Parastrophes of quasigroups

Wieslaw A. Dudek

Abstract. Parastrophes (conjugates) of a quasigroup can be divided into separate classes containing isotopic parastrophes. We prove that the number of such classes is always 1, 2, 3 or 6. Next we characterize quasigroups having a fixed number of such classes.

1. Introduction

Denote by S_Q the set of all permutations of the set Q. We say that a quasigroup (Q, \cdot) is *isotopic* to (Q, \circ) if there are $\alpha, \beta, \gamma \in S_Q$ such that $\alpha(x) \circ \beta(y) = \gamma(x \cdot y)$ for all $x, y \in Q$. The triplet (α, β, γ) is called an *isotopism*. Quasigroups (Q, \cdot) and (Q, \circ) for which there are $\alpha, \beta, \gamma \in S_Q$ such that $\alpha(x) \circ \beta(y) = \gamma(y \cdot x)$ for all $x, y \in Q$ are called *anti-isotopic*. This fact is denoted by $(Q, \cdot) \sim (Q, \circ)$. In the case when (Q, \cdot) and (Q, \circ) are isotopic we write $(Q, \cdot) \approx (Q, \circ)$. It is clear that the relation \approx is an equivalence and divides all quasigroups into disjoint classes containing isotopic quasigroups.

Each quasigroup $Q = (Q, \cdot)$ determines five new quasigroups $Q_i = (Q, \circ_i)$ with the operations \circ_i defined as follows:

$$\begin{array}{l} x \circ_1 y = z \longleftrightarrow x \cdot z = y \\ x \circ_2 y = z \longleftrightarrow z \cdot y = x \\ x \circ_3 y = z \longleftrightarrow z \cdot x = y \\ x \circ_4 y = z \longleftrightarrow y \cdot z = x \\ x \circ_5 y = z \longleftrightarrow y \cdot x = z \end{array}$$

Such defined (not necessarily distinct) quasigroups are called *parastrophes* or *conjugates* of Q. Traditionally they are denoted as

$$Q_1 = Q^{-1} = (Q, \backslash), \quad Q_2 = {}^{-1}Q = (Q, /), \quad Q_3 = {}^{-1}(Q^{-1}) = (Q_1)_2,$$
$$Q_4 = ({}^{-1}Q)^{-1} = (Q_2)_1 \quad \text{and} \quad Q_5 = ({}^{-1}(Q^{-1}))^{-1} = ((Q_1)_2)_1 = ((Q_2)_1)_2$$

Each parastrophe Q_i can be obtained from Q by the permutation σ_i , where $\sigma_1 = (23), \sigma_2 = (13), \sigma_3 = (132), \sigma_4 = (123), \sigma_5 = (12).$

Generally, parastrophes Q_i do not save properties of Q. Parastrophes of a group are not a group, but parastrophes of an idempotent quasigroup also are idempotent

²⁰¹⁰ Mathematics Subject Classification: 20N05, 05B15

Keywords: quasigroup, isotopism, anti-isotopism, conjugate quasigroup, parastrophe.

W. A. Dudek

quasigroups. Moreover, in some cases (described in [7]) parastrophes of a given quasigroup Q are pairwise equal or all are pairwise distinct (see also [2] and [8]). In [7] it is proved that the number of distinct parastrophes of a quasigroup is always a divisor of 6 and does not depend on the number of elements of a quasigroup.

Parastrophes of each quasigroup can be divided into separate classes containing isotopic parastrophes. We prove that the number of such classes is always 1, 2, 3 or 6. The number of such classes depends on the existence of an anti-isotopism of a quasigroup and some parastrophe of it.

2. Classification of parastrophes

As it is known (see for example [1]) a quasigroup (Q, \cdot) can be considered as an algebra $(Q, \cdot, \backslash, /)$ with three binary operations satisfying the following axioms

$$x(x \setminus z) = z, \quad (z/y)y = z, \quad x \setminus xy = y, \quad xy/y = x,$$

where

$$x \setminus z = y \longleftrightarrow xy = z$$
 and $z/y = x \longleftrightarrow xy = z$.

We will use these axioms to show the relationship between parastrophes. But let's start with the following simple observation.

