On generalized bi- Γ -ideals in Γ -semigroups

Abul Basar and Mohammad Yahya Abbasi

Abstract. We study generalized bi- Γ -ideals, prime, semiprime and irreducible generalized bi- Γ -ideals in Γ -semigroups.

1. Introduction

Let S and Γ be two nonempty sets. Then a triple of the form (S, Γ, \cdot) is called a Γ -semigroup, where \cdot is a ternary operation $S \times \Gamma \times S \to S$ such that $(x \cdot \alpha \cdot y) \cdot \beta \cdot z = x \cdot \alpha \cdot (y \cdot \beta \cdot z)$ for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$.

We will denote (S, Γ, \cdot) by S and $a \cdot \gamma \cdot b$ by $a\gamma b$.

Definition 1.1. A nonempty subset B of S is called

- a sub- Γ -semigroup of S if $a\gamma b \in B$, for all $a, b \in B$ and $\gamma \in \Gamma$,
- a generalized bi- Γ -ideal of S if $B\Gamma S\Gamma B \subseteq B$,
- a *bi*- Γ -*ideal* of *S* if $B\Gamma S\Gamma B \subseteq B$ and $B\Gamma B \subset B$.

A Γ -semigroup S is called a *gb-simple* if it does not contain the proper generalized bi- Γ -ideal.

Definition 1.2. A generalized bi- Γ -ideal B of a Γ -semigroup S is

- prime if $B_1 \Gamma B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$,
- strongly prime if $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$,
- *irreducible* if $B_1 \cap B_2 = B$ implies $B_1 = B$ or $B_2 = B$,

• strongly irreducible if $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any generalized bi- Γ -ideals B_1 and B_2 of S.

A quasi Γ -ideal is prime if it is prime as a bi- Γ -ideal.

Definition 1.3. A generalized bi- Γ -ideal B of S is

• semiprime if $B_1 \Gamma B_1 \subseteq B$ implies that $B_1 \subseteq B$ for any bi- Γ -ideal B_1 of S.

Other definition one can find in [1] and [2].

²⁰¹⁰ Mathematics Subject Classification: 16D25, 20M12 Keywords: Γ -semigroup, prime and irreducible generalized bi- Γ -ideal.

2. Properties of generalized bi- Γ -ideals

Lemma 2.1. The smallest generalized bi- Γ -ideal of a Γ -semigroup S containing a nonempty subset T of S has the form $T \cup T\Gamma S\Gamma T$

Proof. Let $B = T \cup T\Gamma S\Gamma T$. Then $T \subseteq B$. So,

$$\begin{split} B\Gamma S\Gamma B &= (T \cup T\Gamma S\Gamma T)\Gamma S\Gamma (T \cup T\Gamma S\Gamma T) \\ &\subseteq [T(\Gamma S\Gamma)(T \cup T\Gamma S\Gamma T)] \cup [T\Gamma S\Gamma T(\Gamma S\Gamma)(T \cup T\Gamma S\Gamma T)] \\ &\subseteq [T(\Gamma S\Gamma)T \cup T(\Gamma S\Gamma)T\Gamma S\Gamma T] \cup [T\Gamma S\Gamma T(\Gamma S\Gamma)T \cup T\Gamma S\Gamma T(\Gamma S\Gamma)T\Gamma S\Gamma T] \\ &\subseteq [T\Gamma S\Gamma T \cup T\Gamma S\Gamma T] \cup [T\Gamma S\Gamma T \cup T\Gamma S\Gamma T] \\ &= T\Gamma S\Gamma T \subseteq T \cup T\Gamma S\Gamma T = B. \end{split}$$

Hence $B = T \cup T\Gamma S\Gamma T$ is a generalized bi- Γ -ideal of S.

To prove that B is the smallest generalized bi- Γ -ideal of S containing T suppose that G is a generalized bi- Γ -ideal of S containing T. Then $T\Gamma S\Gamma T \subseteq G\Gamma S\Gamma G \subseteq G$. Therefore, $B = T \cup T\Gamma S\Gamma T \subseteq G$. Hence B is the smallest generalized bi- Γ -ideal of S containing T.

The smallest generalized bi- Γ -ideal of S containing T will be denoted by (T).

Lemma 2.2. Suppose that A is a sub- Γ -semigroup of a Γ -semigroup S, $s \in S$ and $(s\Gamma A\Gamma s) \cap A \neq \emptyset$. Then $(s\Gamma A\Gamma s) \cap A$ is a generalized bi- Γ -ideal of A.

