Regularity of subsemigroups generated by ordered idempotents

Kalyan Hansda

Abstract

An element e of an ordered semigroup S is called an ordered idempotent if $e \leqslant e^{2}$. If we consider a subsemigroup S^{\prime} of an ordered semigroup S as an ordered semigroup then the set $R e g_{\leqslant}\left(S^{\prime}\right)$ of all ordered regular elements of S^{\prime} is not identical with $\operatorname{Reg}_{\leqslant}(S) \cap S^{\prime}$ in general. Here we develop some equivalent conditions on the equality of these two sets for $S^{\prime}=(S e],(e S]$ and (eSf], where e, f are ordered idempotents.

1. Introduction

The notion of regularity in a semigroup is derived from von Neumann's definition of a regular ring. As well as ring theory regularity plays important role in the study of semigroup theory. It received considerable attention in semigroup theory. In 1979, K. Nambooripad [13] published a influential paper on the structure of regular semigroups. The set $E(S)$ of all idempotents carries a certain structure. Subsemigroups generated by idempotents in a semigroup have another important feature in semigroup theory. It still remains a subject of higher interest to the researchers. T.E. Hall [4] proved that a regular semigroup is generated by its idempotents if and only if each principal factor is generated by its own idempotents. Due to T.E. Hall there is a very familiar question in the semigroup literature: from information about idempotents what information can be drawn about a semigroup?

The set $\operatorname{Reg}(S)$ of all regular elements of S carries an important role in semigroup theory. For a subsemigroup T of a semigroup S we distinguish two regular subsets: $\operatorname{Reg}(T)$ - regular elements of T, and $\operatorname{reg}(T)=\operatorname{Reg}(S) \cap T$ - elements of T regular in S. It is well known that, in general, $\operatorname{Reg}(T) \subseteq \operatorname{reg}(T)$. Mitrović [12] has characterized semigroup with $\operatorname{Reg}(T)=\operatorname{reg}(T)$, where T runs over one of the following families of subsemigroups: $\{S e: e \in E(S)\},\{e S: e \in E(S)\}$, $\{e S f: e, f \in E(S)\}$. Moreover Mitrović ([11], Theorem 5.2.3) has proved that $\operatorname{Reg}(T)=\operatorname{reg}(T) \neq \phi$ if and only if S is hereditary uniformly π - regular semigroup. This paper is inspired by [12].

Bhuniya and Hansda, [1] have introduced the notion of ordered idempotents and have characterized an ordered semigroups in which every element is an ordered

Keywords: ordered idempotents; regular ordered elements, order completely regular elements.
idempotent. The purpose of this paper is, starting from an ordered semigroup S to study regular parts of certain kinds of its subsemigroups generated by ordered idempotents.

2. Preliminaries

In this paper \mathbb{N} is the set of all natural numbers. An ordered semigroup S is a partially ordered set (S, \leqslant), and at the same time a semigroup (S, \cdot) such that $(\forall a, b, x \in S) a \leqslant b \Rightarrow x a \leqslant x b$ and $a x \leqslant b x$. It is denoted by (S, \cdot, \leqslant). For an ordered semigroup S and $H \subseteq S$, denote

$$
(H]=\{t \in S: t \leqslant h, \text { for some } h \in H\} .
$$

H is called downward closed if $H=(H]$.
Let I be a nonempty subset of an ordered semigroup $S . I$ is called a left (right) ideal of S, if $S I \subseteq I(I S \subseteq I)$ and $(I]=I . I$ is an ideal of S if it is both a left and a right ideal of S.

An element e of S is an ordered idempotent if $e \leqslant e^{2},[1]$. The set of all ordered idempotents of S is denoted by $E_{\leqslant}(S)$. An element $a \in S$ is called ordered regular if there is $x \in S$ such that $a \leqslant a x a$, i.e. $a \in(a S a]$. Clearly, if $a \leqslant a x a$ then $a x, x a \in E_{\leqslant}(S)$. The set of all ordered regular elements of S is denoted by $\operatorname{Reg} g_{\leqslant}(S)$. An ordered semigroup S is ordered regular if $S=\operatorname{Reg}(S)$. An ordered semigroup S is right regular if $a \in\left(a^{2} S\right]$ for every $a \in S$. Kehayopulu [7] defined an ordered completely regular semigroup as an ordered semigroup S such that $a \in\left(a^{2} S a^{2}\right]$, for all $a \in S$. The set of all ordered completely regular elements is denoted by $G r_{\leqslant}(S)$.