Lemma 2.1. Let Q be a quasigroup. Then

- (a) $xy = y \circ_5 x$, $x \circ_1 y = y \circ_3 x$, $x \circ_2 y = y \circ_4 x$,
- (b) $Q \sim Q_5$, $Q_1 \sim Q_3$, $Q_2 \sim Q_4$,
- (c) $xy = yx \longleftrightarrow Q = Q_5 \longleftrightarrow Q_1 = Q_3 \longleftrightarrow Q_2 = Q_4$,
- $(d) \quad Q_1 = Q \longleftrightarrow Q_2 = Q_3 \longleftrightarrow Q_4 = Q_5,$
- $(e) \quad Q_2 = Q \longleftrightarrow Q_1 = Q_4 \longleftrightarrow Q_3 = Q_5.$

To describe the relationship between the parastrophes, we will need these two simple lemmas.

Lemma 2.2. Let A, B, C, D be quasigroups. Then

- (a) $A \sim B, B \sim C \longrightarrow A \approx C,$
- (b) $A \sim B, B \approx C \longrightarrow A \sim C,$
- (c) $A \approx B, B \sim C \longrightarrow A \sim C.$

Lemma 2.3. Let Q_i° be the *i*-th parastrophe of the quasigroup $Q^{\circ} = (Q, \circ)$. Then

- (a) $Q \approx Q^{\circ}$ implies $Q_i \approx Q_i^{\circ}$ for each i = 1, 2, 3, 4, 5,
- (b) $Q_i \approx Q_i^\circ$ for some i = 1, 2, 3, 4, 5 implies $Q \approx Q^\circ$.
- (c) Moreover, if $Q \approx Q^{\circ}$, then for each $i = 1, \dots, 5$

 $Q \sim Q_i \longleftrightarrow Q^\circ \sim Q_i^\circ$, and $Q \approx Q_i \longleftrightarrow Q^\circ \approx Q_i^\circ$.

Now we will present a series of lemmas about anti-isotopies of quasigroups and their parastrophes.

Lemma 2.4. $Q \sim Q \longleftrightarrow Q \approx Q_5 \longleftrightarrow Q_1 \approx Q_3 \longleftrightarrow Q_2 \approx Q_4$.

Proof. Indeed,

$$Q \sim Q \longleftrightarrow \gamma(xy) = \alpha(y)\beta(x) \longleftrightarrow \gamma(xy) = \beta(x) \circ_5 \alpha(y) \longleftrightarrow Q \approx Q_5.$$

Also

$$Q \sim Q \longleftrightarrow \gamma(xy) = \alpha(y)\beta(x) \longleftrightarrow \gamma(z) = \alpha(y)\beta(z/y) \longleftrightarrow \alpha(y) \setminus \gamma(z) = \beta(z/y).$$

Thus $Q \sim Q \longleftrightarrow Q_1 \sim Q_2$. Moreover,

$$Q_1 \sim Q_2 \longleftrightarrow \alpha(y) \backslash \gamma(z) = \beta(z/y) \longleftrightarrow \gamma(z) = \alpha(y)\beta(z/y)$$
$$\longleftrightarrow \beta(z/y) = \gamma(z) \circ_4 \alpha(y) \longleftrightarrow Q_2 \approx Q_4.$$

Similarly, for some $\alpha', \beta', \gamma' \in S_Q$ we have

$$Q_1 \sim Q_2 \longleftrightarrow \gamma'(x/y) = \alpha'(y)/\beta'(x) \longleftrightarrow \gamma'(x \setminus y)\beta'(x) = \alpha'(y)$$
$$\longleftrightarrow \gamma'(x \setminus y) = \beta'(x) \circ_3 \alpha'(y) \longleftrightarrow Q_1 \approx Q_3.$$

This completes the proof.

Lemma 2.5. $Q \sim Q_1 \longleftrightarrow Q \sim Q_2 \longleftrightarrow Q_1 \approx Q_2$.

