Regularity of subsemigroups generated by ordered idempotents

Kalyan Hansda

Abstract. An element e of an ordered semigroup S is called an ordered idempotent if $e \leq e^2$. If we consider a subsemigroup S' of an ordered semigroup S as an ordered semigroup then the set $Reg_{\leq}(S')$ of all ordered regular elements of S' is not identical with $Reg_{\leq}(S) \cap S'$ in general. Here we develop some equivalent conditions on the equality of these two sets for S' = (Se], (eS] and (eSf], where e, f are ordered idempotents.

1. Introduction

The notion of regularity in a semigroup is derived from von Neumann's definition of a regular ring. As well as ring theory regularity plays important role in the study of semigroup theory. It received considerable attention in semigroup theory. In 1979, K. Nambooripad [13] published a influential paper on the structure of regular semigroups. The set E(S) of all idempotents carries a certain structure. Subsemigroups generated by idempotents in a semigroup have another important feature in semigroup theory. It still remains a subject of higher interest to the researchers. T.E. Hall [4] proved that a regular semigroup is generated by its idempotents if and only if each principal factor is generated by its own idempotents. Due to T.E. Hall there is a very familiar question in the semigroup literature: from information about idempotents what information can be drawn about a semigroup?

The set Reg(S) of all regular elements of S carries an important role in semigroup theory. For a subsemigroup T of a semigroup S we distinguish two regular subsets: Reg(T) – regular elements of T, and $reg(T) = Reg(S) \cap T$ – elements of T regular in S. It is well known that, in general, $Reg(T) \subseteq reg(T)$. Mitrović [12] has characterized semigroup with Reg(T) = reg(T), where T runs over one of the following families of subsemigroups: $\{Se: e \in E(S)\}, \{eS: e \in E(S)\}, \{eSf: e, f \in E(S)\}$. Moreover Mitrović ([11], Theorem 5.2.3) has proved that $Reg(T) = reg(T) \neq \phi$ if and only if S is hereditary uniformly π - regular semigroup. This paper is inspired by [12].

Bhuniya and Hansda, [1] have introduced the notion of ordered idempotents and have characterized an ordered semigroups in which every element is an ordered

²⁰¹⁰ Mathematics Subject Classification: 20M10, 06F05.

Keywords: ordered idempotents; regular ordered elements, order completely regular elements.

idempotent. The purpose of this paper is, starting from an ordered semigroup S to study regular parts of certain kinds of its subsemigroups generated by ordered idempotents.

2. Preliminaries

In this paper \mathbb{N} is the set of all natural numbers. An ordered semigroup S is a partially ordered set (S, \leq) , and at the same time a semigroup (S, \cdot) such that $(\forall a, b, x \in S) \ a \leq b \Rightarrow xa \leq xb$ and $ax \leq bx$. It is denoted by (S, \cdot, \leq) . For an ordered semigroup S and $H \subseteq S$, denote

$$(H] = \{t \in S : t \leq h, \text{ for some } h \in H\}.$$

H is called *downward closed* if H = (H].

Let I be a nonempty subset of an ordered semigroup S. I is called a *left* (*right*) *ideal* of S, if $SI \subseteq I$ ($IS \subseteq I$) and (I] = I. I is an *ideal* of S if it is both a left and a right ideal of S.

An element e of S is an ordered idempotent if $e \leq e^2$, [1]. The set of all ordered idempotents of S is denoted by $E_{\leq}(S)$. An element $a \in S$ is called ordered regular if there is $x \in S$ such that $a \leq axa$, i.e. $a \in (aSa]$. Clearly, if $a \leq axa$ then ax, $xa \in E_{\leq}(S)$. The set of all ordered regular elements of S is denoted by $Reg_{\leq}(S)$. An ordered semigroup S is ordered regular if $S = Reg_{\leq}(S)$. An ordered semigroup S is right regular if $a \in (a^2S]$ for every $a \in S$. Kehayopulu [7] defined an ordered completely regular semigroup as an ordered semigroup S such that $a \in (a^2Sa^2]$, for all $a \in S$. The set of all ordered completely regular elements is denoted by $Gr_{\leq}(S)$.