Before going to the main results we will state some preliminary results on ordered idempotents of an ordered semigroup.

Lemma 2.1. Let S be an ordered semigroup and $G r_{\leqslant}(S) \neq \phi$. Then for every $a \in G r_{\leqslant}(S)$ there is $e \in E_{\leqslant}(S)$ such that $a \leqslant e a$ and $a \leqslant a e$.

Proof. Consider $a \in G r_{\leqslant}(S)$. Then there is $t \in S$ such that $a \leqslant a^{2} t a^{2} \leqslant$ $a\left(a^{2} t a^{2} t a^{2}\right)=a e$, where $e=a^{2} t a^{2} t a^{2} \in E_{\leqslant}(S)$. Similarly $a \leqslant e a$.

Our next lemma is very much straight forward that follows similarly to the previous lemma.
Lemma 2.2. Let S be an ordered semigroup and $e \in E_{\leqslant}(S)$. Then for every $a \in e S e, a \leqslant e a$ and $a \leqslant a e$.

3. Subsemigroups generated by ordered idempotents

For a subsemigroup $T \subseteq S$, let $r e g_{\leqslant}(T)$ denote the intersection $T \cap R e g_{\leqslant}(S)$. That is the set of all elements of T which are ordered regular in S.

Theorem 3.1. Let S be an ordered semigroup and $E_{\leqslant}(S) \neq \phi$. Then for every $e \in E_{\leqslant}(S), r e g_{\leqslant}(e S e)=\operatorname{Reg}_{\leqslant}(e S e)$.

Proof. Suppose that $a \in r e g_{\leqslant}(e S e)$. Since $a \in \operatorname{Reg}_{\S}(S)$ there is $x \in S$ such that $a \leqslant a x a$. This implies that $a \leqslant a e x e a$, by Lemma 2.2. Since exe $\in e S e$ we have that $a \in R e g_{\leqslant}(e S e)$. Hence $r e g_{\leqslant}(e S e)=R e g_{\leqslant}(e S e)$.

Lemma 3.2. Let S be an ordered semigroup and $e, f \in E_{\leqslant}(S)$. Then the following conditions hold on S :
(1) $\operatorname{Reg}_{\leqslant}((e S f])=\operatorname{Reg}_{\leqslant}((e S]) \cap \operatorname{Reg}_{\leqslant}((S f])$;
(2) $G r_{\leqslant}((e S f])=G r_{\leqslant}((e S]) \cap G r_{\leqslant}((S f])$;
(3) $e \in E_{\leqslant}((e S f])=E_{\leqslant}((e S]) \cap E_{\leqslant}((S f])$;
(4) $r e g_{\leqslant}((e S f])=r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S f])$;
(5) $G r_{\leqslant}((e S f])=G r_{\leqslant}((e S f])$.

Proof. (1). Let $b \in \operatorname{Reg}_{\leqslant}((e S]) \cap \operatorname{Reg}_{\leqslant}((S f])$. Then there are $s_{1}, s_{2} \in S$ such that $b \leqslant b e s_{1} b$ and $b \leqslant b s_{2} f b$. So, we have $b \leqslant b e s_{1} b \leqslant b\left(e s_{1} b s_{2} f\right) b$. Thus, $b \in R e g_{\leqslant}((e S f])$. Also is obvious that $\left.R e g_{\leqslant}((e S f])\right) \subseteq R e g_{\leqslant}((e S]) \cap R e g_{\leqslant}((S f])$. Hence $\operatorname{Reg}_{\leqslant}((e S f])=\operatorname{Reg}_{\leqslant}((e S]) \cap \operatorname{Reg}_{\leqslant}((S f])$.
(2). This proof is similar to (1).
(3). This is obvious.
(4). First suppose that $b \in r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S f])$. Since $b \in \operatorname{Reg}_{\leqslant}(S)$, there is $y \in S$ such that $b \leqslant b y b$. Also $b \in(e S] \cap(S f]$. Therefore $b \leqslant b y b$ implies that $b \in(e S f]$, and so $b \in R e g_{\leqslant}(S) \cap(e S f]=r e g_{\leqslant}((e S f])$.

