_{j,j} + \varphi_{i+j,i+j} = \mathrm{id}_K \tag{6}$$

$$\varphi_{i,i+j} = \varphi_{i,i} \circ \varphi_{i,j}^{-1} \tag{7}$$

$$\varphi_{i,j}^2 = \varphi_{i,i} \circ \varphi_{j,j} \circ \varphi_{i+j,i+j}^{-1} \tag{8}$$

Proof. (6) is obtained from (5) via k = i + j. Then (4) gives

$$\varphi_{i,i} \circ \mathrm{id}_K = \varphi_{i,i} \circ \varphi_{0,j} = \varphi_{i,i,j} = \varphi_{i,j} \circ \varphi_{i,i+j}$$

which is (7). Finally (4) again gives

$$\varphi_{i+j,i+j} \circ \varphi_{i,j} = \varphi_{i,j,i+j} = \varphi_{i,i+j} \circ \varphi_{j,j}$$

and substituting (7) yields (8).

If an automorphism of order 3 is contained within $\operatorname{Im} \varphi$, it turns out that the whole mapping φ is determined by its behavior on the planes of H.

Lemma 3.2. Let K, H be elementary abelian 2-groups and let $\varphi : H^2 \to \operatorname{Aut} K$ satisfy (1) - (5). Let $\operatorname{Im} \varphi \subseteq {\operatorname{id}_K, f, f^2}$, for some $f \in \operatorname{Aut} K$ with $f^3 = \operatorname{id}_K$, $f \neq \operatorname{id}_K$. Then, for all $i, j \in H$,

- (*i*) $|\{\alpha \in \{\varphi_{i,i}, \varphi_{j,j}, \varphi_{i+j,i+j}\}; \alpha = f\}| \in \{0, 2\};$
- (ii) there exists $k \in \langle i, j \rangle$ and $g \in \{ id_K, f, f^2 \}$ such that, for all $v, w \in \langle i, j \rangle$,

$$\varphi_{v,w} = \begin{cases} \operatorname{id}_K & \text{if } v \in \langle k \rangle \text{ or } w \in \langle k \rangle, \\ g & \text{if } v \notin \langle k \rangle \text{ and } w \notin \langle k \rangle. \end{cases}$$

Proof. (i) We find all the possible solutions of (6) within $\{id_K, f, f^2\}$. They are, up to reordering, (id_K, id_K, id_K) , (id_K, f, f) and (id_K, f^2, f^2) .

(*ii*) We know from (*i*) all the possible choices of $\varphi_{i,i}$, $\varphi_{j,j}$ and $\varphi_{i+j,i+j}$. We put g to be that automorphism that appears at least twice within $\varphi_{i,i}$, $\varphi_{j,j}$ and $\varphi_{i+j,i+j}$ and we choose $k \in \{i, j, i+j\}$ such that $\varphi_{k,k} = \mathrm{id}_K$.

Then (8) gives

$$\varphi_{k,u}^2 = \varphi_{k,k} \circ \varphi_{u,u} \circ \varphi_{k+u,k+u}^{-1} = \mathrm{id}_K,$$

for each $u \in \langle i, j \rangle$, since $\varphi_{u,u} = \varphi_{k+u,k+u} = g$ and hence $\varphi_{k,u} = \mathrm{id}_K$. On the other hand, if $u, v \notin \langle k \rangle$ then

$$\varphi_{u,v}^2 = \varphi_{u,u} \circ \varphi_{v,v} \circ \varphi_{u+v,u+v}^{-1} = g^2,$$

for each $u \in \langle i, j \rangle$, since $u + v \in \langle k \rangle$ and therefore $\varphi_{u,v} = g$.

Proposition 3.3. Let K, H be elementary abelian 2-groups and let $\varphi : H^2 \to \operatorname{Aut} K$ satisfy (1) - (5). Let $\operatorname{Im} \varphi \subseteq {\operatorname{id}_K, f, f^2}$, for some $f \in \operatorname{Aut} K$ with $f^3 = \operatorname{id}_K$. Then

- (i) $\varphi_{i,j} \neq \mathrm{id}_K$ if and only if $\varphi_{i,i} = \varphi_{j,j} \neq \mathrm{id}_K$ and then $\varphi_{i,j} = \varphi_{i,i}$;
- (*ii*) $|\operatorname{Im} \varphi| < 3;$
- (iii) the set $M = \{k; \varphi_{k,k} = id_K\}$ is a subspace of H of Co-dimension at most 1;
- (iv) the middle nucleus of $K \rtimes_{\varphi} H$ is a subloop of index at most 2.

Proof. For (i) we can restrict our focus to the subspace of dimension 2 and this was solved in Lemma 3.2.

(*ii*) Suppose $\varphi_{i,j} = f$ and $\varphi_{k,m} = f^2$. Due to (*i*) we can suppose j = i and m = k. But this situation contradicts Lemma 3.2 (*ii*).

(*iii*) The set M is closed on addition due to Lemma 3.2 (*ii*). Moreover, every 2dimensional subspace of H intersects M non-trivially and hence M is a hyperplane or M = H.

(*iv*) According to to Proposition 2.1, we have $N_{\mu}(K \rtimes_{\varphi} H) = K \times M$. \Box

4. Involutory case

In this section we analyze the second case, namely some $\varphi_{i,j}$ being an involution. Most lemmas can be pronounced in a more general setting again.