Before going to the main results we will state some preliminary results on ordered idempotents of an ordered semigroup.

Lemma 2.1. Let S be an ordered semigroup and $Gr_{\leq}(S) \neq \phi$. Then for every $a \in Gr_{\leq}(S)$ there is $e \in E_{\leq}(S)$ such that $a \leq ea$ and $a \leq ae$.

Proof. Consider $a \in Gr_{\leq}(S)$. Then there is $t \in S$ such that $a \leq a^2 t a^2 \leq a(a^2 t a^2 t a^2) = ae$, where $e = a^2 t a^2 t a^2 \in E_{\leq}(S)$. Similarly $a \leq ea$.

Our next lemma is very much straight forward that follows similarly to the previous lemma.

Lemma 2.2. Let S be an ordered semigroup and $e \in E_{\leq}(S)$. Then for every $a \in eSe$, $a \leq ea$ and $a \leq ae$.

3. Subsemigroups generated by ordered idempotents

For a subsemigroup $T \subseteq S$, let $reg_{\leq}(T)$ denote the intersection $T \cap Reg_{\leq}(S)$. That is the set of all elements of T which are ordered regular in S.

Theorem 3.1. Let S be an ordered semigroup and $E_{\leq}(S) \neq \phi$. Then for every $e \in E_{\leq}(S)$, $reg_{\leq}(eSe) = Reg_{\leq}(eSe)$.

Proof. Suppose that $a \in reg_{\leq}(eSe)$. Since $a \in Reg_{\leq}(S)$ there is $x \in S$ such that $a \leq axa$. This implies that $a \leq aexea$, by Lemma 2.2. Since $exe \in eSe$ we have that $a \in Reg_{\leq}(eSe)$. Hence $reg_{\leq}(eSe) = Reg_{\leq}(eSe)$.

Lemma 3.2. Let S be an ordered semigroup and $e, f \in E_{\leq}(S)$. Then the following conditions hold on S:

- (1) $Reg_{\leq}((eSf]) = Reg_{\leq}((eS]) \cap Reg_{\leq}((Sf]);$
- (2) $Gr_{\leq}((eSf]) = Gr_{\leq}((eS]) \cap Gr_{\leq}((Sf]);$
- (3) $e \in E_{\leq}((eSf]) = E_{\leq}((eS]) \cap E_{\leq}((Sf]);$
- (4) $reg_{\leq}((eSf]) = reg_{\leq}((eS]) \cap reg_{\leq}((Sf]);$
- (5) $Gr_{\leq}((eSf]) = Gr_{\leq}((eSf]).$

Proof. (1). Let $b \in Reg_{\leq}((eS]) \cap Reg_{\leq}((Sf])$. Then there are $s_1, s_2 \in S$ such that $b \leq bes_1b$ and $b \leq bs_2fb$. So, we have $b \leq bes_1b \leq b(es_1bs_2f)b$. Thus, $b \in Reg_{\leq}((eSf])$. Also is obvious that $Reg_{\leq}((eSf])) \subseteq Reg_{\leq}((eS]) \cap Reg_{\leq}((Sf])$. Hence $Reg_{\leq}((eSf]) = Reg_{\leq}((eSf)) \cap Reg_{\leq}((Sf))$.

- (2). This proof is similar to (1).
- (3). This is obvious.

(4). First suppose that $b \in reg_{\leq}((eS]) \cap reg_{\leq}((Sf])$. Since $b \in Reg_{\leq}(S)$, there is $y \in S$ such that $b \leq byb$. Also $b \in (eS] \cap (Sf]$. Therefore $b \leq byb$ implies that $b \in (eSf]$, and so $b \in Reg_{\leq}(S) \cap (eSf] = reg_{\leq}((eSf])$.

