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Eventually regular perfect semigroups

Roman S. Gigo«

Abstract. A congruence ρ on a semigroup S is called perfect if (aρ)(bρ) = (ab)ρ for all a, b ∈ S,
as sets, and S is said to be perfect if each of its congruences is perfect. We show that all eventually

regular perfect semigroups are necessarily regular. Finally, we apply our result to perfect group-

bound semigroups.

1. Introduction and preliminaries

The concept of a perfect semigroup was introduced by Vagner [12]. Groups are very
well-known examples of perfect semigroups. Another examples of such semigroups
are congruence-free semigroups S with the property S = S2 (i.e., S is globally

idempotent ; note that perfect semigroups have this property). Perfect semigroups
were studied first by Fortunatov (see e.g. [4, 5]) and then by Hamilton and Tamura
[8], Hamilton [7], and by Goberstein [6]. In [1] the authors gave an example of a
cancellative simple perfect semigroup without idempotents.

It is known that any commutative perfect semigroup is inverse, and that all finite
perfect semigroups are regular ; recall that a semigroup S is regular if S coincides
with the set Reg(S) of its regular elements, where

Reg(S) = {s ∈ S : s ∈ sSs}.

We extend the last result for eventually regular semigroups (a semigroup S is even-
tually regular if every element of S has a regular power, that is, for all a ∈ S there
is a positive integer n = n(a) such that an ∈ Reg(S) [3]). Moreover, we apply this
result to perfect group-bound semigroups (Corollary 2.2, below). Before we start
our study, we recall some definitions and facts. For undefined terms, we refer the
reader to the books [2, 9, 10].

Denote the set of all idempotents of a semigroup S by ES , that is,

ES = {e ∈ S : e2 = e}.

If A is an ideal of a semigroup S, i.e., AS ∪ SA ⊆ A, then the relation

ρA = (A×A) ∪ 1S ,
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where 1S is the identity relation on S, is a congruence on S (the so-called Rees

congruence on S). It is obvious that A is an idempotent ρA-class of S. Finally, we
shall write S/A instead of S/ρA.

A generalization of the concept of regularity will also prove convenient. Define a
semigroup S to be idempotent-surjective if and only if whenever ρ is a congruence on
S and aρ is an idempotent of S/ρ, then aρ contains some idempotent of S. Edwards
showed that eventually regular semigroups are idempotent-surjective [3].

Let S be a semigroup and let a ∈ S. Denote by S1 the semigroup obtained
from S by adjoining an identity if necessary. Then S1aS1 is the least ideal of S
containing a. Denote it by J(a). We shall say that the elements a, b of S are J -

related if J(a) = J(b). Also, an equivalence J -class containing a will be denoted by
Ja. We can define a partial order on S/J by the rule:

Ja ≤ Jb ⇐⇒ J(a) ⊆ J(b)

for all a, b ∈ S (a similar notation may be used for the Green's relations L and R,
cf. Section 2.1 of [10]).

We say that a semigroup S without zero is simple if and only if it has no proper
ideals, that is, if and only if SaS = S for every a of S. Further, a semigroup S
with zero is called 0-simple if S is not null (i.e., S2 6= {0}) and S contains exactly
two ideals (namely: {0} and S). Clearly, S is 0-simple if and only if S2 6= {0} and
S/J = {{0}, S \ {0}}.

By a 0-minimal ideal of a semigroup S we shall mean an ideal of S that is a
minimal element in the set of all non-zero ideals of S.

The following result of Clifford is well-known.

Lemma 1.1. [2] Any 0-minimal ideal of a semigroup is either null, or it is a 0-
simple semigroup.

Let a be an element of a semigroup S. Suppose first that Ja is minimal among
the J -classes of S. Then J(a) = Ja is the least ideal of S. On the other hand, if Ja
is not minimal in S/J , then the set

I(a) = {b ∈ J(a) : Jb ≤ Ja & Jb 6= Ja}

is an ideal of S such that J(a) = I(a)∪ Ja (and this union is disjoint), and if B is a
proper ideal of J(a) and I(a) ⊆ B, then I(a) = B. This implies that J(a)/I(a) is a
0-minimal ideal of S/I(a), i.e., J(a)/I(a) is either null, or it is a 0-simple semigroup
(Lemma 1.1). For convenience, we shall write J(a)/∅ = J(a). The semigroups
J(a)/I(a) (a ∈ S) are the so-called principal factors of S. Remark that we can
think of the principal factor J(a)/I(a) as consisting of the J -class Ja = J(a) \ I(a)
with zero adjoined (if I(a) 6= ∅). Clearly, J(a)/I(a) is null if and only if the product
of any two elements of Ja always falls into a lower J -class. In particular, if Ja
is a subsemigroup of S, then the principal factor J(a)/I(a) is not null. Finally,
J(a)/I(a) is simple if and only if I(a) is empty.
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Recall that among idempotents in an arbitrary semigroup there is a natural

partial order relation defined by the rule that

e 6 f ⇔ e = ef = fe.