Proof. Indeed, according to the definition of the operations \setminus and /, we have

$$\gamma(x\backslash z) = \alpha(z)\beta(x) \longleftrightarrow \gamma(y) = \alpha(xy)\beta(x) \longleftrightarrow \alpha(xy) = \gamma(y)/\beta(x).$$

So, $Q_1 \sim Q \longleftrightarrow Q \sim Q_2$, which by Lemma 2.2 implies $Q_1 \approx Q_2$.

Conversely, if $Q_1 \approx Q_2$, then $\gamma(x \setminus y) = \alpha(x)/\beta(y)$, i.e., $\gamma(x \setminus y)\beta(y) = \alpha(x)$ for some $\alpha, \beta, \gamma \in S_Q$. From this, for y = xz, we obtain $\gamma(z)\beta(xz) = \alpha(x)$, i.e., $\beta(xz) = \gamma(z) \setminus \alpha(x)$. Thus, $Q \sim Q_1$, and consequently, also $Q \sim Q_2$.

Lemma 2.6. For any quasigroup Q

- (a) $Q_1 \sim Q \longleftrightarrow Q_1 \sim Q_3 \longleftrightarrow Q \approx Q_3 \longleftrightarrow Q_1 \approx Q_5$,
- (b) $Q_2 \sim Q \longleftrightarrow Q_2 \sim Q_4 \longleftrightarrow Q \approx Q_4 \longleftrightarrow Q_2 \approx Q_5.$

Proof. Replacing in Lemma 2.5 a quasigroup Q by Q_1 we get the first two equivalences. The third equivalence is a consequence of Lemma 2.3.

Similarly, replacing Q by Q_2 we obtain (b).

Lemma 2.7. $Q_3 \sim Q \longleftrightarrow Q \approx Q_2 \longleftrightarrow Q_1 \approx Q_4 \longleftrightarrow Q_3 \approx Q_5$.

Proof. Obviously $Q_3 \sim Q \longleftrightarrow Q_3 \approx Q_5$. Moreover,

$$Q_3 \sim Q \longleftrightarrow \gamma(xy)\alpha(y) = \beta(x) \longleftrightarrow \gamma(xy) = \beta(x)/\alpha(y) \longleftrightarrow Q \approx Q_2.$$

Analogously, xy = z we obtain

$$Q_3 \sim Q \longleftrightarrow \gamma(z) \alpha(x \setminus z) = \beta(x) \longleftrightarrow Q_1 \approx Q_4.$$

This completes the proof.

Lemma 2.8. $Q_4 \sim Q \longleftrightarrow Q \approx Q_1 \longleftrightarrow Q_2 \approx Q_3 \longleftrightarrow Q_4 \approx Q_5$.

Proof. Of course $Q_4 \sim Q \longleftrightarrow Q_4 \approx Q_5$. Since $Q_4 \sim Q \longleftrightarrow \beta(x)\gamma(xy) = \alpha(y)$, we obtain $Q_4 \sim Q \longleftrightarrow Q \approx Q_1$ and $Q_4 \sim Q \longleftrightarrow Q_2 \approx Q_3$ for x = z/y.

Theorem 2.9. All parastrophes of a quasigroup Q are isotopic to Q if and only if $Q \sim Q$ and $Q \sim Q_i$ for some i = 1, 2, 3, 4.

Proof. If $Q \sim Q$, then, by Lemma 2.4, we have $Q \approx Q_5$, $Q_1 \approx Q_3$ and $Q_2 \approx Q_4$. This for $Q \sim Q_i$, i = 1, 2, 3, 4, by Lemmas 2.6, 2.7 and 2.8, gives $Q \approx Q_1 \approx Q_2 \approx$ $Q_3 \approx Q_4 \approx Q_5$. So, in this case all parastrophes are isotopic to Q.

The converse statement is obvious.

Corollary 2.10. If $Q \sim Q$ and $Q \sim Q_i$ for some i = 1, 2, 3, 4, then also $Q \sim Q_i$ for other i = 1, 2, 3, 4, 5.

Theorem 2.11. A quasigroup Q has exactly two classes of isotopic parastrophes if and only if

- (1) $Q \not\sim Q, Q \sim Q_1$ and $Q \not\sim Q_i$ for i = 2, 3, 4, or equivalently,
- (2) $Q \neq Q, Q \sim Q_2$ and $Q \neq Q_i$ for i = 1, 3, 4.

