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Proving the probability of undetected errors

for an error-detecting code based on quasigroups

Natasa llievska

Abstract. In one previous paper, we proposed a new model of error-detecting codes based
on quasigroups on the following way. Each input block ajaz...an is extended to a block
a1az...anbibe...bn where by = a; * ar, | * ar;\y *ar, 1, @ € {1,2,...,n}, % is a quasi-
s j<n
j modn, j>n
for the probability of undetected errors when quasigroups of order 4 are used for coding and

group operation and r; = . We have already derived approximate formula
k = 2. In this paper, we derive approximate formula for the probability of undetected errors
when also quasigroups of order 4 are used for coding, but & = 3. We find the optimal block
length such that the probability of undetected errors is smaller than some previously given value
e and give classification of quasigroups of order 4 according to goodness for the code when k = 3.
Also, we compare these two considered codes and conclude that the best set of quasigroups for
coding for both codes contains only linear fractal quasigroups and the code with & = 3 gives
much smaller probability of undetected errors. At the end, we compare the code considered in
this paper with well-known error-detecting codes: CRC, Hamming and Reed-Muller.

1. Introduction

Messages can be corrupted due to two main reasons:
1) human factor

2) noises in the communication channels (or storage failure when message is
stored in a memory).

The first type of errors occurs when a human incorrectly enters the message. In
[5] and [21] are given the most frequent errors due to human factor. Since, there
are only a few types of errors that are more frequent, this type of errors can
be detected by adding one check digit on the message (check character system).
On the other side, second type of errors appears due to noises in the channel
during the transmission of the message (under the influence of weather conditions,
hardware failure and etc.). This type of errors is more general, i.e. there are more
possibilities for a message to be incorrectly transmitted. For this reason, more
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redundant characters should be added on the message in order to detect second
type of errors.

Quasigroups are nice algebraic structures that can be used in order to detect
errors in messages. There are several defined and well investigated check character
systems based on quasigroups ([9] — [6], [17] — [20]). On the other side, there are
not much error-detecting codes based on quasigroups intended for errors of the
second type. There are some code designs based on quasigroups of order 2 ([15],
[16]) and a general model based on quasigroups of arbitrary order ([4]). The model
defined in [4] adds redundant characters as much as the message length. In this
paper we will continue to analyze the model by examining other special case.

2. A model of error-detecting code

Binary symmetric channel is a channel, in which inputs and outputs are 0 and 1
(Figure 1). There are noises in the channel, because of which 0 can be transmitted
in to 1 and vice versa with probability p<1/2. Because of these, the output mes-
sage may not be same as the input one. So, we need a mechanism to discover is the
correct message received. For this reason, on the input message we concatenate
characters, defined by the code, which will help us to discover if the message is
correctly transmitted or not.

I-»p
Figure 1: Binary symmetric channel

In [4] we have defined a model of error-detecting code with rate 1/2 in the follow-
ing way. Let A be an arbitrary finite set called alphabet and (A, x*) be a given
quasigroup. First, the input message

a1G2 ... GpQpi1Qngs - Qopdoptl -+, (@ €A, i =1,2,...)

is divided in to blocks with length n:

aras...ap, Ap410p42...02p, ...

and each block ajas...a, is coded separately, i.e. is extended to a block
aias...apb1bs ... b, where

b1 = a1 %xQ9*---*ag
bo = Qa*Qa3* -k Qpyl

by, = Qp kA1 ¥k Ap_1
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where k < n.

After that, each character from the extended block ajas ...apb1bs ... by, is pre-
sented in 2-base system and obtained binary block is transmitted through the
binary symmetric channel with probability of bit error p (0 < p < 0.5).

Since there are noises in the channel, some of the characters may not be cor-
rectly transmitted. Let a; be transmitted as aj, b; as b}, i € {1,2,...,n}. If a;
is correctly transmitted than a} = a;. Otherwise, a; will not be equal to a;. The
same holds for b; and b. So, the output message is aaj . ..a} b, ... b,,. To check
if there are any errors in transmission, the receiver of the message checks if

by = alxadyx---xa}
by = apxahx---xap,,
/ _ / / /
b, = a,xa}*x---%xay_,

If any of these equalities are not satisfied, the receiver concludes that some er-
rors occured during the block transmission and it asks from the sender to send
that block once again. But, some equality can be satisfied although some of the
characters in that equality are not correctly transmitted. In that case, incorrect
transmission (errors in transmission) will not be detected. Clearly, it is good the
probability of undetected errors to be as small as posible.

In [4] is considered the case when A = {0,1,2,3} and k¥ = 2. Now, in this
paper we consider the case when also A = {0, 1,2, 3}, but £ = 3. After calculating
the approximate formula for the probability of undetected errors and determining
the best class of quasigroups for this code, we will compere it with the code over
the set A ={0,1,2,3} and k = 2.

3. The probability of undetected errors for the
error-detecting code based on quasigroups
of order 4 and k=3

Let consider the set A = {0,1,2,3} and let * be an arbitrary quasigroup operation
on A. According to (1), we extend each block aias...a, (a; € A) to a block
a1as . ..apb1by ... by, where

b1 = @] *as *as
bo = Q9*xaz*day
.................. @)
bn—2 = An—2 * Ap—1 * Qp,
bn—l = Anp—1 % An * a1
by, =  an*ai*as

The extended message is transmitted through the binary symmetric channel. We
want to calculate the probability that there will be errors which will not be de-
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tected. There are 576 quasigroups of order 4. For some quasigroups, the probabil-
ity of undetected errors depends on the distribution of letters in the input message.
So, we filtered the quasigroups such that this probability is independent from the
distribution of the input message. After filtering, from the 576 quasigroups of or-
der 4, only 160 quasigroups remained. All of them are fractal quasigroups ([10]).
For the filtered 160 quasigroups, we derived a formula for calculating the proba-
bility function of undetected errors. It is given by the next theorem. But, first we
need the following definition.

Definition 1. Distance between the characters a; and a; in the block ajasz...ay, is
the minimum of the numbers ((i —j) mod n) and ((j —i) mod n), where (m mod n)
is the smallest natural number which is congruent with m modulo n.

Theorem 1. Let f3(n,p) be the probability of undetected errors in a transmitted
block with length n through the binary symmetric channel where p is the probability
of incorrect transmission of a bit. If one of the filtered 160 quasigroups is used for
designing the code, then the probability of undetected errors is given by the following
formulas:

f3(3,p) = 3viv8 + 3razvo + 733

f3(4,p) = 4viud + 4vavE + 252408 + drzavo + O(p7)
f3(5,p) = Buiv + bvovg 4 5c1vd + Susvg + bsasvg + O(p”)
f3(6,p) = 6v1v§ + 6v20S + 6c1v8 + 3vivg + 6usvg + 6cavd + 6chud
+2536v8 + O(p7)
f3(7,p) = Tuiwd® + Toend + Tervd + Tviv§ + Tvsv§ 4 Teavd 4 Tchvd + Tvavivg
+7csvg + O(p7)
f3(8,p) = 8vivd? + 820 + 8crv + 12030 + 8vsv§ + 8cavd + 8chu
+16wav1 05 + 8cav§ + 8civivg + O(p”)
n— n— n— - 5 n— n—
f3(n,p) = noig" 4 nuvg" 8 + neivg" 7 + %v%vé & 4 nugvdn 8
+ne2v2" ™% + nchvZ™ ™ +n(n — 6)vovivg” 0 4+ nezvg”
2
_ -1 3 on—
+n(n — 7crvvg" ™M + nn” — 15n + 56) 65n +56) vivg" T 4+ 0(p"),
form = 9.