Proof. Indeed,

$$\begin{split} (s\Gamma A\Gamma s \cap A)\Gamma A\Gamma (s\Gamma A\Gamma s \cap A) &\subseteq [(s\Gamma A\Gamma s)\Gamma A \cap A\Gamma A]\Gamma (s\Gamma A\Gamma s \cap A) \\ &\subseteq [(s\Gamma A\Gamma s)\Gamma A \cap A]\Gamma (s\Gamma A\Gamma s \cap A) \\ &\subseteq [[(s\Gamma A\Gamma s\Gamma A)\Gamma (s\Gamma A\Gamma s)] \cap [A\Gamma (s\Gamma A\Gamma s \cap A)]] \\ &\subseteq [(s\Gamma A\Gamma s) \cap (A\Gamma s\Gamma A\Gamma s)] \cap A \\ &\subseteq (s\Gamma A\Gamma s) \cap A. \end{split}$$

Hence $(s\Gamma A\Gamma s) \cap A$ is a generalized bi- Γ -ideal of A.

Theorem 2.3. For a Γ -semigroup S the following assertions are equivalent:

- (i) S is a gb-simple Γ -semigroup,
- (ii) $s\Gamma S\Gamma s = S$ for all $s \in S$,
- (iii) (s) = S for all $s \in S$.

Proof. $(i) \Rightarrow (ii)$. Let S be a gb-simple Γ -semigroup and $s \in S$. Then $s\Gamma S\Gamma s$ is a generalized bi- Γ -ideal of S. As S is a gb-simple Γ -semigroup, $s\Gamma S\Gamma s = S$.

 $(ii) \Rightarrow (iii)$. If $s\Gamma S\Gamma s = S$ for all s in S, then, $(s) = \{s\} \cup s\Gamma S\Gamma s = \{s\} \cup S = S$. $(iii) \Rightarrow (i)$. Let (s) = S, for all $s \in S$, and assume B is a generalized bi- Γ -ideal of S and $s \in B$. Then $(s) \subseteq B$. By our hypothesis, we obtain $S = (s) \subseteq B \subseteq S$. So, S = B. Hence S is a gb-simple Γ -semigroup. **Theorem 2.4.** A bi- Γ -ideal B of a Γ -semigroup S is a minimal generalized bi- Γ -ideal of S if and only if B is a gb-simple Γ -semigroup.

Proof. Let B be a minimal generalized bi- Γ -ideal of S. By our hypothesis, B is a Γ -semigroup. Suppose D is a generalized bi- Γ -ideal of B. Then $D\Gamma B\Gamma D \subseteq D \subseteq B$. As B is a generalized bi- Γ -ideal of S, we obtain $D\Gamma B\Gamma D$ is a generalized bi- Γ -ideal of S. As B is a minimal generalized bi- Γ -ideal of S, we obtain $D\Gamma B\Gamma D = B$. So, we have B = D. Therefore, B is a gb-simple Γ -semigroup.

Conversely, let B be a gb-simple Γ -semigroup. Suppose D is a generalized bi- Γ -ideal of S so that $D \subseteq B$. Then $D\Gamma B\Gamma D \subseteq D\Gamma S\Gamma D \subseteq D$. So D is a generalized bi- Γ -ideal of B. As B is a gb-simple Γ -semigroup, we obtain B = D. Hence B is a minimal generalized bi- Γ -ideal of S.

Theorem 2.5. Every generalized bi- Γ -ideal of a Γ -semigroup S is a bi- Γ -ideal of S if and only if $x\alpha y \in \{x, y\}\Gamma S\Gamma\{x, y\}$, for every $x, y \in S$ and $\alpha \in \Gamma$.

Proof. Suppose S is a Γ -semigroup in which every generalized bi- Γ -ideal is a bi- Γ -ideal. Then, for every $x, y \in S$, the generalized bi- Γ -ideal generated by subset $\{x, y\}$ is given by $\{x, y\} \cup \{x, y\}\Gamma S\Gamma\{x, y\}$ which is a bi- Γ -ideal of S, so we have $x \alpha y \in \{x, y\}\Gamma S\Gamma\{x, y\}$.

Conversely, if x, y are elements of a generalized bi- Γ -ideal B of S, then we have $x \alpha y \in B \Gamma S \Gamma B \subseteq B$. Hence B is a bi- Γ -ideal of S.