In this case $Q \approx Q_3 \approx Q_4$ and $Q_1 \approx Q_2 \approx Q_5$.

Proof. Let Q have exactly two classes of isotopic parastrophes. Then it must be true that $Q \approx Q_i$ for some i = 1, 2, 3, 4, 5 because $Q \not\approx Q_i$ for all i = 1, 2, 3, 4, 5gives $Q_1 \approx Q_j$ for some j which by previous lemmas implies $Q \approx Q_k$ for some k.

CASE $Q \approx Q_1$. In this case $Q_2 \approx Q_3$ and $Q_4 \approx Q_5$ (Lemma 2.8). So, the following classes of isotopic parastrophes are possible:

- 1) $\{Q, Q_1, Q_2, Q_3\}, \{Q_4, Q_5\},\$
- 2) $\{Q, Q_1, Q_4, Q_5\}, \{Q_2, Q_3\},\$
- 3) $\{Q, Q_1\}, \{Q_2, Q_3, Q_4, Q_5\}.$

In the first case from $Q_1 \approx Q_3$, by Lemma 2.4, we conclude $Q \approx Q_5$ which shows that in this case we have only one class. This contradics our assumption on the number of classes. So, this case is impossible.

In the second case, $Q \approx Q_5$, by the same lemma, implies $Q_2 \approx Q_4$ which (similarly as in previous case) is impossible. Also the third case is impossible because $Q_2 \approx Q_4$ leads to $Q_1 \approx Q_3$. Hence must be $Q \not\approx Q_1$.

CASE $Q \approx Q_2$. Then, according to Lemma 2.7, $Q_1 \approx Q_4$ and $Q_3 \approx Q_5$. Thus

- $1) \ \ \{Q,Q_1,Q_2,Q_4\}, \ \ \{Q_3,Q_5\}, \ {\rm or}$
- $2) \ \ \{Q,Q_2,Q_3,Q_5\}, \ \ \{Q_1,Q_4\}, \ {\rm or}$
- $3) \ \{Q,Q_2\}, \ \{Q_1,Q_3,Q_4,Q_5\}.$

Using the same argumentation as in the case $Q \approx Q_1$ we can see that the case $Q \approx Q_2$ is impossible.

CASE $Q \approx Q_3$. By Lemmas 2.1, 2.2 and 2.5 only the following classes are possible: $\{Q, Q_3, Q_4\}$ and $\{Q_1, Q_2, Q_5\}$. In this case $Q \not\sim Q$ (Lemma 2.4) and $Q \sim Q_1$ (Lemma 2.6). Then also $Q \sim Q_2$ (Lemma 2.5).

CASE $Q \approx Q_4$. Analogously as $Q \approx Q_3$.

CASE $Q \approx Q_5$. Then $Q_1 \approx Q_3$ and $Q_2 \approx Q_4$. Is a similar way as for $Q \approx Q_1$ we can verify that this case is not possible.

So, if Q has exactly two classes of isotopic parastrophes, then $Q \not\sim Q$ and $Q \sim Q_1$, or $Q \not\sim Q$ and $Q \sim Q_2$.

Conversely, if $Q \not\sim Q$ and $Q \sim Q_1$, or equivalently, $Q \not\sim Q$ and $Q \sim Q_2$, then by Lemmas 2.5 and 2.6 we have two classes: $\{Q, Q_3, Q_4\}$ and $\{Q_1, Q_2, Q_5\}$. Since $Q_1 \not\approx Q_3$ (Lemma 2.4), these classes are disjoint.

Theorem 2.12. A quasigroup Q has exactly three classes of isotopic parastrophes if and only if

- (1) $Q \not\sim Q, Q \sim Q_3$ and $Q \not\sim Q_i$ for i = 1, 2, 4, or
- (2) $Q \not\sim Q, Q \sim Q_4$ and $Q \not\sim Q_i$ for i = 1, 2, 3, or
- (3) $Q \sim Q, Q \sim Q_5$ and $Q \not\sim Q_i$ for i = 1, 2, 3, 4.