In the formulas, we use the following notations:
v - the probability of undetected errors when exactly k£ consecutive charac-
ters of the initial message ajas . ..a, are incorrectly transmitted (the characters
Qiy Qig 1,y
a;+k—1 are incorrectly transmitted, but a;—s, a;—1, a;4+x and a;4x4+1 are correctly
transmitted), k = 1, 2, 3;
vg - the probability of correct transmission of a character;
c1 - the probability of undetected errors when exactly the two characters: a; and
a;1o of the initial message aias ... a, are incorrectly transmitted
co - the probability of undetected errors when exactly the three characters: a;,
a;+1 and a;y3 of the initial message ajas ... a, are incorrectly transmitted
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ch - the probability of undetected errors when exactly the three characters: a;,
a;1+2 and a;13 of the initial message aias . ..a, are incorrectly transmitted

c3 - the probability of undetected errors when exactly the three characters: a;,
a;12 and a;y4 of the initial message ajas ... a, are incorrectly transmitted

r;; - the probability of undetected errors in a block with length j if exactly ¢ con-
secutive characters are incorrectly transmitted, i = 2,3,j = 3,4;

S24 - the probability of undetected errors in a block with length 4 - ajasaszas when
exactly the two nonconsecutive characters - a; and a;42 are incorrectly transmit-
ted;

s35 - the probability of undetected errors in a block with length 5 - ajasasasas
when exactly the three characters - a;, ;11 and a;13 are incorrectly transmitted;
s36 - the probability of undetected errors in a block with length 6 - ajasazasasag
when exactly the three characters - a;, a;12 and a;14 are incorrectly transmitted.
All operations on the indexes are per modulo n, but for shorter record it is not
denoted in the formulas.

Proof. Since each character of the alphabet A = {0,1,2,3} can be presented by
two bits, it is clear that vg = (1 — p)2. Let denote the following random events:
A: errors occur in not more than 3 characters of the initial message aqas...a,, and
errors are not detected;
Ay errors occur in exactly k characters of the initial message and errors are not
detected, k=1,2,3.
Then we have that

A=Ay + Ay + Ag (3)

Let calculate P(A;). The initial message has n characters and each of them can
be incorrectly transmitted. There are n choices for choosing a character a; which
is incorrectly transmitted. The error will not be detected if the characters b;_o,
bi—1 and b; are transmitted such that the equalities b, _, = ai_,*a}_;*al, b,_; =
aj_y *aj * aj, and b = aj * aj, * ), are satisfied. The rest 2n — 4 characters

are correctly transmitted, so
P(Ay) = nvw%”_4, forn>3 (4)

For calculating the probability P(As), we denote the random events:

B;y: two consecutive characters a; and a;11 of the initial message ajas...a, are
incorrectly transmitted and the errors are not detected;

Bs: two characters on distance two, i.e. characters a; and a;42 of the initial mes-
sage ajas...a, are incorrectly transmitted and the errors are not detected;

Bj3: two characters on distance greater than two of the initial message ajas...ay,
are incorrectly transmitted and the errors are not detected;

Then

Ay =B+ By + B3 (5)
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There are n choices for two consecutive characters a; and a;41 which are incorrectly
transmitted. The error will not be detected if the characters b;_o, b;_1, b; and b;11

H L / N /! / / N /! /!
are transmitted such that the equalities b;_, = a;_,xa;_y*a;, b;_; = a;_ *a;xa; ,
by = aj *aj ; *a,, o and b | = aj, | * aj, o * a4 are satisfied. The rest 2n — 6
characters are correctly transmitted, so we have that

nvgvgn_6, n >4
37‘231)0, n=3

Py - { ©)

There are also n choices for two characters on distance two, a; and a;1o which
are incorrectly transmitted. The error will not be detected if the characters b;_s,
bi—1, b, bi+1 and b; o are transmitted such that the equalities b,_, = a}_,*a’_,x*al,
by = al_y xa*xal, by = a;xal | «aj,, b, = a4 *a,,*a;,, and
biyo = aj, o *aj g a;,, are satisfied. The rest 2n — 7 characters are correctly
transmitted, so we have that

2n—17

neiv, n>=>5
P(By) = 0, 7 7
( 2) { 282411(2), n=4 ( )
. . CLCl_g
The number of two characters on distance greater than two is —5"=* =

M, for n > 6. If aq and a, are the two characters on distance greater than
two that are incorrectly transmitted and we denote this two random events:

Q: a4 is incorrectly transmitted and error is not detected;

W aq is incorrectly transmitted and error is not detected;

than, since @Q and W are independent events, the probability of undetected er-
ror in this two characters is v?. For the error to remain undetected, the redun-
dant characters by_a, by—1, by, bw—2, byw—1 and b, must be transferred such that
corresponding equations are satisfied. The rest 2n — 8 characters are correctly

transmitted. Hence,

P(B3) = Mv%v%”_g, forn>6 (8)
By replacing of (6), (7) and (8) in (5), we obtain the probability of A,. For calcu-
lating the probability P(A3), we introduce the following random events:
Cq: three consecutive characters a;, a;11 and a;y2 of the initial message ajas...a,
are incorrectly transmitted and the errors are not detected;
Cy: three characters, such that the distance between first and second character
is one, and the distance between second and third character is two, i.e. a;, ;41
and a;43 of the initial message are incorrectly transmitted and the errors are not
detected;
Cl: three characters, such that the distance between first and second character
is two, and the distance between second and third character is one, i.e. a;, ;12
and a;43 of the initial message are incorrectly transmitted and the errors are not
detected;
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C3: two consecutive characters and one on distance greater than two from the
both consecutive characters of the initial message are incorrectly transmitted and
the errors are not detected;

Cy: three characters, such that the distance between first and second character is
two, and the distance between second and third character is also two, i.e. a;, a;42
and a;44 of the initial message are incorrectly transmitted and the errors are not
detected;

C5: two characters, which are on distance two, and one character on distance
greater than two from the both of them of the initial message are incorrectly
transmitted and the errors are not detected;

Cg: three characters such that each two of them are on distance greater than two
of the initial message are incorrectly transmitted and the errors are not detected;
These six events cover all possible choices of three characters that can be incor-
rectly transferred. Therefore, since events are disjoint,

A3 =01+ Co +Ch+C3+Cy+ Cs5+ Cg (9)

As previously, we find that:

n'vgovgn_g, n=>5
P(Cl) = 47’341)0, n=4 (10)
733, n=3
2n—9
_fniea-vg"Y, nz6
P(Cs) = { 583508, n=>5 (11)
P(CY) =n-ch-va"?, forn>6 (12)

For n = 5 event C} coincide with the event Cy, due to which it does not appear
in the final formula.

P(Cs5)=n(n—06) vy -1y .v(%"—w, forn>7 (13)
2n—10
_ ) n-c3-yg , n=T
P(C4) o { 2336118’, n==~6 (14)
P(Cs)=n(n—"T) ¢ -vy - 02" 1 forn>8 (15)

P(Cs) =(Cp=4xCp —CiCh g = CoCy ) - vf 0"~

16
_ (n(n2_25n+56) ),U.i'% . ,Ugn—12’ forn > 9 ( )

Now, we obtain the formula for f3(n,p) by simply using (3) - (16) and a fact
that the probability of undetected errors if more than 3 characters are incorrectly
transmitted is of order O(p").

In the most of the previous formulas, some special cases are separated. The
reason is that the incorrectly transmitted characters of the initial message act on
different redundant characters and thus the corresponding probabilities of unde-
tected errors are different. For example, let consider the case when two consecutive
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characters, say a; and aq, of the initial message are incorrectly transmitted. If the
initial message has length greater than 3, than redundant character bs is affected
only by character as. But, if the initial message has length exactly 3, than b, is
affected not only by ao, but also by a;. For this reason the probability of unde-
tected errors if exactly two consecutive characters a; and a;41 of the initial message
asas . .. ay are incorrectly transmitted has different values when n = 3 and n > 3.
Because of this, in the formula for P(B;), the case for n = 3 is given as a special
case and we introduce notation ro3 instead of v (since ro3 is not equal to vo for
n = 3). For the same reasons are introduced new notations in all other special
cases. O

Note that the formula for the probability of undetected errors in Theorem 1
is valid for quasigroups of arbitrary order for which the probability of undetected
errors does not depend on the distribution of the characters in the input message.

For each qausigroup, probabilities vy, c1, ca, ¢h, ¢3, 74, S24, S35, $36 can be easily
calculated using some combinatorics and the formula for total probability. Re-
placing them in Theorem 1, we can obtain functions f3(n,p) for all 160 remained
fractal quasigroups. After calculating functions f3(n,p) for all 160 quasigroups,
we concluded that these 160 quasigroups do not define 160 different functions for
the probability of undetected errors, but only 17. Using these functions, we give
a classification of the quasigroups of order 4 according to goodness for our codes.
The classification is given in the next section. The quasigroups which give the
smallest probability of undetected errors are the best for code design.