Also by Lemma 20 [5] we have that $(e S f] \subseteq(e S] \cap(S f]$. So $r e g_{\leqslant}((e S f])=$ $R e g_{\leqslant}(S) \cap(e S f] \subseteq R e g_{\leqslant}(S) \cap(e S]=r e g_{\leqslant}((e S])$. Similarly $r e g_{\leqslant}((e S f]) \subseteq$ $r e g_{\leqslant}((S f])$. Hence $r e g_{\leqslant}((e S f])=r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S f])$.
(5). Let $a \in G r_{\leqslant}((e S f])=G r_{\leqslant}(S) \cap(e S f]$. Since $a \in G r_{\leqslant}(S)$ there is $t \in S$ such that $a \leqslant a^{2} t a^{2}$, which yields that $a \leqslant a^{2}\left(a t a^{2} t a^{2} t a\right) a^{2}$. Now as $a \in(e S f]$ there is $s \in S$ such that $a \leqslant e s f$. So from $a \leqslant a^{2}\left(a t a^{2} t a^{2} t a\right) a^{2}$ we have that $a \leqslant a^{2}\left(\right.$ esfta ${ }^{2}$ ta a^{2} tesf $) a^{2}$. Therefore $a \in G r_{\leqslant}((e S f])$. Also it is evident that $G r_{\leqslant}((e S f]) \subseteq g r_{\leqslant}((e S f])$. Therefore $G r_{\leqslant}((e S f])=g r_{\leqslant}((e S f])$.

Lemma 3.3. Let S be an ordered semigroup and $E_{\leqslant}(S) \neq \phi$. Then for every $e \in E_{\leqslant}(S), G r_{\leqslant}((S e])=g r_{\leqslant}((S e])$.

Proof. Let $a \in \operatorname{gr}((S e])=G r_{\leqslant}(S) \cap(S e]$. Then there is $t \in S$ such that $a \leqslant a^{2} t a^{2}$. This implies that $a \leqslant a^{2}\left(t a^{2} t a\right) a^{2}$. Since $a \in(S e]$, there is $s \in S$ such that $a \leqslant s e$. So $a \leqslant a^{2}\left(t a^{2} t a\right) a^{2}$ yields that $a \leqslant a^{2}\left(t a^{2} t s e\right) a^{2}$. So $a \in G r_{\leqslant}((S e])$, that is $G r_{\leqslant}(S) \cap(S e] \subseteq G r_{\leqslant}((S e])$. Also it is obvious that $G r_{\leqslant}((S e]) \subseteq G r_{\leqslant}(S) \cap(S e]=$ $g r_{\leqslant}((S e])$. Hence $G r_{\leqslant}((S e])=g r_{\leqslant}((S e])$.

Theorem 3.4. Let S be a right regular ordered semigroup and $E_{\leqslant}(S) \neq \phi$. Then the following conditions are equivalent on S :
(1) for all $e \in E_{\leqslant}(S)$, $\left.r e g_{\leqslant}((S e])\right)=G r_{\leqslant}((S e])$;
(2) for all $\left.e \in E_{\leqslant}(S), r e g_{\leqslant}((S e])\right)=\operatorname{Reg}_{\leqslant}((S e])$;
(3) for all $e \in E_{\leqslant}(S)$, $\left.r e g_{\leqslant}((S e])\right) \subseteq L R e g_{\leqslant}((S e])$;
(4) $\operatorname{Reg}_{\leqslant}(S) \subseteq L \operatorname{Reg}_{\leqslant}(S)$;
(5) $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$;
(6) for all $e, f \in E_{\leqslant}(S)$, $\left.r e g_{\leqslant}((e S f])\right)=G r_{\leqslant}((e S f])$;
(7) for all $\left.e \in E_{\leqslant}(S), R e g_{\leqslant}((e S f])\right)=r e g_{\leqslant}((e S f])$.