Also by Lemma 20 [5] we have that $(eSf] \subseteq (eS] \cap (Sf]$. So $reg_{\leq}((eSf]) = Reg_{\leq}(S) \cap (eSf] \subseteq Reg_{\leq}(S) \cap (eS] = reg_{\leq}((eS])$. Similarly $reg_{\leq}((eSf]) \subseteq reg_{\leq}((eSf])$. Hence $reg_{\leq}((eSf]) = reg_{\leq}((eS]) \cap reg_{\leq}((Sf])$.

(5). Let $a \in Gr_{\leq}((eSf]) = Gr_{\leq}(S) \cap (eSf]$. Since $a \in Gr_{\leq}(S)$ there is $t \in S$ such that $a \leq a^2ta^2$, which yields that $a \leq a^2(ata^2ta^2ta)a^2$. Now as $a \in (eSf]$ there is $s \in S$ such that $a \leq esf$. So from $a \leq a^2(ata^2ta^2ta)a^2$ we have that $a \leq a^2(esfta^2ta^2ta^2ta)a^2$. Therefore $a \in Gr_{\leq}((eSf])$. Also it is evident that $Gr_{\leq}((eSf]) \subseteq gr_{\leq}((eSf])$. Therefore $Gr_{\leq}((eSf]) = gr_{\leq}((eSf])$.

Lemma 3.3. Let S be an ordered semigroup and $E_{\leq}(S) \neq \phi$. Then for every $e \in E_{\leq}(S)$, $Gr_{\leq}((Se]) = gr_{\leq}((Se])$.

Proof. Let $a \in gr((Se]) = Gr_{\leq}(S) \cap (Se]$. Then there is $t \in S$ such that $a \leq a^2ta^2$. This implies that $a \leq a^2(ta^2ta)a^2$. Since $a \in (Se]$, there is $s \in S$ such that $a \leq se$. So $a \leq a^2(ta^2ta)a^2$ yields that $a \leq a^2(ta^2tse)a^2$. So $a \in Gr_{\leq}((Se])$, that is $Gr_{\leq}(S) \cap (Se] \subseteq Gr_{\leq}((Se])$. Also it is obvious that $Gr_{\leq}((Se]) \subseteq Gr_{\leq}(S) \cap (Se] = gr_{\leq}((Se])$. Hence $Gr_{\leq}((Se]) = gr_{\leq}((Se])$. **Theorem 3.4.** Let S be a right regular ordered semigroup and $E_{\leq}(S) \neq \phi$. Then the following conditions are equivalent on S:

- (1) for all $e \in E_{\leq}(S)$, $reg_{\leq}((Se])) = Gr_{\leq}((Se])$;
- (2) for all $e \in E_{\leq}(S)$, $reg_{\leq}((Se])) = Reg_{\leq}((Se])$;
- (3) for all $e \in E_{\leq}(S)$, $reg_{\leq}((Se])) \subseteq LReg_{\leq}((Se])$;
- (4) $Reg_{\leq}(S) \subseteq LReg_{\leq}(S);$
- (5) $Reg_{\leq}(S) = Gr_{\leq}(S);$
- (6) for all $e, f \in E_{\leq}(S), reg_{\leq}((eSf])) = Gr_{\leq}((eSf]);$
- (7) for all $e \in E_{\leq}(S)$, $Reg_{\leq}((eSf])) = reg_{\leq}((eSf])$.

Proof. (1) \Rightarrow (2). Let $e \in E_{\leq}(S)$. Consider $x \in reg_{\leq}((Se])$. Then by (1) $x \in Gr_{\leq}((Se])$. So $x \leq x^2 tx^2$ for some $t \in (Se]$. Since $x \in (Se]$ there is $s \in S$ such that $x \leq se$, which yields that $x \leq x(xtse)x$. Since $xtse \in (Se]$ we have that $reg_{\leq}((Se]) \subseteq Reg_{\leq}((Se])$ and so $reg_{\leq}((Se]) = Reg_{\leq}((Se])$.