3. Prime and irreducible generalized bi-Γ-ideals

Proposition 3.1. A semiprime generalized bi- Γ -ideal of S is a quasi- Γ -ideal of S.

Proof. Suppose that B is semiprime and let $x \in (S\Gamma B \cap B\Gamma S)$. Then $x\Gamma S\Gamma x \subseteq (B\Gamma S)\Gamma S\Gamma(S\Gamma B) = B\Gamma S\Gamma B \subseteq B$ and since B is semiprime, we obtain $x \in B$. Hence $B = S\Gamma B \cap B\Gamma S$.

Proposition 3.2. A Γ -semigroup S is regular if and only if every generalized bi- Γ -ideal of S is semiprime.

Proof. Let S be regular and suppose that B is any generalized bi- Γ -ideal of S. If $b \notin B$, then $b \in s\Gamma S\Gamma s$, so we obtain $s\Gamma S\Gamma s \notin B$ and hence B is semiprime. Conversely, if every generalized bi- Γ -ideal of S is semiprime, then so is $B = s\Gamma S\Gamma s$ for any $s \in S$. As $s\Gamma S\Gamma s \subseteq B$, we obtain $b \in B$ and hence S is regular.

Proposition 3.3. The intersection of any nonempty family of prime generalized bi- Γ -ideals of a Γ -semigroup is a semiprime bi- Γ -ideal.

Proof. Suppose that S is a Γ -semigroup and $\mathcal{P} = \{P \mid P \text{ is a prime generalized} bi-\Gamma\text{-ideal of } S\}$. As $0 \in P$, for all $P \in \mathcal{P}$, we obtain $0 \in \bigcap \mathcal{P}$. Thus $\bigcap \mathcal{P} \neq \emptyset$. Suppose $q \in (\bigcap \mathcal{P})\Gamma S\Gamma(\bigcap \mathcal{P})$. Then $q = q_1 \alpha s \beta q_2$, for some $q_1, q_2 \in \bigcap \mathcal{P}, s \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Thus $q = q_1 \alpha s \beta q_2 \in P\Gamma S\Gamma P \subseteq P$, for all $P \in \mathcal{P}$. Therefore, $q \in \bigcap \mathcal{P}$. So $(\bigcap \mathcal{P})\Gamma S\Gamma(\bigcap \mathcal{P}) \subseteq \bigcap \mathcal{P}$. Therefore, $\bigcap \mathcal{P}$ is a generalized bi- Γ -ideal of S. Suppose B be a generalized bi- Γ -ideal of S such that $B^2 \subseteq \bigcap \mathcal{P}$. We have $B^2 \subseteq P$, for all $P \in \mathcal{P}$. As P is a prime generalized bi- Γ -ideal of S, we obtain $B \subseteq P$, for all $P \in \mathcal{P}$. Thus $B \subseteq \bigcap \mathcal{P}$. Hence $\bigcap \mathcal{P}$ is a semiprime generalized bi- Γ -ideal of S. \Box

Proposition 3.4. A prime generalized bi- Γ -ideal is a prime one-sided Γ -ideal.

Proof. Let $S\Gamma B \nsubseteq B$ and $B\Gamma S \nsubseteq B$. Since *B* is prime, it follows that $B\Gamma S\Gamma B = (B\Gamma S)\Gamma S\Gamma(S\Gamma B) \nsubseteq B$, which is a contradiction. Hence *B* is a prime one-sided Γ -ideal.

Corollary 3.5. A quasi- Γ -ideal of S is a prime one-sided Γ -ideal of S.

Proposition 3.6. A generalized bi- Γ -ideal B of a Γ -semigroup S is prime if and only if $R\Gamma L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$, where R and L are right and left Γ -ideal of S.

Proof. If B is prime and $R\Gamma L \subseteq B$ with $R \notin B$, then for every $r \in R \setminus B$, $r\Gamma S\Gamma l \subseteq B$, for all $l \in L$, therefore $L \subseteq B$. Conversely, if B is not prime, there exists $a, b \notin B$ such that $a\Gamma S\Gamma b \subseteq B$. But then $(a\Gamma S)\Gamma(S\Gamma b) \subseteq B$ and $a\Gamma S, S\Gamma b \notin B$.

Proposition 3.7. If a bi- Γ -ideal B of S is prime, then $I(B) = \{s \in B \mid S\Gamma s\Gamma S \subseteq B\}$

is a prime Γ -ideal of S.