In the first case we have $\{Q, Q_2\}$, $\{Q_1, Q_4\}$ and $\{Q_3, Q_5\}$; in the second $\{Q, Q_1\}$, $\{Q_2, Q_3\}$ and $\{Q_4, Q_5\}$; in the third $\{Q, Q_5\}$, $\{Q_1, Q_3\}$ and $\{Q_2, Q_4\}$.

Proof. Suppose that a quasigroup Q has exactly three classes of isotopic parastrophes. From the above lemmas it follows that in this case $Q \approx Q_i$ for some i.

CASE $Q \approx Q_1$. Then, by Lemma 2.8, we have three classes $\{Q, Q_1\}, \{Q_2, Q_3\}, \{Q_4, Q_5\}$ and $Q \sim Q_4$. Since $Q_1 \not\approx Q_3$ we also have $Q \not\sim Q$ (Lemma 2.4).

CASE $Q \approx Q_2$. In this case $\{Q, Q_2\}$, $\{Q_1, Q_4\}$, $\{Q_3, Q_5\}$ and $Q \sim Q_3$ (Lemma 2.7). Analogously as in the previous case $Q_1 \not\approx Q_3$ gives $Q \not\sim Q$.

CASE $Q \approx Q_3$. This case is impossible because by Lemmas 2.5 and 2.6 it leads to two classes.

CASE $Q \approx Q_4$. Analogously as $Q \approx Q_3$.

CASE $Q \approx Q_5$. Then $Q_1 \approx Q_3$, $Q_2 \approx Q_4$ and $Q \sim Q$. Since classes $\{Q, Q_5\}$, $\{Q_1, Q_3\}$, $\{Q_2, Q_5\}$ are disjoint $Q \not\sim Q_i$ for each i = 1, 2, 3, 4.

The converse statement is obvious.

As a consequence of the above results we obtain

Corollary 2.13. Parastrophes of a quasigroup Q are non-isotopic if and only if $Q \not\sim Q$ and $Q \not\sim Q_i$ for all i = 1, 2, 3, 4.

Corollary 2.14. The number of non-isotopic parastrophes of a quasigroup Q is always 1, 2, 3, or 6.

Depending on the relationship between parastrophes quasigroups can be divided into six types presented below.

type	classes of isotoipic parastrophes
A	$\{Q, Q_1, Q_2, Q_3, Q_4, Q_5\}$
B	$\{Q, Q_3, Q_4\}, \{Q_1, Q_2, Q_5\}$
C	$\{Q, Q_2\}, \{Q_1, Q_4\}, \{Q_3, Q_5\}$
D	$\{Q,Q_1\}, \{Q_2,Q_3\}, \{Q_4,Q_5\}$
E	$\{Q, Q_5\}, \{Q_1, Q_3\}, \{Q_2, Q_4\}$
F	$\{Q\}, \{Q_1\}, \{Q_2\}, \{Q_3\}, \{Q_4\}, \{Q_5\}$

Our results are presented in the following table where "+" means that the corresponding relation holds. The symbol "-" means that this relation has no place.

_									
	$Q\sim Q$	+	-	_	-	—	+	—	$Q \approx Q_5$
,	$Q \sim Q_1$	+	+	-	-	_	-	_	$Q \approx Q_3$
	$Q \sim Q_2$	+	-	+	-	_	-	_	$Q \approx Q_4$
	$Q \sim Q_3$	+	-	-	+	—	-	—	$Q \approx Q_2$
,	$Q \sim Q_4$	+	-	-	-	+	-	_	$Q \approx Q_1$
Γ	type	A	B	B	C	D	E	F	

The parastrophe Q_5 plays no role in our research since always is $Q \sim Q_5$.

3. Parastrophes of selected quasigroups

In this section we present characterizations of parastrophes of several classical types of quasigroups. We start with parastrophes of IP-quasigroups.

As a consequence of our results, we get the following well-known fact (see for example [1])

Proposition 3.1. All parastrophes of an IP-quasigroup are isotopic.

Proof. Indeed, in any *IP*-quasigroup Q there are permutations $\alpha, \beta \in S_Q$ such that $\alpha(x) \cdot xy = y = yx \cdot \beta(x)$ for all $x, y \in Q$. So, $Q \approx Q_1 \approx Q_2$, i.e., Q is a quasigroup of type A.