 $(2) \Rightarrow (3)$. Let $e \in E_{\leq}(S)$ choose $x \in reg_{\leq}((Se])$. By the given condition we have that $x \leq xzx$ for some $z \in (Se]$. Note that $zx \in E_{\leq}(S)$, so by (2) we have that $x \in (Szx] \cap Reg_{\leq}(S) = reg_{\leq}((Szx]) = Reg_{\leq}((Szx])$. This yields that $x \leq x(szx)x$ for some $s \in S$. Also $z \in (Se]$, then there is $s' \in S$ such that $z \leq s'e$, whence $x \leq x(ss'e)x^2$. Since $xss'e \in (Se]$ we have that $x \in LReg_{\leq}((Se])$. Therefore $reg_{\leq}((Se]) \subseteq LReg_{\leq}((Se])$.

 $(3) \Rightarrow (4)$. Suppose that $x \in Reg_{\leq}(S)$. Then there is $y \in S$ such that $x \leq xyx$. Since $yx \in E_{\leq}(S)$ we have $x \in (Syx]$. Therefore $x \in (Syx] \cap Reg_{\leq}(S) = reg_{\leq}((Syx])$. So by the given condition $x \in LReg_{\leq}((Syx])$. So for some $z \in (Syx]$, $x \leq zx^2$. Hence $x \in LReg_{\leq}(S)$.

 $(4) \Rightarrow (5)$. Let $a \in Reg_{\leq}(S)$. Then there is $x \in S$ such that $a \leq axa$. Now by right regularity of S we have $a \leq a^2 sxa$. Also

 $asxa \leqslant asxaxa \leqslant asxa^2 sxa = (asxa)(asxa).$

Thus $asxa \in E_{\leq}(S)$. Say f = asxa. Then $a \in Reg_{\leq}(S) \cap (Sf]$, and so $a \in LReg_{\leq}(Sf]$, by condition (4). This yields that $a \leq ta^2$ for some $t \in (Sf]$. Now $a \leq a^2sxa \leq a^2sxta^2$, that is $a \in Gr_{\leq}(S)$. Hence $Reg_{\leq}(S) = Gr_{\leq}(S)$.

 $(5) \Rightarrow (1)$. Consider $e \in E_{\leq}(S)$. By Lemma 3.3 it follows that $Gr_{\leq}((Se]) = Gr_{\leq}(S) \cap (Se]$. So by the given condition we have $Gr_{\leq}((Se]) = Reg_{\leq}(S) \cap (Se] = reg_{\leq}(Se]$.

 $(5) \Leftrightarrow (6)$. First suppose that $Reg_{\leq}(S) = Gr_{\leq}(S)$. Note that $Gr_{\leq}((eSf]) \subseteq Reg_{\leq}((eSf]) \subseteq reg_{\leq}((eSf])$. Also $reg_{\leq}((eSf]) = Reg_{\leq}(S) \cap (eSf]$. Then by (5) and Lemma 3.2, $reg_{\leq}((eSf]) \subseteq Gr_{\leq}(S) \cap (eSf] = gr((eSf]) = Gr_{\leq}((eSf])$. Hence $reg_{\leq}((eSf]) = Gr_{\leq}((eSf])$.

For the converse part we first note that $Gr_{\leq}(S) \subseteq Reg_{\leq}(S)$. To show $Reg_{\leq}(S) \subseteq Gr_{\leq}(S)$, choose $a \in Reg_{\leq}(S)$. Then there is $t \in S$ such that $a \leq ata$, which yields that $a \leq atatata$. It is clear to see that $ta, at \in E_{\leq}(S)$, which gives that $a \in Reg_{\leq}((taSat]) \subseteq reg_{\leq}((taSat])$. Then by (6), $a \in Gr_{\leq}(taSat]$, that is $a \in Gr_{\leq}(S)$. Thus $Reg_{\leq}(S) = Gr_{\leq}(S)$.