Proof. Suppose B is prime and let $J_1\Gamma J_2 \subseteq I(B)$, for two-sided ideals J_1 and J_2 . Then, since $J_1\Gamma J_2 \subseteq B$, by Proposition 3.6, $J_1 \subseteq B$ or $J_2 \subseteq B$. Now I(B) is the largest Γ -ideal in B, it follows that $J_1 \subseteq I(B)$ or $J_2 \subseteq I(B)$.

Theorem 3.8. Every strongly irreducible, semiprime generalized bi- Γ -ideal of a Γ -semigroup S is a strongly prime generalized bi- Γ -ideal.

Proof. Let *B* be a strongly irreducible semiprime generalized bi-Γ-ideal of *S*. Suppose that B_1, B_2 are generalized bi-Γ-ideals of *S* such that $B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. As $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2$ and $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$, it follows that $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$. As *B* is semiprime, we obtain $B_1 \cap B_2 \subseteq B$ and since *B* is strongly irreducible, we obtain $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence *B* is a strongly prime generalized bi-Γ-ideal of *S*.

Theorem 3.9. For any generalized bi- Γ -ideal B of a Γ -semigroup S and any $s \in S \setminus B$ there exists an irreducible generalized bi- Γ -ideal J of S such that $B \subseteq J$ and $s \notin J$.

Proof. Suppose $GB_B = \{B_1 \mid B_1 \text{ is a generalized bi-}\Gamma\text{-ideal of } S \text{ and } B \subseteq B_1$ and $s \notin B_1$. Obviously, $B \in GB_B$ and so $GB_B \neq \emptyset$. We have GB_B is a partially ordered set under inclusion. Suppose C is a chain of GB_B . Suppose $c \in (\bigcup C)\Gamma S\Gamma(\bigcup C)$. Then $c = c' \alpha s \beta c''$, for some $c', c'' \in \bigcup C, s \in S$ and $\alpha, \beta \in \Gamma$. Therefore, $c' \in B_1$ and $c'' \in B_2$, for some $B_1, B_2 \in C$. As C is a chain of GB_B , we obtain B_1 and B_2 are comparable. Thus $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$; so $c', c'' \in B_1$ or $c', c'' \in B_2$. As B_1 and B_2 are generalized bi- Γ -ideals of S, it follows that $c = c' \alpha s \beta c'' \in B_1 \Gamma S \Gamma B_1 \subseteq B_1 \subseteq \bigcup C$ or $c = c' \alpha s \beta c'' \in B_2 \Gamma S \Gamma B_2 \subseteq \bigcup C$. Therefore, $c \in \bigcup C$, so $\bigcup C$ is a generalized bi- Γ -ideal of S. As $s \notin C$, for all $c \in C$, we obtain $s \notin \bigcup C$. Obviously, $B \subseteq \bigcup C$. Therefore, $\bigcup C \in GB_B$. We have $C \subseteq \bigcup C$, for any $c \in C$. Therefore $\bigcup C$ is an upper bound C in GB_B . By Zorn's Lemma, there exists a maximal element $J \in GB_B$. Therefore, J is a generalized bi- Γ -ideal of S such that $B \subseteq J$ and $b \notin J$. Suppose P and Q are generalized bi- Γ -ideals of S such that $P \cap Q = J$. Let $P \neq J$ and $Q \neq J$. Then $J = P \cap Q \subseteq P$ and $J = P \cap Q \subseteq Q$. So $B \subseteq J \subset P$ and $B \subseteq J \subset Q$. If $s \notin P$, then $C \in GB_B$. This is a contradiction since J is a maximal element of GB_B , therefore $s \in P$. In a similar fashion, we obtain $s \in Q$. Thus $s \in P \cap Q = J$ which is not possible. Therefore, P = J or Q = J. Hence J is an irreducible generalized bi- Γ -ideal.

Theorem 3.10. For a Γ -semigroup S the following statements are equivalent:

- (i) S is regular and intra-regular Γ -semigroup.
- (ii) $B\Gamma B = B$ for every generalized bi- Γ -ideal B of S.
- (iii) $B_1 \cap B_2 = B_1 \Gamma B_2 \cap B_2 \Gamma B_1$ for all generalized bi- Γ -ideals B_1 and B_2 of S.
- (iv) Every generalized bi- Γ -ideal of S is semiprime.
- (v) Every proper generalized bi- Γ -ideal B of S is the intersection of irreducible semiprime generalized bi- Γ -ideals of S containing B.