Corollary 3.2. Parastrophes of a group are isotopic.

The same is true for the parastrophes of Moufang quasigroups since groups and Moufang quasigroups are IP-quasigroups.

Also parastrophes of T-quasigroups, linear and alinear quasigroups (studied in [3]) are isotopic. This fact follows from more general result proved below.

Theorem 3.3. All parastrophes of a quasigroup isotopic to a group are isotopic.

Proof. Let $G = (G, \circ)$ be a group. Then $\varphi(x \circ y) = \varphi(y) \circ \varphi(x)$ for $\varphi(x) = x^{-1}$. Since $(Q, \cdot) \approx (G, \circ)$, for some α, β, γ we have

$$\gamma(xy) = \alpha(x) \circ \beta(y) = \varphi^{-1}(\varphi\beta(y) \circ \varphi\alpha(x)) = \varphi^{-1}\gamma\left(\alpha^{-1}\varphi\beta(y) \cdot \beta^{-1}\varphi\alpha(x)\right).$$

Thus $\gamma^{-1}\varphi\gamma(xy) = \alpha^{-1}\varphi\beta(y) \cdot \beta^{-1}\varphi\alpha(x)$. So, $Q \sim Q$.

Moreover, from $\gamma(xy) = \alpha(x) \circ \beta(y)$ for xy = z we obtain

 $\alpha(x) \backslash\!\!\backslash \gamma(z) = \beta(x \backslash z) \quad \text{and} \quad \gamma(z) /\!\!/ \beta(y) = \alpha(z/y),$

where $\backslash\!\!\backslash$ and $/\!\!/$ are inverse operations in a group G. Thus $Q_1 \approx G_1$ and $Q_2 \approx G_2$. Since $G \approx G_1 \approx G_2$, also $Q \approx Q_1 \approx Q_2$. This shows that a quasigroup isotopic to a group is a quasigroup of type A. Hence (Lemma 2.3) all its parastrophes are isotopic.

D-loops (called also *loops with anti-automorphic property*) are defined as loops with the property $(xy)^{-1} = y^{-1}x^{-1}$, where x^{-1} denotes the inverse element [5].

Theorem 3.4. Let Q be a D-loop. Then

(1) all parastrophes of Q coincide with Q, or

(2) Q has three classes of isotopic parastrophes: $\{Q, Q_5\}, \{Q_1, Q_3\}, \{Q_2, Q_4\}.$ The second case holds if and only if $Q \neq Q_1$ or $Q \not\approx Q_1$.

Proof. Let Q be a D-loop. Then $Q \sim Q$. Thus all its parastrophes are isotopic to Q or they are divided into three classes $\{Q, Q_5\}, \{Q_1, Q_3\}, \{Q_2, Q_4\}$ (see Table). By Lemmas 2.6 and 2.8 they are disjoint if and only if $Q \not\sim Q_1$ or $Q \not\approx Q_1$. \Box

Corollary 3.5. A D-loop Q has three classes of isotopic parastrophes if and only if $Q \not\sim Q_2$ or $Q \not\approx Q_2$.

In [5] is proved that parastrophes of a *D*-loop Q are isomorphic to one of the quasigroups Q, Q_1 , Q_2 . Comparing this fact with our results we obtain

Theorem 3.6. For a D-loop Q the following conditions are equivalent:

- (1) all parastrophes of Q are isomorphic,
- (2) Q and Q_1 are isomorphic,
- (3) Q and Q_2 are isomorphic,
- (4) Q_1 and Q_2 are isomorphic.

W. A. Dudek

Example 3.7. Consider the following three loops.