Let fs.:(n,p) be the probability of undetected errors for the quasigroups in the
i-th set in the classification. For shorter record, we give these formulas without
the remainder O(p”), which practically represent the probability that at most 3
characters of the input message are incorrectly transmitted and the errors are
not detected. To obtain exact probability of undetected errors, one should add
O(p”) to these probabilities. Since for small values of p, O(p”) is inconsiderably
small, in the future we will work with f3;(n,p) without the remainder O(p”). The
probabilities of undetected errors are determined by the following formulas:

f313,p) = p*(1—p)3(p° — 9p° + 36p" — 52p° + 42p — 18p + 4)

fa1(4,p) = 2pT(1 —p)t(—p® + 4p” +12p° — 32p° + 22p* + 2p® — 6p2 + 1)

f31(5,p) = 5p°(1—p)°(—p° +2p° — 6p” + 56p° — 162p° + 236p* — 201p°® + 103p? — 30p + 4)

f21(6,p) = p°(1—p)°(11p*° — 21p? 4 15p® — 201p” + 894p°® — 1752p° + 1968p* — 1380p°
+606p2 — 154p + 18)

fs1(7,p) = Tp°(1—p)t33pt® —5p° — 3p® — 23p” + 157p°® — 319p° + 354pt — 242p® 4 104p?
—26p + 3)

f31(8,p) = 4p°(1 —p)tO(—9p*t + 24p'® 4 2p° — 4p® — 297p" + 918p° — 1338p° + 1192p*

—692p° + 260p® — 58p + 6)

1 e
faa(np) = enp®(1—p)*@ Y x

X [18 — 210p + 1146p? — 3810p> + 8508p™ + 6(4n — 2239)p° — 6(25n — 2593)p°
+3(139n — 4583)p” — (612n — 9420)p® + (471n — 4629)p° + 8(n? — 33n + 206)p*°
—3(4n? — 47n + 175)p** + 6(n? — 8n + 21)p'? — (n? — 6n + 11);013], forn > 9.

17
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f3.2(3,p)
f3,2(4,p)
f3,2(5,p)
f3.2(6,p)

f3,2(7,p)

f3,2(8,p)

f3,2(n, p)

f3,3(3,p)
f3.3(4,p)
f3,3(5,p)
f3,3(6,p)

f3,3(7,p)

f3,3(8,p)

f3,3(n,p)

f3.4(3,p)
f3.4(4,p)
f3,4(5,p)
f3.4(6,p)

f3,4(7,p)

f3,4(8,p)

f3,4(n, p)

P (1 —p)*(p° — 9p" + 36p> — 20p> — 6p — 6)
2p° (1 — p)° (p° — 3p° + 41p* — 87p® + 93p® — 51p + 12)
5p°(1 — p)"(p® — p” + 13p° — 43p° + 77p* — 81p° + 51p? — 18p + 3)

p° (1 — p)°(11p'° — 21p° + 39p® — 305p" + 1116p° — 2052p° + 2210p* — 1488p>
+630p% — 156p + 18)

7p° (1 — p)*3(3p*° — 5p° — 3p® — 31p7 + 181p° — 349p° + 374p? — 249p° + 105p?
—26p + 3)

4p° (1 — p)*°(9p*? — 33p*t + 14p'° 4 14p° + 355p° — 1383p” + 2464p° — 2684p°
+1954p* — 970p° + 320p% — 64p + 6)

1 5
En;vo(l _ p)2(2n—9) %

X [18 — 210p + 1152p? — 3870p> 4 8772p* + 6(4n — 2351)p°® — 6(25n — 2774)p°
+3(143n — 4991)p” — (678n — 10638)p® + (597n — 5799)p° + 8(n? — 45n + 296)p*°
—3(4n? — 55n + 231)p't + 6(n? — 8n + 21)p'? — (n? —6n + 11)p13], for n > 9.

p3(—p° + 12p® — 18p” — 20p° + 93p° — 120p* 4 75p> — 21p% + 1)

2p* (1 — p)° (p” — 19p°® + 61p° — 83p™ + 58p® — 16p — 2p + 2)

5p°(1 — p)®(—p” + 16p® — 45p° + 82p" — 87p® + 58p* — 22p + 4)

p° (1 — p)t0(=11p° + 154p® — 461p” + 784p° — 1040p° + 1138p" — 888p° + 450p?
—132p + 18)

7p° (1 — p)*2(=3p't + 40p*° — 146p° + 276p° — 376p" + 478p°® — 553p° + 492p*
—302p + 120p% — 28p + 3)

4p° (1 — p)*B(9p*? — 113p*t 4 430p*° — 862p° + 1247p® — 1633p” 4 2024p°
—2082p° + 1588p* — 844p> + 296p* — 62p + 6)

1
5”175(1 _ p)2(2n—9) %

X [18 — 204p + 1074p? — 3420p> 4 7296p” 4 6(4n — 1867)p° — 6(23n — 2237)p°
+3(113n — 4561)p” — 36(11n — 328)p® + 9(13n — 807)p° + 4(2n? + 27n + 625)p*°
—3(4n? + 25n + 87)p't +6(n? — 3)p'? — (n? —6n + 11)1)13]7 for n > 9.

p3(=p° + 12p° — 18p” — 20p° + 93p° — 120p* 4 75p° — 21p% + 1)

2p% (1 — p)4(—p° + 20p® — 76p” + 164p° — 224p° + 212p* — 141p> + 62p? — 16p + 2)
5p° (1 — p)7 (p® — 17p" + 61p°® — 103p° + 109p* — 83p® + 47p? — 17p + 3)

p° (1 — p)°(11p*° — 165p° + 663p° — 1397p" + 2076p°® — 2388p° + 2108p* — 1350p°
+582p2 — 150p + 18)

7p° (1 — p)tt (3p*? — 43p*t 4 202p*° — 526p° + 960p® — 1356p” + 1525p° — 1347p°
+906p? — 445p° + 150p2 — 31p + 3)

4p° (1 — p)*(9p'? — 113p*t 4 478p0 — 1142p° + 1979p° — 2723p" + 3042p°
—2690p° + 1812p* — 890p° + 300p? — 62p + 6)

1
gnp“’(l—p)Q(z"_g)x

x |18 — 204p 4 1086p? — 3570p° + 8106p* + 6(2n — 2267)p° — 12(3n — 1457)p°
—3(3n + 5741)p” + 6(35n + 2071)p® — 3(149n + 1929)p° + 4(2n? + 93n + 343)p!°
—3(4n? +41n + 7)p*t + 6(n* — 3)p*? — (n? —6n + 11);013], forn > 9.
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f3.5(6,p)
f3.5(7,p)

f3.5(8,p)

f3,5(n,p)

f3.6(3,p)
f3,6(4,p)
f3.6(5,p)
f3.6(6,p)

f3,6(7,p)

f3,6(8,p)

f3,6(n,p)

f3,7(3,p)
fa,7(4,p)
f3.7(5,p)
f3.7(6,p)

f3,7(7,p)

f3,7(8,p)

f3,7(n, p)

p1(63p® — 327p" 4 990p°® — 1540p° + 1545p* — 1032p® + 452p% — 120p + 15)
2p* (1 — p)®(87p° — 230p° + 307p* — 240p® + 120p? — 36p + 6)
5pt (1 — p)®(75p° — 394p° + 973p° — 1464p” + 1498p° — 1092p° + 574p? — 216p°
+57p> — 10p + 1)
p(1 — p)t0(693p'° — 2886p° + 5967p°® — 7940p” + 7471p° — 5186p° 4 2731p?
—1088p® + 316p% — 60p + 6)
7pt(1 — p)t2(165p'% — 880ptt + 2320p° — 3976p° + 4894p° — 4548p” + 3286p°
—1872p° + 840p* — 290p° + 73p% — 12p + 1)
4p* (1 — p)t9(447p'? — 2096p'! + 5160p*° — 8448p° + 10108p® — 9236p” + 6614p°
—3752p° + 1681p* — 580p° + 146p? — 24p + 2)
1
gnp4(1 _ p)2(2n—9) %
X [6 — 84p + 588p? — 2688p°> + 3(n + 2979)p* — 6(5n 4 3807)p° + 3(59n + 15327)p°

—696(n + 105)p” + (n? + 1911n 4 90236)p® — 6(n? 4 623n + 13902)p°

+3(7n? + 1727n + 17900)p*° — 4(11n2 + 1239n + 5032)p'!