Proof. It follows by Theorem 3.9 [3].

Theorem 3.11. A generalized bi- Γ -ideal of a regular and intra-regular Γ -semigroup is strongly irreducible if and only if it is strongly prime.

Proof. Follows by Proposition 3.10 [3].

Theorem 3.12. In a Γ -semigroup S each generalized bi- Γ -ideal is strongly prime if and only if S is regular, intra-regular and the set of generalized bi- Γ -ideals of Sis a totally ordered under inclusion.

Proof. If each generalized bi-Γ-ideal of S be strongly prime, then each generalized bi-Γ-ideal of S is semiprime. Hence, by Theorem 3.10, S is a regular and intraregular Γ-semigroup. Thus the set of all its generalized bi-Γ-ideals is partially ordered by inclusion. If B_1 and B_2 are generalized bi-Γ-ideals of S, then $B_1 \cap B_2 = B_1 \Gamma B_2 \cap B_2 \Gamma B_1$, by Theorem 3.10. As $B_1 \cap B_2$ is a strongly prime generalized bi-Γ-ideal, we obtain $B_1 \subseteq B_1 \cap B_2$ or $B_2 \subseteq B_1 \cap B_2$. If $B_1 \subseteq B_1 \cap B_2$, then $B_1 \subseteq B_2$. If $B_2 \subseteq B_1 \cap B_2$, then $B_2 \subseteq B_1$. Thus the set of all generalized bi- Γ -ideals of S is totally ordered by inclusion.

The converse statement is a consequence of Theorem 3.12 in [3].

Theorem 3.13. If the set of all generalized bi- Γ -ideals of a Γ -semigroup S is a totally ordered by inclusion, then S is both regular and intra-regular if and only if each generalized bi- Γ -ideal of S is prime.

Proof. By Theorem 3.13 in [3], each generalized bi- Γ -ideal of S is prime.

Conversely, if each generalized bi- Γ -ideal of S is prime, then it is semiprime. Theorem 3.10 completes the proof.

Theorem 3.14. For a Γ -semigroup S the following statements are equivalent:

- (i) The set of all generalized bi- Γ -ideals of S is totally ordered by inclusion.
- (ii) Every generalized bi- Γ -ideal of S is strongly irreducible.
- (iii) Every generalized bi- Γ -ideal of S is irreducible.

Proof. $(i) \Rightarrow (ii)$. Let B, B_1, B_2 be generalized bi- Γ -ideals of S such that $B_1 \cap B_2 \subseteq B$. Then by (i) we obtain $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Therefore $B_1 = B_1 \cap B_2 \subseteq B$ or $B_2 = B_1 \cap B_2 \subseteq B$. Hence S is strongly irreducible.

 $(ii) \Rightarrow (iii)$. Let B_1, B_2 be generalized bi- Γ -ideals of S such that $B_1 \cap B_2 = B$ for some strongly irreducible generalized bi- Γ -ideal B. Then $B \subseteq B_1$ and $B \subseteq B_2$. By the hypothesis, we obtain $B_1 \subseteq B$ or $B_2 \subseteq B$. So $B_1 = B$ or $B_2 = B$. Hence B is irreducible.

 $(iii) \Rightarrow (i)$. Suppose that B_1, B_2 are generalized bi- Γ -ideals of S. Then $B_1 \cap B_2$ also is a generalized bi- Γ -ideal of S and by the assumption, $B_1 = B_1 \cap B_2 \subseteq B_2$ or $B_2 = B_1 \cap B_2 \subseteq B_1$. Therefore $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. This proves (i). \Box

References

- [1] R. Chinram, On quasi-gamma-ideals in gamma-semigroups, Science Asia 32 (2006), 351-353.
- [2] A. Iampan, Note on bi-ideals in Γ-semigroups, Int. J. Algebra Comput. 3(4) (2009), 181-188.
- [3] M. Shabir and S. Ali, Prime bi-ideals of Γ-semigroups, J. Adv. Research Pure Math. 4 (2012), 757 - 764.

Received October 20, 2014 Revised March 8, 2015

Department of Mathematics, Jamia Millia Islamia, New Delhi-110 025, India E-mail: basar.jmi@gmail.com, yahya alig@yahoo.co.in