•	1	2	3	4	5	6	_	\circ_1	1	2	3	4	5	6	\circ_2	1	2	3	4	5	6
1	1	2	3	4	5	6		1	1	2	3	4	5	6	1	1	2	3	4	5	6
2	2	1	6	5	3	4		2	2	1	5	6	4	3	2	2	1	4	3	6	5
3	3	6	1	2	4	5		3	3	4	1	5	6	2	3	3	5	1	6	2	4
4	4	5	2	1	6	3		4	4	3	6	1	2	5	4	4	6	5	1	3	2
5	5	3	4	6	1	2		5	5	6	2	3	1	4	5	5	4	6	2	1	3
6	6	4	5	3	2	1		6	6	5	4	2	3	1	6	6	3	2	5	4	1

The first loop is a D-loop, the second and the third are parastrophes of the first. They are not D-loops and are not isotopic to the first. So this D-loop has three classes of isotopic parastrophes. In this case $Q = Q_5$, $Q_1 = Q_3$ and $Q_2 = Q_4$. \Box

4. Some consequences

Note first of all that the proofs of our results remain true also for the case when $\alpha = \beta = \gamma$. In this case an anti-isotopism is an anti-isomorphism and an isotopism is an isomorphism. So, the above results will be true if we replace an anti-isotopism by an anti-isomorphism, and an isotopism by an isomorphism. Moreover, an isotopism of parastrophes can be characterized by the identities:

$$\alpha_1(x) \cdot \beta_1(yx) = \gamma_1(y), \tag{1}$$

$$\beta_2(xy) \cdot \alpha_2(x) = \gamma_2(y), \tag{2}$$

$$\beta_3(yx) \cdot \alpha_3(x) = \gamma_3(y), \tag{3}$$

$$\alpha_4(x) \cdot \beta_4(xy) = \gamma_4(y), \tag{4}$$

$$\beta_5(xy) = \gamma_5(y) \cdot \alpha_5(x),\tag{5}$$

where $\alpha_i, \beta_i, \gamma_i$ are fixed permutations of the set Q.

Namely, from our results it follows that

 $\begin{array}{ll} Q & \text{satisfies } (1) \longleftrightarrow Q_1 \sim Q \longleftrightarrow Q_3 \approx Q, \\ Q & \text{satisfies } (2) \longleftrightarrow Q_2 \sim Q \longleftrightarrow Q_4 \approx Q, \\ Q & \text{satisfies } (3) \longleftrightarrow Q_3 \sim Q \longleftrightarrow Q_2 \approx Q, \\ Q & \text{satisfies } (4) \longleftrightarrow Q_4 \sim Q \longleftrightarrow Q_1 \approx Q, \\ Q & \text{satisfies } (5) \longleftrightarrow Q \sim Q \longleftrightarrow Q_5 \approx Q. \end{array}$

Lemma 2.3 shows that these identities are universal in some sense, i.e., if one of these identities is satisfied in a quasigroup Q, then in a quasigroup isotopic to Q is satisfied the identity of the same type, i.e., it is satisfied with other permutations.

Since $Q \sim Q_1 \longleftrightarrow Q \sim Q_2$ we have

Proposition 4.1. A quasigroup Q satisfies for some $\alpha_1, \beta_1, \gamma_1 \in S_Q$ the identity (1) if and only if for some $\alpha_2, \beta_2, \gamma_2 \in Q_S$ it satisfies the identity (2).

As a consequence we obtain the following classification of quasigroups>

Theorem 4.2. Let Q be a quasigroup. Then

- Q is type A if and only if it satisfies all of the identities (1) (5),
- Q is type B if and only if it satisfies only (1) and (2),
- Q is type C if and only if it satisfies only (3),
- Q is type D if and only if it satisfies only (4),
- Q is type E if and only if it satisfies only (5),
- Q is type F if and only if it satisfies none of the identities (1) (5).

If all permutations used in (1) - (5) are the identity permutations, then these equations have of the form:

$$x \cdot yx = y, \tag{6}$$

$$xy \cdot x = y, \tag{7}$$

$$yx \cdot x = y, \tag{8}$$

$$x \cdot xy = y, \tag{9}$$

$$xy = yx. (10)$$

Basing on our results we conclude that

 $Q \text{ satisfies } (6) \longleftrightarrow Q = Q_4,$ $Q \text{ satisfies } (7) \longleftrightarrow Q = Q_3,$ $Q \text{ satisfies } (8) \longleftrightarrow Q = Q_2,$ $Q \text{ satisfies } (9) \longleftrightarrow Q = Q_1,$ $Q \text{ satisfies } (10) \longleftrightarrow Q = Q_5.$

Since Q satisfies $(7) \leftrightarrow Q_5 = Q_2 \leftrightarrow ((Q_1)_2)_1 = Q_2 \leftrightarrow Q_1 = ((Q_2)_1)_2 \leftrightarrow Q_1 = Q_5 \leftrightarrow Q$ satisfies (6), we see that identities (7) and (6) are equivalent, i.e., Q satisfies (7) if and only if it satisfies (6).