+3(21n2 4 994n + 503)p*2 — 6(9n? + 150n — 281)p"® + 9(3n? — 6n + s)p“],

for n > 9.

3pt(1 — p)?(21p° — 82p° 4 145p* — 144p® + 86p* — 30p + 5)
2pt (1 — p)%(87p° — 230p° + 315p? — 264p> + 146p? — 48p + 8)
5pt (1 — p)®(75p° — 244p” + 402p° — 400p° 4 266p* — 122p° + 39p — 8p + 1)
3pt(1 — p)®(231p'2 — 1424p*t + 4152p™° — 7616p° + 9892p® — 9628p” + 7202p°
—4168p° + 1853p* — 620p° + 150p? — 24p + 2)
7pt (1 — p)t2(165p'? — 880p*t + 2336p*° — 4024p° + 5042p° — 4828p" + 3594p°
—2080p° + 926p* — 310p° + T5p% — 12p + 1)
4p* (1 — p)t1(447p't — 2990p™3 + 9855p2 — 21064p't + 32714p'" — 39160p°
+37228p° — 28424p7 + 17419p°® — 8494p® + 3243pt — 944p® + 200p? — 28p + 2)
1 _
gnp4(1 _ p)2(2n 9) x
X [6 — 84p + 600p? — 2832p> + 3(n + 3235)p*? — 6(5n 4 4207)p° + 3(59n + 16947)p°
—24(29n + 3321)p" 4+ (n? + 1917n + 96284)p® — 6(n? + 629n + 14484)p°
+3(7n2 + 1757n + 18210)p° — 4(11n2 + 1269n + 4942)p'!
+3(21n2 4 1018n + 367)p*? — 6(9n? 4+ 150n — 281)p'® + 9(3n? — 6n + s)p“] ,
forn > 9.

pt(63p® — 371p? + 990p°® — 1540p° + 1545p* — 1032p° + 452p% — 120p + 15)
2pt (1 — p)®(87p°® — 230p° + 315pt — 232p° + 98p? — 24p + 4)
5pt (1 — p)®(75p° — 244p” + 402p° — 408p° 4 278p* — 128p> + 40p® — 8p + 1)
3pt(1 — p)t9(231p'° — 962p° + 1997p® — 2692p” + 2591p°® — 1842p° + 979p?
—384p° + 108p? — 20p + 2)
7pt (1 — p)t2(165p'? — 880p*t + 2336p*° — 4040p° + 5082p° — 4872p" + 3620p°
—2088p° + 927p* — 310p® + 75p? — 12p + 1)
4pt (1 — p)t1(447p*t — 2990p*% + 9855p*2 — 21096p*t + 32858p'C — 39440p°
+37536p° — 28632p7 + 17505p° — 8514p° + 3245pt — 944p® + 200p° — 28p + 2)
1
Enp4(1 _ p)2(2n—9) %
X [6 — 84p + 600p? — 2832p> + 3(n + 3237)p* — 6(5n 4 4217)p° + 3(59n + 17033)p°
—24(29n + 3347)p" + (n? + 1917n + 97208)p° — 6(n? + 629n + 14624)p°
+21(n? + 251n + 2622)p'° — 4(11n2 + 1269n + 4966)p'!
+3(21n2 4+ 1018n + 367)p'? — 6(9n? 4 150n — 281)p'® 4+ 9(3n? — 6n + 5)p14] ,
for n > 9.
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f3.8(3,p)
f3.8(4,p)

f3.8(5,p)
f3.8(6,p)

f3,8(7,p)

f3,5(8,p)

f3,8(n,p)

f3,9(3,p)
f3,0(4,p)
f3,0(5,p)
f3,9(6,p)

f3,9(7,p)

f3,0(8,p)

f3,9(n,p)

f3.10
f3,10
f3,10

f3.10
f3,10(7,p)

f3,10(8,p)

f3,10(n, )

3pt(1 — p)?(21p° — 82p° 4 145p* — 144p® + 86p* — 30p + 5)

2pt (1 — p)* (87p® — 404p” + 850p° — 1048p° + 842p* — 460p> + 170p> — 40p
+5)

5pt(1 — p)®(75p® — 244p” + 410p° — 424p° + 292p* — 134p° + 41p% —8p + 1)
pt(1 — p)t0(693p'° — 2886p° + 6111p® — 8308p” + 8099p°® — 5866p° 4 3143p*
—1216p°> + 332p% — 60p + 6)

7p* (1 — p)t2(165p'? — 880p*t + 2368p*° — 4152p° + 5274p° — 5092p” + 3806p°
—2200p° + 971p* — 320p° + 76p% — 12p + 1)

4p (1 — p)t(447p'? — 2096p** + 5304p° — 8880p° + 10928p° — 10348p”
+7658p% — 4408p° + 1943pt — 640p> + 152p? — 24p + 2)

1 g
Enp4(1 _ p)z(znfa) %

X [6 — 84p + 606p? — 2904p> + 3(n + 3367)p* — 6(5n 4 4427)p° + 63(3n + 853)p°
—72(11n 4+ 1165)p” + (n? + 2247n + 99806)p° — 6(n? + 735n + 14598)p°
+21(n? + 285n + 2512)p'° — 4(11n? + 1371n + 4516)p*!
+3(21n2 4 1042n + 263)p'? — 6(9n? 4 150n — 281)p'® + 9(3n? — 6n + 5)p14] ,
forn > 9.

p2(—p° +12p% — 18p” — 20p° + 93p°® — 120p* + 75p® — 21p? + 1)

2p* (1 — p)® (»" — 19p° + 61p° — 83p* + 58p° — 16p® — 2p + 2)

5p' (1 —p)7(p° — 17p° + 61p” — 79p® + 33p° + 27p" — 42p® + 24p® —Tp + 1)
pt(1 = p)tO(=11p*° + 154p° — 557p® 4 832p" — 536p°® — 50p° + 408p* — 372p*
+180p? — 48p + 6)

7t (1 — p)t2(=3p'2 4 40p*t — 178p'" 4 404p° — 520p° + 358p” — 31p°® — 198p°
+221p* — 130p® + 47p% — 10p + 1)

4p (1 — p)t5(9p*® — 113p*2 + 526p*t — 1326p° + 2039p° — 1909p° + 860p”
+308p° — 834p° + 702pt — 354p> + 114p? — 22p + 2)

1 g
gnp4(1 _ p)2(2n—)) %

X |6 — 72p + 408p? — 1404p> + 3168p* + 12(n — 392)p® — 6(15n — 691)p®
+36(9n — 26)p” — 3(235n + 889)p® + 12(86n + 299)p° — 3(353n + 541)p*0
+(8n? + 636n — 44)p*t — 3(4n? + 57n — 73)p*? + 6(n? — 3)p'®
—(n? —6n+ 11)p14], for n > 9.

PP(1—p)®(p° — 9p° + 36p" — 52p® + 42p” — 18p + 1)

2p* (1 — p)° (p” — 11p°® + 33p® — 41p” + 25p° — 3p* — 4p — 2)

5p* (1 — p)7 (p° — 5p® + 25p7 — 24p° — 17p° + 54p" — 50p® + 25p° — Tp + 1)
pt(1 — p)°(11p*t — 21p*° 4 183p° — 641p® + 900p” — 420p° — 385p° + 741p!
—546p° + 228p? — 54p + 6)

7pt (1 — p)tt(3p'® — 3p'? + 34p't — 188p*0 4 432p° — 502p® + 227p7 + 188p°
—405p° + 344pt — 176p°® + 57p% — 11p + 1)

4p* (1 — p)'>(9p*3 + 7p? + 70p*t — 400p*° + 879p° — 993p® + 435p” + 389p°
—815p° + 689p — 352p° + 114p? — 22p + 2)