(6) \Leftrightarrow (7). First suppose that $reg_{\leq}((eSf]) = Gr_{\leq}((eSf])$. Now obviously $Reg_{\leq}((eSf]) \subseteq reg_{\leq}((eSf])$. Also, by (6), we have $reg_{\leq}((eSf]) = Gr_{\leq}((eSf]) \subseteq Reg_{\leq}((eSf])$. Thus $Reg_{\leq}((eSf]) = reg_{\leq}((eSf])$.

Conversely assume that $x \in reg_{\leq}((eSf])$. Then by condition (7), $y \in (eSf]$ such that $x \leq xyx$, which implies that $x \leq xyxyx$. Clearly $xy, yx \in E_{\leq}(S)$. So by condition (7) we have that $x \in Reg_{\leq}(S) \cap ((xySyx]) = reg_{\leq}((xySyx]) =$ $Reg_{\leq}((xySyx])$. Thus $x \leq xtx$ for some $t \in (xySyx]$ so that $x \leq x(xysyx)x$ for some $s \in S$. Since $y \in (eSf]$ it follows that $x \in Gr_{\leq}((eSf])$. Hence $reg_{\leq}((eSf]) =$ $Gr_{\leq}((eSf])$.

In rest of this section we wish to characterize the equality of the regularity of the subsemigroups (Se] and (eS] for an ordered idempotent e.

Theorem 3.5. Let S be a right regular ordered semigroup and $E_{\leq}(S) \neq \phi$. Then the following conditions are equivalent on S:

- (1) for all $e \in E_{\leq}(S)$, $reg_{\leq}((eS]) \subseteq reg_{\leq}((Se])$;
- (2) for all $e \in E_{\leq}(S)$, $reg_{\leq}((eS]) = reg_{\leq}((eSe])$;

(3) for all $e \in E_{\leq}(S)$, $reg_{\leq}((eS]) = Reg_{\leq}((eSe])$ and $Reg_{\leq}(S) = Gr_{\leq}(S)$;

- (4) for all $e \in E_{\leq}(S)$, $reg_{\leq}((eS]) \subseteq Reg_{\leq}((Se])$;
- (5) for all $e \in E_{\leqslant}(S)$, $Gr_{\leqslant}((eSe]) = Gr_{\leqslant}((eS])$ and $Reg_{\leqslant}(S) = Gr_{\leqslant}(S)$;
- (6) for all $e \in E_{\leq}(S)$, $Gr_{\leq}((eS]) \subseteq Gr_{\leq}((Se])$ and $Reg_{\leq}(S) = Gr_{\leq}(S)$.

Proof. (1) \Rightarrow (2). Let $e \in E_{\leq}(S)$. By Lemma 3.2 we have $reg_{\leq}((eSe) = reg_{\leq}((eS]) \cap reg_{\leq}((Se])$. Then by (1) it follows that $reg_{\leq}((eSe]) = reg_{\leq}((eS))$. (2) \Rightarrow (3). Let $e \in E_{\leq}(S)$. By Lemma 3.2 we have that $reg_{\leq}((eSe]) = reg_{\leq}((eSe))$.

 $reg_{\leqslant}((eS]) \cap reg_{\leqslant}((Se])$. Then by (2) it follows that $reg_{\leqslant}((eSe]) = reg_{\leqslant}((eS])$. (3) \Rightarrow (4). Let $e \in E_{\leqslant}(S)$. Note that $reg((eS]) = Reg((eSe]) \subseteq reg((eSe])$.

(3) \Rightarrow (4). Let $e \in E_{\leq}(S)$. Note that $\operatorname{reg}((eS)) = \operatorname{reg}((eSe)) \subseteq \operatorname{reg}((eSe))$. Then by Theorem 3.2, $\operatorname{reg}_{\leq}((eSe)) = \operatorname{reg}_{\leq}((eS)) \cap \operatorname{reg}_{\leq}((Se))$. This implies that $\operatorname{reg}((eS)) \subseteq \operatorname{reg}((Se))$, by condition (3).