We say that an idempotent e 6= 0 of a semigroup S is primitive if it is minimal
(with respect to the natural partial order) within the set of non-zero idempotents
of S. Also, a (0)-simple semigroup is called completely (0)-simple if it is (0)-simple
and contains a primitive idempotent. Notice that in the both cases each non-zero
idempotent of S is primitive. For some equivalent definitions of these notions, we
refer the reader to the book [10] (cf. Section 3.2). Munn showed that a (0)-simple
semigroup S is completely (0)-simple if and only if it is group-bound (a semigroup
S is called group-bound if every element of S has a power which belongs to some
subgroup of S). Obviously, group-bound semigroups are eventually regular.

A semigroup is called (completely) semisimple if each of its principal factors
is either (completely) 0-simple or (completely) simple. Recall that a semigroup is
semisimple if and only if all its ideals are globally idempotent (see e.g. [2]).

Observe that every idempotent congruence class of a perfect semigroup S is
globally idempotent. In particular, all ideals of S are globally idempotent, that is,
S is semisimple.

Recall that an idempotent commutative semigroup is semilattice. Clearly, the
least semilattice congruence η on an arbitrary semigroup S exists (note that J ⊆
η). This relation induces the greatest semilattice decomposition of S, say [Y ;Sα]
(α ∈ Y ), where Y ∼= S/η, each Sα is an η-class and S =

⋃
{Sα : α ∈ Y }. To

indicate this fact we shall always write S = [Y ;Sα] (α ∈ Y ) or briefly S = [Y ;Sα].
Notice that SαSβ ⊆ Sαβ for all α, β ∈ Y , where αβ is the product of α and β in the
semilattice Y .

We say that a semigroup S is intra-regular if for every a ∈ S, aJ a2 [2]. It is
easy to see that if S is intra-regular, then J is a semilattice congruence on S, so we
have the following well-known result [2].

Lemma 1.2. A semigroup S is intra-regular if and only if η = J , where every

J -class is a simple semigroup.

We say that a J -class J of a semigroup is regular if consists entirely of regular
elements.

The following result, which is contained in the paper of Jones et al. [11], is due
to Ciri£.

Lemma 1.3. Let a J -class J of an eventually regular semigroup contains an idem-

potent. Then J is regular. Equivalently, 0-simple eventually regular semigroups are

regular.

We recall now some known results concerning perfect semigroups in general. For
beginning, from the First and Second Isomorphism Theorems we obtain the following
result [5].
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Lemma 1.4. Every homomorphic image of a perfect semigroup is a perfect semi-

group.

An ideal A of a semigroup S is called completely prime if ab ∈ A implies that
a ∈ A or b ∈ A.

The following fact [5] follows from the definition of a Rees congruence.

Lemma 1.5. Every non-zero ideal of a perfect semigroup is completely prime.

It is not difficult to see that every chain is perfect. Also, if the elements a, b of
a semilattice A are incomparable, then the congruence induced by the ideal aA is
not perfect.

Lemma 1.6. [5] A semilattice is perfect if and only if it is a chain.

Let S = [Y ;Sα]. Assume that S is perfect. In the light of Lemmas 1.4 and 1.6,
Y is a chain. Moreover, from [5] we can extract the following result. We give a
simple proof for the sake of completeness.

Corollary 1.7. Let S = [Y ;Sα] be a perfect semigroup. Then Y is a chain and the

following statements hold:
(a) if S does not have a zero, then each Sα is simple and Y ∼= S/J ;
(b) if S contains a zero 0, then Y has a least element 0Y , Sα is a simple semi-

group for α 6= 0Y , and either S0Y = {0} (then Y ∼= S/J ) or S0Y is a 0-sim-

ple semigroup whose zero is not adjoined (and Ja = aη \ {0} if a 6= 0).

Proof. (a). Suppose first that S has no a zero element. As a2 ∈ S1a2S1, a ∈ S1a2S1

(Lemma 1.5) and so S is intra-regular. Thus every Sα is a simple semigroup and
Y ∼= S/J (Lemma 1.2).

(b). Let now S contains a zero 0, say 0 ∈ S0Y . Because S0Y Sα ⊆ S0Y for all
α ∈ Y , then S0Y Sα = S0Y for all α ∈ Y (since S is perfect). This implies that Y
has a least element 0Y .