1
gnp4(1 —p)iny

X [6 — 90p 4 642p? — 2844p> + 3(n + 2863)p* — 3(9n + 6089)p°® + 3(39n + 8993)p°
—3(105n + 8279)p” + (n? + 543n + 6242)p® — 6(n? 4 85n — 3289)p°
+3(5n2 — 4n — 11513)p'® — (17n2 — 630n — 30101)p'!
+3(n? — 203n — 5622)p*2 + 6(2n2 + 7Tn + 1256)p'> — (8n? — 222n + 3286)pt?
—3(n? + 17n — 296)p*® + 3(n? — 14n + 19)p*® + (n? — 6n + 11);1017]7 forn > 9.
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f3113,9) = p*(1—p)3(p" — 9p°® + 36p° — 36p* + 6p° + 18p? — 13p + 3)
fsa1(4,p) = 2p"(1—p)®(p" — 3p® — 7p° + 25p* — 23p® + 13p® — 6p + 2)
fs11(5,p) = 5p*(1—p)®(—p® — 13p°® + 54p° — 55p* + 20p® + 3p* — 4p + 1)
f3.11(6,p) = pr(1—p)°Q1p't —21p'° +87p° — 497p® + 1248p" — 1512p° + 884p° — 78p?
—234p° + 162p® — 48p + 6)
faa1(7,p) = 7pt(1 —p)t3(—3p? 4+ 8p*t — 18p'0 4+ 100p° — 312p° + 497p7 — 425p° + 169p°
+25p* — 66p° + 35p% — 9p + 1)
fa11(8,p) = 4p'(1-— p)ls(gplr3 — 33p'? 4+ 62p* — 242p'0 + 855p° — 1675p% + 1894p”
—1210p° + 292p° + 182p* — 202p° + 88p? — 20p + 2)
1
fzai(n,p) = En!’4(1 —p)?Cn 9
X [6 — 66p + 324p — 870p> + 1152p* + 6(2n + 39)p® — 6(13n + 647)p°
+6(37n + 1256)p” — 3(111n + 2681)p® + 30(9n + 181)p° — 3(37n + 801)p*°
+8(n? — 9n + 122)p** — 3(4n? — 39n + 151)p'? + 6(n? — 8n + 21)p*?
—(n? —6n+ 11)p14], for n > 9.
fs123,p) = (1 —p)*(@° —9p° + 36p" — 52p° + 42p* — 18p +4)
fsa2(4,p) = 2p°(1—p)®(® —11p” +57p® — 105p° 4 103p" — 69p° + 36p” — 12p + 2)
fa12(5,p) = 5p*(1—p)®(—p® +4p” + 3p° — 5p° + 10p* — 14p® + 12p? — 5p + 1)
f312(6,p) = p'(1—p)?(11ptt — 21p'° + 63p° — 209p° + 438p" — 462p° + 137p° + 225p
—300p° + 168p? — 48p + 6)
fa12(7,p) =  Tpt(1 —p)tt(3p*E — 3p'? 4+ 18p't — 92p'0 4+ 252p% — 402p® + 371p" — 144p°
—87p° + 164p* — 114p® + 45p% — 10p + 1)
f312(8,p) = 4pt(1 —p)*3(9p*® — 11p't + 41p'3 — 261p'2 4 943p*t — 2057p'0 + 2890p°
—2562p® + 1110p” + 410p° — 1065p° 4 875pt — 428p° 4 132p? — 24p 4 2)
faiz2(n,p) = %"pd(l —p)tn X
X [6 — 84p + 546p? — 2148p® + 3(n + 1855)p? — 9(3n + 1057)p° + 3(37n + 3119)p°
—15(17n 4+ 19)p” + (n? + 297n — 15556)p° — 6(n? — 2n — 4610)p°
+3(5n2 — 194n — 9167)p'® — (17n? — 834n — 18257)p'!
+3(n? — 145n — 3108)p'? + 6(2n? — 20n + 785)p'® — (8n? — 222n + 2326)p**
—3(n?% + 9n — 208)p*® 4+ 3(n? — 14n + 19)p*® + (n? — 6n + 11)1)17]7 for n > 9.
f3.13(3,p) = pt(63p® —372p7 + 990p° — 1540p° + 1545p* — 1032p> + 452p% — 120p + 15)
fsas(4,p) = 2p"(1—p)®(87p° — 230p° + 299p" — 232p® + 118p” — 36p + 6)
fs.13(5,p) = 5pt(1 —p)S(75p® — 244p” + 406p° — 428p° + 319p* — 172p° + 66p> — 16p + 2)
f3.13(6,p) = p*(1 — p)®(693p'? - 4272p't + 12624p'° — 23864p° + 32414p° — 33456p”
+26952p° — 17088p° + 8448p? — 3160p°> + 844p? — 144p + 12)
fa13(7,p) = 7p*(1 — p)t2(165p*? — 880p't 4 2424p'® — 4352p° + 5680p° — 5680p” + 4472p8
—2800p° + 1382p* — 520p° + 140p? — 24p + 2)
f3.13(8,p) = 4p*(1 —p)'2(447p'C — 3884p'® + 16650p* — 46164p*3 4 92333p'? — 141352p't

+171868p10 — 169984p° + 138720p° — 93952p” + 52626p° — 24112p° + 8804p?
—2464p> + 496p? — 64p + 4)

faas(n,p) = inp'(1—p)2CEn 1 x

x [12 — 240p + 2328p? — 14544p> 4 12(n + 5466)p" — 192(n + 1182)p°+
72(21n 4 8677)p® — 48(161n + 29145)p” + 4(2n? + 7092n + 644923)p°®
—48(2n? 4 1632n + 82023)p° + 12(44n? + 13889n + 414219)p*°
—8(220n2 4 34623n 4 645521)p** + (3972n2 + 362433n + 4369143)p*?
—24(268n2 + 15603n + 123157)p'® + 12(644n? + 25363n + 129025)p*4
—24(292n2 + 7999n + 24589)p*® + 6(801n? + 15223n + 23388)p'¢
—8(307n2 4 3873n + 1064)p'” + 12(75n2 + 550n — 483)p*®
—24(9n? + 24n — 59)p + 9(3n2 — 6n + 5);()20], for n > 9.



Proving the probability of undetected errors for an error-detecting code 235

f3,14(3,p)

f3,14(4,p)
f3.14(5,p)
f3.14(6,p)

f3.14(7,p)
f3.14(8,p)

f3,14(n, p)

f3.15(3,p)

f3.15(4,p)
f3.15(5,p)
f3,15(6,p)

f3,15(7,p)

f3,15(8,p)

f3,15(n, p)

f3.16(3,p)

f3,16(4,p)
f3.16(5,p)

f3.16(6,D)
f3.16(7,p)
f3.16(8,p)

f3,16(n, )

p%(63p1° — 372p° 4 1038p® — 1780p” + 2085p° — 1752p° + 1076p* — 480p°
+150p® — 30p + 3)
2pt (1 — p)®(87p°® — 230p° + 303p? — 244p> + 131p? — 42p + 7)
2p1 (1 — p)®(75p° — 244p” + 410p° — 448p° + 360p? — 216p> + 92p? — 24p + 3)
p(1 — p)®(693p'? — 4272p' + 12576p'° — 23560p° + 31810p° — 32976p"
+26928p° — 17304p° + 8595p* — 3200p° + 848p? — 144p + 12)
7pt (1 — p)t2(165p'? — 880p*t + 2368p*° — 4200p° + 5490p® — 5576p" + 4492p°
—2864p° + 1420p* — 530p° + 141p? — 24p + 2)
4pt (1 — p)'0(447p*? — 2096p** + 5304p° — 9024p° + 11464p° — 11416p”7
+9084p% — 5752p° + 2843p! — 1060p° + 282p° — 48p + 4)
Lnpt(1 — p)2n=9x
x [12 — 168p + 1146p? — 5016p° + 3(3n + 5221)p* — 18(5n + 2043)p°

(4530 + 66669)p° — 24(61n + 3929)p” + (n? 4 3321n + 103508)p®

—6(n? + 913n + 14316)p° + 3(7n? + 2195n + 16808)p*°

—4(11n2% + 1407n + 4336)p** + 3(21n? + 1042n + 263)p'?
—6(9n2 +150n — 281)p*> +9(3n? — 6n + 5)p14] , for n > 9.