 $(4) \Rightarrow (5).$ Let $a \in Reg_{\leq}(S).$ Then for some $x \in S$, $a \leq axa.$ Now $xax \leq xaxax$ and $xaxax \in (xaS] \cap Reg_{\leq}(S) = reg(xaS].$ Since $xa \in E_{\leq}(S)$, by condition (4) we have that $xax \in Reg_{\leq}((Sxa]).$ So $xax \leq zxa$ for some $z \in S$. Therefore $a \leq axaxa \leq azxaa$, so $a \in (Sa^2]$, that is, $a \in LReg_{\leq}(S).$ So $Reg_{\leq}(S) \subseteq LReg_{\leq}(S).$ Thus $Reg_{\leq}(S) = Gr_{\leq}(S)$ by Theorem 3.4.

Now to show $Gr_{\leq}((eSe]) = Gr_{\leq}((eS])$ for some $e \in E_{\leq}(S)$, it is require only to proof $Gr_{\leq}((eS]) \subseteq Gr_{\leq}((eSe])$. For this let us assume $b \in Gr_{\leq}((eS])$. Then $b \in Reg((eS]) \subseteq reg((eS]) \subseteq Reg((Se])$ follows from condition (4). Further, since $b \in Gr_{\leq}((eS])$ there is $s \in S$ such that $b \leq b^2 esb^2$. Also as $b \in Reg_{\leq}((Se])$. So from some $s_1 \in S$ we have that $b \leq bs_1 eb$. Therefore $b \leq b^2 esb^2 \leq b^2(esbs_1e)b^2$. Hence $b \in Gr_{\leq}((eS])$. That is $Gr_{\leq}((eSe]) = Gr_{\leq}((eS])$.

 $(5) \Rightarrow (6)$. This follows immediately.

 $(6) \Rightarrow (1)$. Let $e \in E_{\leq}(S)$. Choose $a \in reg((eS]) = Reg(S) \cap (eS]$. Then by condition (6), $a \in Gr_{\leq}(S)$. Thus $a \in Gr_{\leq}(S) \cap (eS]$. So $a \in Gr_{\leq}(S)$ follows from condition (6). Hence $reg_{\leq}((eS]) \subseteq reg_{\leq}((Se])$.

References

- [1] A. K. Bhuniya and K. Hansda, Complete semilattice of ordered semigroups, Communicated.
- [2] Y. Cao, X. Xinzhai, Nil-extensions of simple po-semigroups, Commun. Algebra 28 (2000), 2477 - 2496.
- [3] C. Eberhart, W. Williams and I. Kinch Idempotent-generated regular semigroups, J. Austral. Math. Soc. 28 (1970), 2477 - 2496.
- [4] T. E. Hall, On regular semigroups, J. Algebra 24 (1973), 1 24.
- [5] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discussiones Math., General Algebra and Applications 33 (2013), 73 - 84.
- [6] N. Kehayopulu, Note on Green's relation in ordered semigroup, Math. Japon. 36 (1991), 211-214.
- [7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon., 37 (1992), 123-130.
- [8] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37 (1992), 535-540.
- N. Kehayopulu, Ideals and Green's relations in ordered semigroups, Intern. J. Math. and Math. Sci. (2006), Article ID 61286.
- [10] N. Kehayopulu, Archimeadean ordered semigroups as ideal extensions, Semigroup Forum 78 (2009), 343 – 348.
- [11] M. Mitrović, Semilattices of Archimedean semigroups, Univ. of Niś, 2003.
- [12] M. Mitrović, Regular subsets of semigroups related to their idempotents, Semigroup Forum 70 (2005), 356 - 360.
- [13] K. S. S. Nambooripad, Structure of regular semigroups, I, Semigroup Forum 9 (1975), 354-363.
- [14] J. von Neuman, On regular rings, Proc. Nat. Acad. Sci. USA, 22 (1936), 503-554.

Received December 21, 2013

Department of Mathematics, Visva Bharati University, Santiniketan, Birbhum, Santiniketan 731235, India

E-mail: kalyan.hansda@visva-bharati.ac.in