Lemma 4.1. Let K, H be elementary abelian 2-groups and let $\varphi : H^2 \to \operatorname{Aut} K$ satisfy (1) - (5). Moreover, let $\varphi_{i,j}^2 = \operatorname{id}_K$, for each $i, j \in H$. Then

$$\varphi_{i,j} + \varphi_{i,k} + \varphi_{j,k} = \varphi_{i,j,k} \tag{9}$$

$$\varphi_{i,j+k} = (\varphi_{i,j} + \varphi_{i,k} + \varphi_{j,k}) \circ \varphi_{j,k} \tag{10}$$

for all $i, j, k \in H$.

Proof. When we multiply (5) by $\varphi_{i,j,k}$, we obtain

$$\varphi_{i,j,k} \circ \varphi_{i,j+k} + \varphi_{i,j,k} \circ \varphi_{j,i+k} + \varphi_{i,j,k} \circ \varphi_{k,i+j} = \varphi_{i,j,k}$$

which is (9) since $\varphi_{i,j,k} \circ \varphi_{i,j+k} = \varphi_{j,k}$ due to (4). And plugging (9) into (4), namely $\varphi_{i,j+k} = \varphi_{i,j,k} \circ \varphi_{j,k}$, gives (10).

Corollary 4.2. Let K and H be elementary abelian 2-groups and let B be a basis of H. Suppose that we have a mapping $\varphi': B^2 \to \operatorname{Aut} K$ such that $(\varphi'_{i,j})^2 = \operatorname{id}_K$, for each $i, j \in B$. Then there exists at most one mapping $\varphi: H^2 \to \operatorname{Aut} K$, satisfying (1) - (5) such that $\varphi^2_{i,j} = \operatorname{id}_K$, for each $i, j \in H$, and $\varphi|_{B^2} = \varphi'$.

Proof. By an induction using (10).

Corollary 4.2 claims that φ is uniquely determined whenever we know its values on a basis. It need not exist though, e.g. conditions (1) or (3) may be violated already by φ' . But it exists if φ' is a symmetric matrix with two different entries.

Proposition 4.3. Let K and H be two elementary abelian 2-groups and let $\varphi : H^2 \to \operatorname{Aut} K$ satisfy (1) - (5). Suppose that $\operatorname{Im} \varphi = {\operatorname{id}_K, f}$, for some involutory $f \in \operatorname{Aut} K$. Then φ is a bilinear mapping.

Proof. Let us take a basis B of the space H. The restriction $\varphi|_{B^2}$ is symmetric and hence induces a symmetric bilinear form, let us say φ' , from H^2 to $\{\mathrm{id}_K, f\} \cong \mathbb{Z}_2$. According to Proposition 2.3, the mapping φ' satisfies the conditions (1) - (5). Since $\varphi'|_{B^2} = \varphi|_{B^2}$, Corollary 4.2 gives $\varphi = \varphi'$.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Conditions of Proposition 2.1 are met and hence there exists a mapping $\varphi : H^2 \to \operatorname{Aut} K$ satisfying (1)–(5).

If $\varphi_{i,j}$ is an involution, for some $i, j \in H$, then $|\operatorname{Im} \varphi| = 2$, due to (1), since involutions in Aut \mathbb{Z}_2^2 commute only with themselves and with the identity. Then Proposition 4.3 gives that φ is bilinear.

On the other hand, if no involution appears in $\operatorname{Im} \varphi$ then $\operatorname{Im} \varphi \subseteq \{\operatorname{id}_K, f, f^2\}$, where f and f^2 are the automorphisms of order 3. And Proposition 3.3 states that the middle nucleus is a subgroup of index at most 2. What if K is a larger elementary abelian group? There are three more types of subgroups even in Aut \mathbb{Z}_2^3 and therefore it is likely that some new construction type will be needed.

References

- R.H. Bruck, L.J. Paige, Loops whose inner mappings are automorphisms, Ann. Math. 63 (1956), 308 - 323.
- [2] A. Grishkov, M.K. Kinyon, G.P. Nagy, Solvability of commutative automorphic loops, Proceedings AMS 142 (2014), 3029 - 3037.
- [3] J. Hora, P. Jedlička, Nuclear semidirect product of commutative automorphic loops, J. Algebra Appl. 13 (2014), no.1, paper 1350077.
- [4] P. Jedlička, M. Kinyon, P. Vojtěchovský, Structure of commutative automorphic loops, Trans. AMS 363 (2011), 365384.
- [5] P. Jedlička, M. Kinyon, P. Vojtěchovský, Constructions of commutative automorphic loops, Commun. Algebra 38 (2010), 3243 - 3267.
- [6] P. Jedlička, M. Kinyon, P. Vojtěchovský, Nilpotency in automorphic loops of prime power order, J. Algebra 350 (2012), 64 - 76.
- [7] K.W. Johnson, M.K. Kinyon, G.P. Nagy, P. Vojtěchovský, Searching for small simple automorphic loops, LMS J. Comput. Math. 14 (2011), 200 – 213.
- [8] G.P. Nagy, On centerless commutative automorphic loops, Comment. Math. Univ. Carol. 55 (2014), 485-491.

Received October 14, 2014

Department of Mathematics Faculty of Engineering Czech University of Life Sciences in Prague Kamýcká 129, 165 21, Prague 6 – Suchdol Czech Republic E-mail: jedlickap@tf.czu.cz