p?(—p'® — 84p° 4 462p® — 1140p” + 1665p° — 1590p° + 1042p? — 447p°
+150p2 — 30p + 3)
2pt (1 — p)8(—p® — 22p° + 85p* — 122p° + 96p* — 38p + 7)
5p (1 — p)®(—p® + 4p” + 43p° — 141p® + 204p* — 166p> + 82p% — 23p + 3)
pt(1 — p)®(—11p*2 + 128p** + 180p'° — 2576p° + 7811p® — 13248p”
+14857p% — 11716p° + 6651p* — 2714p® + 770p* — 138p + 12)
7pt (1 — p)t (3p*® — 35p'2 4 2p'! 4 500p° — 1836p° + 3616p° — 4722p”
+4405p% — 3028p° + 1545p — 577p° + 151p% — 25p + 2)
4p* (1 — p)*3(9p*® — 107p** 4 225p*3 + 883p'? — 5883p!! + 16161p'°
—28356p° + 35580p° — 33482p" + 24144p° — 13419p° + 5703p* — 1808p°
+406p? — 58p + 4)
%npzl(l _ p)4n—21 x
X [12 — 198p + 1578p? — 8034p> + 3(3n + 9701)p* — 3(35n + 26353)p°
+3(193n + 55141)p° — 3(655n + 89949)p” + (n? + 4503n + 343976)p°
—6(n? + 1204n + 56803)p° + 3(5n2 + 2712n + 86437)p*°
—(17n? + 6228n + 148771)p'! + 3(n? + 961n + 21058)p'?
+6(2n2 — 61n — 3352)p*3 — (8n? + 522n — 5666)p'* — 3(n? — 143n + 632)p*°
+3(n? — 46n + 179)p'® + (n? — 6n + 11);017], for n > 9.

p?(—p'® — 84p° 4 462p® — 1140p” + 1665p° — 1590p° + 1042p* — 447p° + 150p?
—30p + 3)

2p* (1 — p)®(—p°® — 22p° + 81p" — 118p® + 95p> — 38p + 7)

5p* (1 — p)8(—p'® + 6p° + 26p° — 191p” + 487p° — 689p° + 610p* — 352p> + 131p?
—29p +3)

pt(1 — p) 0 (—=11p*% + 106p° + 331p® — 1860p” + 3654p° — 4122p° + 3047p?
—1540p> + 530p% — 114p 4 12)

7pt (1 — p)t (3p*® — 35p'2 4 18pt + 468p'0 — 1824p° + 3640p° — 4760p” + 4430p°
—3036p° + 1546p* — 577p° + 151p? — 25p + 2)

4p (1 — p)'5(9p*® — 89p'2 + 78ptt 4 976p*° — 3839p° + 7535p° — 9707p" + 8945p°
—6095p° + 3095p* — 1154p° + 302p® — 50p + 4)

%npzl(l — pyin—21y

X [12 — 198p + 1578p? — 8034p> + 3(3n + 9703)p* — 3(35n + 26377)p°
+3(195n + 55253)p® — 3(677n 4+ 90175)p” + (n? + 4809n 4 343998)p°®
—6(n? + 1333n + 56320)p° + 3(5n2 + 3092n + 84259)p*°
—(17n? + 7158n + 141769)p'! + 3(n? + 1057n + 19826)p*?
+6(2n2 — 40n — 3263)p*3 — (8n? + 642n — 5930)p'* — 3(n? — 151n + 656)p*°
+3(n? — 46n + 179)p'® + (n? — 6n + 11);017], forn > 9.
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fs.17(3,p) = p2(63p'° — 372p° 4+ 1086p° — 2020p” + 2625p° — 2472p° + 1700p* — 840p°
+285p% — 60p + 6)

faar(4,p) = 2p"(1—p)®(87p" — 56p° + 84p® — 56p + 14)

faar(5,p) = 5pt(1 — p)®(75p° — 244p” + 422p8 — 524p° + 507p* — 360p° + 172p% — 48p + 6)

fs17(6,p) = p'(1—p)5(693p"? — 4272p'" + 12864p'® — 25256p° + 36506p° — 41232p”
+37080p° — 26304p° + 14352pt — 5800p> + 1636p> — 288p + 24)

fsar(7,p) = Tp*(1 — p)*2(165p'? — 880p*t 4 2488p'0 — 4672p° + 6528p° — 7152p” + 6264p°
—43686p° + 2370p? — 960p> + 272p? — 48p + 4)

faa7(8,p) = 4pt(1 — p)t2(447p'® — 3884p'° + 16826p'1 — 47684p'3 + 98681p'2 — 158360p'!

+204452p'° — 217056p° + 191468p° — 140432p” + 84936p° — 41632p° + 16088p?
—4704p> 4 976p> — 128p + 8)
faar(n,p) = Enp'(1—p)2Un1Dx
X [24 — 480p + 4608p? — 28244p> 4 36(n + 3432)p? — 576(n + 712)p°
1+24(181n 4 44525)p% — 48(427n + 46523)p” + 4(2n? 4 16929n 4 948511)p®
—48(2n? 4 3461n + 110115)p° + 12(44n? + 26097n + 505445)p*?
—8(220n2 + 57891n + 717095)p" " 4 (397212 + 543921n + 4449999)p*?
—24(268n2 + 21251n + 116269)p'® + 12(644n? + 31747n + 114193)p'4
—24(292n2 + 9327n + 20493)p'® + 6(801n? + 16765n + 17794)p'¢
—8(307n2 4 4083n + 218)p'” + 12(75n2 + 562n — 535)p'®

—24(9n2 + 24n — 59)p'° + 9(3n2 — 6n + 5);[)20], for n > 9.
3.1. Controlling the probability of undetected errors

The graphics of the above functions are given in Figure 2. Some functions are so
close, that they practically overlapping.

f3,:[12, p]

0.00005

0.00004

0.00003

0.00002

0.00001

.25 0.3

Figure 2: 17 different functions for the probability of undetected errors for k£ = 3

As we can see, when the block length n increases, the maximum of these
functions becomes smaller and the sequence of maximums converges to 0 (Figure
3). Using this property, we can control errors. Namely, if we want the probability of
undetected errors to be smaller than some previous given value €, we are searching
for the smallest natural number n for which the maximum of the function fs ;(n,p)
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Figure 3: The best probability function for different values of block length n

is smaller then . Since the sequence of maximums of the functions f3;(n,p) is
strictly decreasing and converges to 0 when n — oo, there will be n € N, with this
property. Now, we separate the message into blocks with length n and we code
every block individually.

4. Classification of quasigroups of order 4 according
to goodness for proposed codes for k=3

As we mentioned in previous section, we filtered the quasigroups of order 4 such
that the probability of undetected errors does not depend on the distribution of
the letters in the input messages. After filtration only 160 quasigroups remained.
These 160 quasigroups are separated in 17 sets, such that quasigroups in a same
set have same probability of undetected errors and quasigroups in different sets
have different probability of undetected errors.

The obtained sets of quasigroups are ordered such that the quasigroups from
the first set give the smallest, and the quasigroups from the last set give the biggest
probability of undetected errors.

Each quasigroup is presented by a number according to the lexicographic ordering
of the set of quasigroups of order 4.
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Set 1: 43, 133, 157, 235, 342, 420, 444, 534
Set 2: 83, 113, 203, 285, 292, 374, 464, 494
Set 3: 40, 138, 166, 228, 349, 411, 439, 537
Set 4: 80, 116, 206, 269, 308, 371, 461, 497
Set 5: 92, 111, 213, 274, 303, 364, 466, 485
Set 6: 82, 110, 212, 284, 293, 365, 467, 495
Set 7: 77, 100, 197, 272, 305, 380, 477, 500
Set 8: 37, 60, 70, 132, 163, 234, 252, 262, 315, 325, 343, 414, 445, 507, 517, 540
Set 9: 46, 127, 160, 222, 355, 417, 450, 531
Set 10: 54, 71, 243, 253, 324, 334, 506, 523

Set 11: 14, 21, 179, 192, 385, 398, 556, 563

Set 12: 93, 101, 196, 275, 302, 381, 476, 484

Set 13: 49, 51, 57, 63, 174, 185, 246, 259, 318, 331, 392, 403, 514, 520, 526, 528
Set 14: 26, 126, 147, 223, 354, 430, 451, 551

Set 15: 27, 139, 146, 229, 348, 431, 438, 550

Set 16: 4, 24, 169, 182, 395, 408, 553, 573

Set 17: 1, 7,9, 11, 172, 189, 242, 263, 314, 335, 388, 405, 566, 568, 570, 576

The probability of undetected errors for the quasigroups in the Set ¢ is given
with the function f3;(n, p) from the previous section. All of these 160 quasigroups
are fractal. The best for coding are quasigroups in the set 1. All quasigroups in
set 1 are linear fractal quasigroups.