As a consequence we obtain the stronger version of Theorem 4 in [7].

Theorem 4.3. Parastrophes of a quasigroup Q can be characterized by the identities (6) - (10) in the following way:

- $Q = Q_i$ for $1 \le i \le 5$ if and only if it satisfies all of the identities (6) (10),
- $Q = Q_3 = Q_4$, $Q_1 = Q_2 = Q_5$ if and only if Q satisfies only (7) and (6),
- $Q = Q_2$, $Q_1 = Q_4$, $Q_3 = Q_5$ if and only if Q satisfies only (8),
- $Q = Q_1$, $Q_2 = Q_3$, $Q_4 = Q_5$ if and only if Q satisfies only (9),
- $Q = Q_5$, $Q_1 = Q_3$, $Q_2 = Q_4$ if and only if Q satisfies only (10),
- $Q \neq Q_i \neq Q_j$ for all $1 \leq i < j \leq 5$ if and only if Q satisfies none of the identities (6) (10).

Corollary 4.4. Parastrophes of a commutative quasigroup Q coincide with Q or are divided into three classes: $\{Q = Q_5\}, \{Q_1 = Q_3\}, \{Q_2 = Q_4\}.$

Corollary 4.5. For a commutative quasigroup Q the following conditions are equivalent:

- (1) all parastrophes of Q coincide with Q,
- (2) $Q = Q_1$,
- (3) $Q = Q_2$,
- (4) $Q_1 = Q_2$,
- (5) Q satisfies at least one of the identities (6) (9).

Proof. We prove only the equivalence $(1) \leftrightarrow (2)$. Other equivalences can be proved in a similar way.

For a commutative Q we have $Q = Q_5$, $Q_1 = Q_3$, $Q_2 = Q_4$. If $Q = Q_1$, then $Q = Q_1 = Q_3 = Q_5$. Hence $Q_1 = Q_5 = ((Q_2)_1)_2$ which gives $(Q_1)_2 = (Q_2)_1$. So, $Q_3 = Q_4$, i.e., (2) implies (1). The converse implication is obvious.

Corollary 4.6. Parastrophes of a boolean group coincide with this group.

Note finally that identities (6)-(10) can be used to determine some autotopisms of quasigroups [4].

References

- V.D. Belousov, Foundations of the theory of quasigroups and loops, (Russian), Moscow (1967).
- [2] G.B. Belyavskaya and T.V. Popovich, Conjugate sets of loops and quasigroups. DC-quasigroups, Bul. Acad. Ştiinţe Repub. Mold. Mat. 1(68) (2012), 21 - 31.
- [3] G.B. Belyavskaya and A.Kh. Tabarov, Characterization of linear and alinear quasigroups, (Russian), Diskr. Mat. 4 (1992) 142 147.
- [4] A.I. Deriyenko, Autotopisms of some quasigroups, Quasigroups and Related Systems 23 (2015), 217 220.
- [5] I.I. Deriyenko and W.A. Dudek, *D-loops*, Quasigroups and Related Systems 20 (2012), 183 - 196.
- [6] A.D. Keedwell and J. Dénes, Latin squares and their applications, Second edition, Elsevier, 2015.
- [7] C.C. Lindner and D. Steedly, On the number of conjugates of a quasigroups, Algebra Universalis 5 (1975), 191 – 196.
- [8] T.V. Popovich, On conjugate sets of quasigroups, Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(67) (2011), 69 - 76.

Received November 12, 2015

Faculty of Pure and Applied Mathematics Wroclaw University of Technology Wyb. Wyspiańskiego 27 50-370 Wroclaw, Poland E-mail: wieslaw.dudek@pwr.edu.pl