Proof. (1) $\Rightarrow(2)$. Let $e \in E_{\leqslant}(S)$. Consider $x \in r e g_{\leqslant}((S e])$. Then by (1) $x \in$ $G r_{\leqslant}((S e])$. So $x \leqslant x^{2} t x^{2}$ for some $t \in(S e]$. Since $x \in(S e]$ there is $s \in S$ such that $x \leqslant s e$, which yields that $x \leqslant x(x t s e) x$. Since $x t s e \in(S e]$ we have that $r e g_{\leqslant}((S e]) \subseteq R e g_{\leqslant}((S e])$ and so $r e g_{\leqslant}((S e])=R e g_{\leqslant}((S e])$.
$(2) \Rightarrow(3)$. Let $e \in E_{\leqslant}(S)$ choose $x \in \operatorname{reg}_{\leqslant}((S e])$. By the given condition we have that $x \leqslant x z x$ for some $z \in(S e]$. Note that $z x \in E_{\leqslant}(S)$, so by (2) we have that $x \in(S z x] \cap \operatorname{Re} g_{\leqslant}(S)=r e g_{\leqslant}((S z x])=R e g_{\leqslant}((S z x])$. This yields that $x \leqslant x(s z x) x$ for some $s \in S$. Also $z \in(S e]$, then there is $s^{\prime} \in S$ such that $z \leqslant s^{\prime} e$, whence $x \leqslant x\left(s s^{\prime} e\right) x^{2}$. Since $x s s^{\prime} e \in(S e]$ we have that $x \in L R e g_{\leqslant}((S e])$. Therefore reg $_{\leqslant}((S e]) \subseteq L \operatorname{Reg}_{\leqslant}((S e])$.
$(3) \Rightarrow(4)$. Suppose that $x \in \operatorname{Reg}_{\leqslant}(S)$. Then there is $y \in S$ such that $x \leqslant x y x$. Since $y x \in E_{\leqslant}(S)$ we have $x \in(S y x]$. Therefore $x \in(S y x] \cap \operatorname{Reg} g_{\leqslant}(S)=$ $r e g_{\leqslant}((S y x])$. So by the given condition $x \in L R e g_{\leqslant}((S y x])$. So for some $z \in$ (Syx], $x \leqslant z x^{2}$. Hence $x \in L \operatorname{Reg}_{\leqslant}(S)$.
$(4) \Rightarrow(5)$. Let $a \in \operatorname{Reg}_{\leqslant}(S)$. Then there is $x \in S$ such that $a \leqslant a x a$. Now by right regularity of S we have $a \leqslant a^{2} s x a$. Also

$$
a s x a \leqslant a s x a x a \leqslant a s x a^{2} s x a=(a s x a)(a s x a) .
$$

Thus asxa $\in E_{\leqslant}(S)$. Say $f=$ asxa. Then $a \in \operatorname{Reg}_{\leqslant}(S) \cap(S f]$, and so $a \in$ $L R e g_{\leqslant}(S f]$, by condition (4). This yields that $a \leqslant t a^{2}$ for some $t \in(S f]$. Now $a \leqslant a^{2} s x a \leqslant a^{2} s x t a^{2}$, that is $a \in G r_{\leqslant}(S)$. Hence $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$.
$(5) \Rightarrow(1)$. Consider $e \in E_{\leqslant}(S)$. By Lemma 3.3 it follows that $G r_{\leqslant}((S e])=$ $G r_{\leqslant}(S) \cap(S e]$. So by the given condition we have $G r_{\leqslant}((S e])=R e g_{\leqslant}(S) \cap(S e]=$ $r e g_{\leqslant}(S e]$.
(5) $\Leftrightarrow(6)$. First suppose that $\operatorname{Reg}_{\leqslant}(S)=G r_{\leqslant}(S)$. Note that $G r_{\leqslant}((e S f]) \subseteq$ $R e g_{\leqslant}((e S f]) \subseteq r e g_{\leqslant}((e S f])$. Also $r e g_{\leqslant}((e S f])=R e g_{\leqslant}(S) \cap(e S f]$. Then by (5) and Lemma 3.2, $r e g_{\leqslant}((e S f]) \subseteq G r_{\leqslant}(S) \cap(e S f]=\operatorname{gr}((e S f])=G r_{\leqslant}((e S f])$. Hence $r e g_{\leqslant}((e S f])=G r_{\leqslant}((e S f])$.