5. Comparison of the codes for k =2 and k=3

The code for k = 2 is considered in [4]. In that paper we concluded that probability
of undetected errors for k = 2, depends on the distribution of the letters in the
input message. After filtration 160 quasigroups remained. With simple comparison
of the results from this paper with the results from the paper [4], we can conclude
that the same 160 fractal quasigrups remained after filtration for both codes.
But, in the case with & = 2, these 160 quasigroups give 7 different sets, such
that quasigroups in the same set have same probability of undetected errors. An
important fact is that the best sets of quasigroups for both codes contain only
linear fractal quasigroups.

We will denote with f31(n,p) the probability of undetected errors for the best
class of quasigroups for the code when k = 2. This function is derived in [4]. On
Figure 5 in [4] we can see that second best function is very close to the fa1(n,p).
Their plots almost overlap each other. For this reason, we can assume that quasi-
groups from these two sets are equally good for coding.

The best set of quasigroups in the case when k& = 3 is subset of the second
best set of quasigroups for the code when k& = 2. For the reasons explained above,
we can assume that the best set of quasigroups for the code when k& = 3 is subset
from the best set of quasigroups for the code when k = 2.
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Figure 4: The best probability functions for both codes: fa1(n,p) for the code
with k£ = 2 and f31(n,p) for the code with k& =3

In Figure 4 are given functions for the best sets of quasigroups for both codes,
ie. fa1(n,p) and f31(n,p). As we can see, probability of undetected errors for
the code with & = 3 is much smaller than for the code with & = 2. In the Table 1,
are given the maximums of the functions for the probability of undetected errors
for the first and the second proposed code. From this table, we can conclude that
the maximums of the functions of undetected errors are around 10 times smaller
for the code with & = 3. Since, addition of one more character in the definition of
each redundant character will slightly increase the coding time, but the probability
of undetected errors is much smaller, we can conclude that the code with &k = 3 is
better for coding.

6. Comparison with other codes

In this section we will compare the code considered in this paper (k = 3) with
other well-known error-detecting codes. Namely, we will compare the code with
CRC, Humming and Reed-Muller codes. Since, it make most sense to compare
codes with a same rate, we will do that whenever possible.

6.1 Comparison with CRC code

CRC is a standard in error-detection. It is most often used error-detecting code.
Ability of the code to detect errors depends on the chosen polynomial for coding.
We will consider several cases of polynomials, accepted as a standard for coding.
Namely, we will consider CRC-12 (defined with the polynomial g(z) = x'? + 2! +
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n k=2 k=3

10 | 9.35406 x 10~ | 1.06987 x 10~°
11 | 6.82458 x 107> | 6.89244 x 10~°
12 | 5.14707 x 107> | 4.64338 x 10~°
13 | 3.97896 x 107° | 3.2436 x 10~°
14 | 3.14013 x 1072 | 2.33481 x 107°
15 | 2.52198 x 107° | 1.72369 x 10~°
16 | 2.05631 x 107° | 1.30035 x 10~°
17 | 1.69878 x 107° | 9.9951 x 10~7
18 | 1.41968 x 1072 | 7.80948 x 10~
19 | 1.19860 x 107> | 6.19047 x 10~7
20 | 1.02120 x 107° | 4.97045 x 10~°
21 | 8.77182 x 1075 | 4.03692 x 10~ °
22 | 7.59050 x 107° | 3.31277 x 10~
23 | 6.61231 x 107° | 2.74405 x 107
24 | 5.79537 x 107° | 2.29236 x 10~7
25 | 5.10775 x 107% | 1.92994 x 10~
26 | 4.52483 x 107° | 1.63643 x 10~

Table 1: The maximums of the probability functions for £k = 2 and k& = 3

23 +a2+2+1), CRC-ANSI (defined with the polynomial g(z) = #'6+ 2+ 2%+ 2+
1) and CRC-CCITT (defined with the polynomial g(z) = '6 +2'2+2°+1). These
are most commonly used CRC codes. Unlike the codes defined with the model in
[4], CRC code adds constant number of redundant characters, regardless of the
length of the information block. CRC-12 adds 12 bits, while CRC-ANSI and CRC-
CCITT add 16 bits. There are numerous papers which investigated the probability
of undetected errors of CRC codes. We will use results obtained in [22]. In Table 2
are given maximums of their probabilities of undetected errors for different values
of the block length ([22]) and corresponding probability of undetected errors for
our code. The block lengths are expressed in bits. Each character from the set
{0,1,2,3} on which our code is defined can be presented with two bits. This means
that, if the block length is n symbols from the set {0, 1,2, 3}, than the block length
of the binary representation is 2n. For this reason, the value of the probability of
undetected errors for block length n in Table 2 corresponds with the value of the
probability of undetected errors for block length n/2 in Table 1.

As we can see from Table 2, our code has smaller probability of undetected
errors than CRC-12 for all values of block length n which are greater than 10.
For n greater than 12 our code has smaller probability of undetected errors than
CRC-12 and CRC-ANSI. For n greater than 14 our code has smaller probability
of undetected errors than all considered CRC codes. There is the most sense to
compare codes with a same rate. Our code has rate 1/2. CRC-12 will have rate
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n k=3 CRC-12 CRC-ANSI CRC-CCITT

6 | 1.53809 x 1072 | 4.98239403 x 10~* | 2.09564372 x 10~% | 1.82571298 x 10~
8 | 3.04367 x 1073 | 4.37709580 x 10~* | 1.93778075 x 10~* | 1.68755027 x 10~
10 | 5.8113 x 1074 | 4.34696788 x 10~* | 1.71779543 x 10~% | 1.49835850 x 10~
12 | 1.46302 x 10~* | 4.92004790 x 10~% | 1.49497882 x 10~* | 1.31108736 x 10~*
14 | 6.13344 x 107° | 5.22761450 x 10~% | 1.37334592 x 10~* | 1.14947191 x 10~*
16 | 3.11371 x 107° | 5.32168354 x 10~% | 1.63272940 x 10~* | 1.00034176 x 10~*
18 | 1.75778 x 107° | 5.24102890 x 10~* | 1.87672767 x 10~* | 9.68045141 x 10~°
20 | 1.06987 x 107> | 5.11365042 x 10~% | 1.96620564 x 10~% | 9.11743047 x 10~°
22 | 6.89244 x 107% | 5.02705835 x 10~* | 1.95326371 x 10~ | 8.48346025 x 10~
24 | 4.64338 x 107° | 4.95408412 x 10~* | 1.88110195 x 10~% | 7.82445308 x 10~
26 | 3.2436 x 1079 | 4.79257173 x 10~* | 1.77894848 x 10~% | 7.19221628 x 10~?
28 | 2.33481 x 107° | 4.57258208 x 10~* | 1.68454993 x 10~% | 6.60500281 x 10~?
30 | 1.72369 x 107° | 4.36575324 x 10~* | 1.66609101 x 10~ | 6.05393376 x 10~°
32 | 1.30035 x 107° | 4.16986323 x 10~* | 1.68211020 x 10=* | 5.55637826 x 10~°
34 | 9.9951 x 1077 | 4.07554148 x 10~* | 1.66476378 x 10~* | 5.11186757 x 10~°
36 | 7.80948 x 10~7 | 3.98553616 x 10™% | 1.61975108 x 10~* | 4.71277254 x 10~°
38 | 6.19047 x 1077 | 3.89937352 x 10~* | 1.55695118 x 10~% | 4.35295404 x 10~?°
40 | 4.97045 x 1077 | 3.79043787 x 10~* | 1.48455870 x 10~% | 4.03147068 x 10~?
42 | 4.03692 x 1077 | 3.68207383 x 10~* | 1.140940754 x 10~* | 3.74421915 x 10~?
44 | 3.31277 x 1077 | 3.57807948 x 10~* | 1.35077161 x 10~% | 3.48991385 x 10~?
46 | 2.74405 x 1077 | 3.48489916 x 10~* | 1.33420372 x 10~% | 3.33221165 x 10~?
48 | 2.29236 x 1077 | 3.40974622 x 10~* | 1.31913843 x 10~ | 3.17809110 x 10~°
50 | 1.92994 x 10~7 | 3.32276709 x 10~* | 1.29915008 x 10~ | 3.08847539 x 10~°

Table 2: The maximums of the probability of undetected errors for k = 3, CRC-12,
CRC-ANSI and CRC-CCITT. The block length n is expressed in bits.