Since Y is a chain and every Sα is a semigroup, then the condition a2 = 0 implies
that a ∈ S0Y . Thus Sα is a simple semigroup for all α 6= 0Y .

If S0Y 6= {0}, then S2
0Y = S0Y 6= {0}, since it is clear that S0Y is an ideal of

S, i.e., S0Y is not null. Suppose that A ⊆ S0Y is a non-zero ideal of S. Then A
is completely prime (by Lemma 1.5). It follows that A is a non-zero completely
prime ideal of S0Y . Hence the partition {A,S0Y \ A} of S0Y induces a semilattice
congruence on S0Y . On the other hand, it is well-known that every η-class of S
has no semilattice congruences except the universal relation. In particular, S0Y

possesses this property. It follows that A = S0Y , i.e., S0Y is a 0-minimal ideal of S.
Finally, observe that if 0 is adjoined to S0Y , then the partition

{Sα (α 6= 0Y ), S0Y \ {0}, {0}}

of S induces a semilattice congruence on S which is properly contained in the least
semilattice congruence η, a contradiction, so S0Y is a 0-minimal ideal of S whose
zero is not adjoined. Consequently, S0Y is a 0-simple semigroup whose zero is not
adjoined (Lemma 1.1). Clearly, Ja = aη \ {0} if a 6= 0.
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2. The main results

Remark that if ρ is a semilattice congruence on an eventually regular semigroup S,
then every ρ-class of S is eventually regular.

Theorem 2.1. Every eventually regular perfect semigroup S is regular.

Proof. Suppose first that S has no a zero. Then S is a semilattice Y of simple
semigroups Sα (α ∈ Y ), where each Sα is a J -class of S (cf. Corollary 1.7). Since
each Sα is an idempotent J -class, then it contains an idempotent element of S
(because S is idempotent-surjective). In the light of Lemma 1.3, S is regular.

Let S has a zero. In view of Corollary 1.7, Y has a least element 0Y . Put A =
S\S0Y . It is evident that the semigroupA is a semilattice of simple semigroups. Take
any a ∈ A. Then the elements a and a2 belong to the same simple subsemigroup B
of A. Hence a ∈ Ba2B ⊆ Aa2A. Thus A is intra-regular. By the above A is regular.
Finally, consider a 0-simple semigroup S0Y (see Corollary 1.7). This semigroup is
also eventually regular, so S0Y is regular (by Lemma 1.3). Consequently, S is a
regular semigroup.

A semigroup is called completely regular if it is a union of groups. Recall from [9]
that a semigroup is completely regular if and only if it is a semilattice of completely
simple semigroups.

Corollary 2.2. Let S = [Y ;Sα] be a perfect group-bound semigroup. Then S is

regular, Y is a chain and the following statements hold:
(a) if S does not have a zero, then every Sα is a completely simple semigroup

(and Y ∼= S/J ), that is, S is completely regular;
(b) if S contains a zero, say 0, then Y has a least element 0Y , Sα is completely

simple for α 6= 0Y , and either S0Y = {0} (then clearly Y ∼= S/J ) or S0Y is

a completely 0-simple semigroup whose zero 0 is not adjoined (and then Ja =
aη \ {0} if a 6= 0).
In the former case, S is a completely regular semigroup with 0 adjoined.

Proof. (a). Indeed, every Sα is a simple (regular) group-bound semigroup, so each
Sα is a completely simple semigroup.

(b). It is sufficient to show that if S0Y 6= {0}, then S0Y is a completely 0-simple
semigroup. In that case, S0Y is a 0-simple (regular) group-bound semigroup. Thus
S0Y is completely 0-simple semigroup.

Corollary 2.3. Every perfect group-bound semigroup is completely semisimple.

Finally, we shall show that an eventually regular perfect semigroup satisfying
one of the following minimal conditions is group-bound (note that any group-bound
semigroup meets both of these conditions). We shall say that a semigroup S satisf

ies the condition min∗L (resp. min∗R) if and only if for every J -class J of S, the set
of all L-classes (resp. R-classes) contained in J has a minimal element (for more
details cf. Section 6.6 [2]). Recall only that a regular semigroup satisfies min∗L if
and only if it meets min∗R.
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Proposition 2.4. Let S be an eventually regular perfect semigroup satisfying min∗L
or min∗R. Then S is completely semisimple. In particular, S is group-bound.

Proof. Indeed, in that case, S is regular (Theorem 2.1), so every η-class of S is a
regular subsemigroup of S. In view of the above remark, S satisfies min∗L and min∗R
(cf. also Corollary 1.7). As S is semisimple, S is completely semisimple (see Theorem
6.45 in [2]). In particular, S is group-bound.
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