For the converse part we first note that $G r_{\leqslant}(S) \subseteq \operatorname{Reg}_{\leqslant}(S)$. To show $R e g_{\leqslant}(S)$ $\subseteq G r_{\leqslant}(S)$, choose $a \in \operatorname{Reg} g_{\leqslant}(S)$. Then there is $t \in S$ such that $a \leqslant a t a$, which yields that $a \leqslant$ atatata. It is clear to see that $t a, a t \in E_{\leqslant}(S)$, which gives that $a \in R e g_{\leqslant}((t a S a t]) \subseteq r e g_{\leqslant}((t a S a t])$. Then by $\left.(6), a \in G r_{\leqslant}(t a S a t]\right)$, that is $a \in G r_{\leqslant}(S)$. Thus $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$.
(6) \Leftrightarrow (7). First suppose that $\operatorname{reg}_{\leqslant}((e S f])=G r_{\leqslant}((e S f])$. Now obviously $R e g_{\leqslant}((e S f]) \subseteq r e g_{\leqslant}((e S f])$. Also, by (6), we have $r e g_{\leqslant}((e S f])=G r_{\leqslant}((e S f]) \subseteq$ $R e g_{\leqslant}((e S f])$. Thus $\operatorname{Reg}_{\leqslant}((e S f])=r e g_{\leqslant}((e S f])$.

Conversely assume that $x \in r e g_{\leqslant}((e S f])$. Then by condition (7), $y \in(e S f]$ such that $x \leqslant x y x$, which implies that $x \leqslant x y x y x$. Clearly $x y, y x \in E_{\leqslant}(S)$. So by condition (7) we have that $x \in \operatorname{Reg}_{\leqslant}(S) \cap((x y S y x])=\operatorname{reg}_{\leqslant}((x y S y x])=$ $R e g_{\leqslant}((x y S y x])$. Thus $x \leqslant x t x$ for some $t \in(x y S y x]$ so that $x \leqslant x(x y s y x) x$ for some $s \in S$. Since $y \in(e S f]$ it follows that $x \in G r_{\leqslant}((e S f])$. Hence $r e g_{\leqslant}((e S f])=$ $G r_{\leqslant}((e S f])$.

In rest of this section we wish to characterize the equality of the regularity of the subsemigroups $(S e]$ and $(e S]$ for an ordered idempotent e.

Theorem 3.5. Let S be a right regular ordered semigroup and $E_{\leqslant}(S) \neq \phi$. Then the following conditions are equivalent on S :
(1) for all $e \in E_{\leqslant}(S)$, $r e g_{\leqslant}((e S]) \subseteq r e g_{\leqslant}((S e])$;
(2) for all $e \in E_{\leqslant}(S), r e g_{\leqslant}((e S])=r e g_{\leqslant}((e S e])$;
(3) for all $e \in E_{\leqslant}(S)$, $r e g_{\leqslant}((e S])=\operatorname{Reg}_{\leqslant}((e S e])$ and $\operatorname{Reg}_{\leqslant}(S)=G r_{\leqslant}(S)$;
(4) for all $e \in E_{\leqslant}(S)$, $r e g_{\leqslant}((e S]) \subseteq R e g_{\leqslant}((S e])$;
(5) for all $e \in E_{\leqslant}(S), G r_{\leqslant}((e S e])=G r_{\leqslant}((e S])$ and $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$;
(6) for all $e \in E_{\leqslant}(S), G r_{\leqslant}((e S]) \subseteq G r_{\leqslant}((S e])$ and $\operatorname{Reg}_{\leqslant}(S)=G r_{\leqslant}(S)$.

Proof. (1) $\Rightarrow(2)$. Let $e \in E_{\leqslant}(S)$. By Lemma 3.2 we have reg ${ }_{\leqslant}((e S e)=$ $r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S e])$. Then by (1) it follows that $r e g_{\leqslant}((e S e])=r e g_{\leqslant}((e S])$.
$(2) \Rightarrow(3)$. Let $e \in E_{\leqslant}(S)$. By Lemma 3.2 we have that $r e g_{\leqslant}((e S e])=$ $r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S e])$. Then by (2) it follows that $r e g_{\leqslant}((e S e])=r e g_{\leqslant}((e S])$.
$(3) \Rightarrow(4)$. Let $e \in E_{\leqslant}(S)$. Note that $\operatorname{reg}((e S])=\operatorname{Reg}((e S e]) \subseteq r e g((e S e])$. Then by Theorem 3.2, $r e g_{\leqslant}((e S e])=r e g_{\leqslant}((e S]) \cap r e g_{\leqslant}((S e])$. This implies that $\operatorname{reg}((e S]) \subseteq r e g((S e])$, by condition (3).
(4) \Rightarrow (5). Let $a \in R e g_{\leqslant}(S)$. Then for some $x \in S, a \leqslant a x a$. Now $x a x \leqslant$ xaxax and xaxax $\in(x a S] \cap R^{2} g_{\leqslant}(S)=r e g(x a S]$. Since $x a \in E_{\leqslant}(S)$, by condition (4) we have that $\left.x a x \in \operatorname{Reg} g_{\leqslant}(S x a]\right)$. So $x a x \leqslant z x a$ for some $z \in S$. Therefore $a \leqslant$ axaxa $\leqslant a z x a a$, so $a \in\left(S a^{2}\right]$, that is, $a \in L R e g_{\leqslant}(S)$. So $\operatorname{Reg}_{\leqslant}(S) \subseteq L R e g_{\leqslant}(S)$. Thus $R e g_{\leqslant}(S)=G r_{\leqslant}(S)$ by Theorem 3.4.