1/2 if the block length is 12, while CRC-ANSI and CRC-CCITT will have rate 1/2
if the block length is 16. Since 1.46302 x 10~% < 4.92904790 x 104, our code has
smaller probability of undetected errors than CRC-12 when the rates and block
lengths are equal. Also, since 3.11371 x 1075 < 1.63272940 x 10~% and 3.11371 x
1075 < 1.00034176 x 10~4, we conclude that our code has smaller probability of
undetected errors than CRC-ANSI and CRC-CCITT for equal rates and block-
lengths. Further, we can decrease the probability of undetected errors for our
code without changing the rate. Namely, if we divide the message into blocks
with greater length, the probability of undetected errors will be even smaller, and
the code rate will be still % Practically, the probability of undetected errors for
our code can be made arbitrary small (as explained in subsection 3.1). On the
other side, CRC code does not have this property. It is well known fact that the
probability of undetected errors for CRC codes with ¢ redundant bits tends to 27¢
when block length tend to infinity. Also, for fixed n, the probability of undetected
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errors tends to 27¢ when p increases. For this reason the probability of undetected
errors for CRC codes can not be made arbitrary small.

From all presented above, we can conclude that the advantage of the code con-
sidered in this paper compared with CRC code is that it has a smaller probability
of undetected errors and it allows to make the probability of undetected errors
arbitrarily small, which is not a case with CRC code.

6.2 Comparison with Hamming code

Error-detecting codes except for checking the accuracy of the data transmitted
through a noise channels, are also used to check the accuracy of the data stored
in a computer memory. One such code that is often used in computer memory is
Hamming code. Certainly, the code can be used in data transmission, also. Its
probability of undetected errors is examined in [12]. Results obtained in [12] are
given in Table 3. General conclusion is that our code has much smaller probability
of undetected errors. But, the price we pay for such a small probability of unde-
tected errors is that we add more redundant characters compared with Hamming
code. Now, it is matter of choice what is more important to the user. If it is the
speed of transmission (i.e. memory space), than Hamming code goes first. But, if
the accuracy of the data is more important, then our code has an advantage.

name block length | no. redundant bits | max.probability
Hamming (7,4) 4 3 1.1718750 x 107"
Hamming (15,11) 11 4 6.2469482 x 1072
Hamming (31,26) 26 5 3.1250000 x 10~2
Hamming (63,57) 57 6 1.5625000 x 102
Hamming (127,120) 120 7 7.8125000 x 1073
Hamming (255,247) 247 8 3.906250 x 1073

Table 3: The number of information characters (block length), the number of
redundant characters and the maximum of the probability of undetected errors for
Hamming codes (from [12]). The block length is expressed in bits.

6.3 Comparison with Reed-Muller code

Reed-Muller is one of the oldest codes. It is first of all error-correcting code, but it
can be used for error-detection solely. The code has two parameters and is denoted
as R(r,m). Ability of the code to detect errors depends on the parameters r and
m. Some special cases are studied in [14]. For a given parameters r and m, the

block length (length of the information block) is > (m), while the number of

7
=0
r

redundant symbols is 2™ — Y~ (7). Length of the coded block is 2.
i=0
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- First-order R(1,m) code

For first-order R(1,m) code in [14] is obtained the following formula for the
probability of undetected errors:

fra(m,p) = (2™ = 2)(p(1 —p))?" +p*" (18)

The formula for the probability of undetected errors is a function of the code
parameter m and the bit-error rate p.

Comparing formulas (17) and (18) we can conclude that R(1,m) code has much
smaller probability of undetected errors. But, on the other side, the R(1,m) code
on m+ 1 information bits adds 2 —m — 1 redundant bits. This implies that when
m increases, the number of redundant bits exponentially grows and this code adds
much more redundant characters then our code. For example, for m = 10, the
code adds 1013 redundant bits on 11 information bits . For this reason, despite the
low probability of undetected errors of R(1,m) code, our code is more practical
for coding.

- R(2,m) code

In [14] is also derived approximative formula for the probability of undetected
errors for R(2,m) code. This code on mm=1) 4 m + 1 information bits adds

gm — mm=b) _ . _ 1 redundant bits. For m = 5, the code on 16 information
bits adds 16 redundant bits, so the rate is 1/2. Our code has rate 1/2, so code
rates are equal. Since it is most reasonable to compare the codes with same rate,
we will compare R(2,5) with our code. In Figure 5 is given the graphic of the
probability of undetected errors of R(2,5) code. The maximum of this probability
is 9.49253 x 107 6. If we use our code for coding, we can separate the message
into blocks with length greater than 22 (in bits) and code these blocks separately.
Then our code will have smaller probability of undetected errors. This means that
when transmission speeds are equal (i.e. code rates are equal) our code is better
for coding since its probability of undetected errors can be made smaller.

- R(m —2,m) code

The last case of Reed-Muller codes that we will consider are R(m —2,m) codes.
These codes on 2™ — m — 1 information bits add m + 1 redundant bits. As we
can see, these codes add small redundance, but on the other side they have big
probability of undetected errors. The probability of undetected errors given in [14]
is:

“+1 21n,+1

Frlm,p) = gy (14 @ =21 = 29" 4 (1 2)”") (1 - )
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fRZ [51 p]

Figure 5: Probability of undetected errors for R(2,5) code

Comparing (17) and (19) we can conclude that the code considered in this
paper always has smaller probability of undetected errors. In Table 4 are given
maximums of the probability of undetected errors for R(m—2,m) code for different
values of m. Comparing these values with the corresponding values for our code
(case k = 3) from Table 2, we can see that our code has much smaller maximums
of the functions of the probability of undetected errors.

m | n=2"—m—1 | no. redundant bits | R(m —2,m)

4 11 5 3.12347 x 1072
5 26 6 1.5625 x 1072
6 57 7 7.8125 x 1073
7 120 8 3.90625 x 1073
8 247 9 1.95313 x 103

Table 4: The maximums of the probability functions for R(m — 2, m) codes

Here we have similar situation as with Hamming code. It depends what is
more important to the user: If it is the transmission speed, then R(m — 2, m) will
be chosen, while if it is accuracy of the data, then our code will be chosen.

7. Conclusion

In this paper we derived a formula for the probability of undetected errors for the
code defined in [4], when A = {0,1,2,3} and when k£ = 3. An important property
of the code is that the probability of undetected errors can be made arbitrary small
and we explain how it can be done. Also, in this paper we give a classification
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of quasigroups of order 4 according to goodness for the code with £k = 3. We
compare the cases of the codes over the set A = {0,1,2,3} when k = 2 and when
k = 3. We saw that the best set of quasigroups of order 4 suitable for the code
with k& = 3 contains only linear fractal quasigroups, as the code with & = 2. The
both codes, have the same rates, but the probability of undetected errors for the
code with & = 3 is much smaller. Since, addition of one more character in the
definition of each redundant character will slightly increase the coding time, but
the probability of undetected errors is much smaller, we conclude that the code
with & = 3 is better for coding. Our next goal is to find the optimal value for k
for the model defined in [4].

Also, we compare the code when k¥ = 3 with CRC-12, CRC-ANSI, CRC-
CCITT, Hamming and some Reed-Muller codes. We conclude that the advan-
tage of the code considered in this paper prior the CRC code is that it has smaller
probability of undetected errors when the rates and block lengths are equal. Other
big advantage of the code considered in this paper is that the probability of unde-
tected errors can be made arbitrary small which is not case with the CRC code.
When compared with first order Reed-Muller code, our code is more practical due
to much smaller redundance. The Reed-Muller R(2,5) code has equal rate as our
code. If we divide messages in blocks with length greater or equal than 22, our
code will have smaller probability of undetected errors. Comparison with Ham-
ming and Reed-Muller R(m — 2, m) codes showed that our code has much smaller
probability of undetected errors, but bigger redundance. This means that the code
considered in this paper is in advantage in situations when data accuracy is more
important than speed of the transmission (or. memory space).
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