Now to show $G r_{\leqslant}((e S e])=G r_{\leqslant}((e S])$ for some $e \in E_{\leqslant}(S)$, it is require only to proof $G r_{\leqslant}((e S]) \subseteq G r_{\leqslant}((e S e])$. For this let us assume $b \in G r_{\leqslant}((e S])$. Then
$b \in \operatorname{Reg}((e S]) \subseteq \operatorname{reg}((e S]) \subseteq \operatorname{Reg}((S e])$ follows from condition (4). Further, since $b \in G r_{\leqslant}((e S])$ there is $s \in S$ such that $b \leqslant b^{2} e s b^{2}$. Also as $b \in R e g_{\leqslant}((S e])$. So from some $s_{1} \in S$ we have that $b \leqslant b s_{1} e b$. Therefore $b \leqslant b^{2} e s b^{2} \leqslant b^{2}\left(e s b s_{1} e\right) b^{2}$. Hence $b \in G r_{\leq}((e S])$. That is $G r_{\leqslant}((e S e])=G r_{\leqslant}((e S])$.
(5) \Rightarrow (6). This follows immediately.
$(6) \Rightarrow(1)$. Let $e \in E_{\leqslant}(S)$. Choose $a \in \operatorname{reg}((e S])=\operatorname{Reg}(S) \cap(e S]$. Then by condition (6), $a \in G r_{\leqslant}(S)$. Thus $a \in G r_{\leqslant}(S) \cap(e S]$. So $a \in G r_{\leqslant}(S)$ follows from condition (6). Hence $r e g_{\leqslant}((e S]) \subseteq r e g_{\leqslant}((S e])$.

References

[1] A. K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, Communicated.
[2] Y. Cao, X. Xinzhai, Nil-extensions of simple po-semigroups, Commun. Algebra 28 (2000), $2477-2496$.
[3] C. Eberhart, W. Williams and I. Kinch Idempotent-generated regular semigroups, J. Austral. Math. Soc. 28 (1970), 2477 - 2496.
[4] T. E. Hall, On regular semigroups, J. Algebra 24 (1973), 1 - 24.
[5] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discussiones Math., General Algebra and Applications 33 (2013), $73-84$.
[6] N. Kehayopulu, Note on Green's relation in ordered semigroup, Math. Japon. 36 (1991), 211 - 214.
[7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon., 37 (1992), $123-130$.
[8] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37 (1992), $535-540$.
[9] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Intern. J. Math. and Math. Sci. (2006), Article ID 61286.
[10] N. Kehayopulu, Archimeadean ordered semigroups as ideal extensions, Semigroup Forum 78 (2009), 343 - 348.
[11] M. Mitrović, Semilattices of Archimedean semigroups, Univ. of Niś, 2003.
[12] M. Mitrović, Regular subsets of semigroups related to their idempotents, Semigroup Forum 70 (2005), 356 - 360.
[13] K. S. S. Nambooripad, Structure of regular semigroups, I, Semigroup Forum 9 (1975), $354-363$.
[14] J. von Neuman, On regular rings, Proc. Nat. Acad. Sci. USA, 22 (1936), 503-554.
Received December 21, 2013
Department of Mathematics, Visva Bharati University, Santiniketan, Birbhum, Santiniketan 731235, India
E-mail: kalyan.hansda@visva-bharati.ac.in

