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Fundamental residuated lattices

Rajab Ali Borzooei and Sogol Niazian

Abstract. For any countable set X, we construct a residuated lattice and a weak hyper resid-

uated lattice on X. Next, using the notion of (strongly) regular relation we construct the cor-

responding quotient weak hyper residuated lattice. Finally, by considering the fundamental

relation we de�ne the fundamental residuated lattice and we show that any residuated lattice is

a fundamental residuated lattice.

1. Introduction

The study of residuated lattices originated in the context of the theory of ring
ideals in 1930. The collection of all two-sided ideals of a ring forms a lattice
upon which one can impose a natural monoid structure making this object into a
residuated lattice. Such ideas were investigated by Ward and Dilworth in a series of
papers such as [11]. Since that time, there has been substantial research regarding
some speci�c classes of residuated structures, see for example [4] and [7]. The
study of hyperstructures started in 1934 by Marty at 8th Congress of Scandinavian
Mathematicians [10], which introduce the concept of hypergroup. Since then other
classic hyperstructures have also been studied and many researches have been
worked on this new �eld of modern algebra and developed it [3]. Recently, S.
Ghorbani et al. [6], applied the hyperstructures to MV -algebras and introduced
the concept of hyper MV -algebra, which is a generalization of MV -algebra. In
the follow we constructed weak hyper residuated lattices [2] as a generalization
of the concept of residuated lattices that contain of the classes of MV -algebras,
BL-algebras, and Heyting algebras, subclasses of the class of residuated lattices.
Now we prove that any residuated lattice is a fundamental residuated lattice.

2. Preliminaries

Recall that a hypergroupoid (H, ∗, 1) is called a commutative semihypergroup with
1 as the identity, if it satis�es the following axioms:

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z,
(ii) x ∗ y = y ∗ x,

(iii) x ∈ 1 ∗ x.
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By a residuated lattice, we mean an algebraic structure (L,∨,∧, ∗,→, 0, 1) of
type (2, 2, 2, 2, 0, 0) satisfying the following conditions:
(RL1) (L,∨,∧, 0, 1) is a bounded lattice,
(RL2) (L, ∗, 1) is a commutative monoid,
(RL3) the pair (∗,→) is an adjoint pair, i.e., x ∗ y 6 z if and only if x 6 y → z

for x, y, z ∈ L.

Proposition 2.1. [2] Let A, B and C be nonempty subsets of a weak hyper resid-

uated lattice (L,∨,∧,�,→, 0, 1). Then for all x, y, z ∈ L we have:

(i) 1� A ⇔ 1 ∈ A, and A� 0 ⇔ 0 ∈ A,

(ii) x 6 y ⇒ 1 ∈ x→ y, and A� B ⇒ 1 ∈ A→ B,

(iii) if 1 is a scalar, then 1 ∈ x→ y ⇒ x 6 y, and 1 ∈ A→ B ⇒ A� B,

(iv) 1 ∈ (x→ x) ∩ (x→ 1) ∩ (0→ x),

(v) if 1 is a scalar, then x ∈ 1→ x,

(vi) A� B → C ⇔ A�B � C ⇔ B � A→ C,

(vii) x� y � x, y, and A�B � A,B.

De�nition 2.2. [5] Let R be an equivalence relation on a hypergroupoid (H, o).
If A and B are two nonempty subsets of H, then

(i) AR̄B means that for each a ∈ A there exists b ∈ B such that aRb and for
all b ∈ B there exists a ∈ A such that bRa,

(ii) A ¯̄RB means that aRb for all a ∈ A and b ∈ B,

(iii) R is called regular on the right (on the left) if aRb implies (aox)R̄(box) (resp.,
(xoa)R̄(xob)) for all a, b, x ∈ H. A relation regular on the right and left is
called regular,

(iv) R is strongly regular on the right (on the left) if aRb implies (aox) ¯̄R(box)

(resp., (xoa) ¯̄R(xob)), for all a, b, x ∈ H. If R is regular on the right and left,
then it is called strongly regular.

From now by L will be denoted a weak hyper residuated lattice (L,∨,∧,�,→, 0, 1).

3. Countable (weak hyper) residuated lattices

Let Wk be a �nite set and let Qn be the set of all rational numbers in the
interval [1, n], n > 1. Below using these sets we construct �nite and in�nite
residuated lattices and show that (weak hyper) residuated lattices with the same
cardinality are isomorphic.
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Theorem 3.1. Let Wk = {0, 1, . . . , k− 1}. Then (Wk,∨,∧,�,→, 0, k− 1), where

x ∧ y = min{x, y}, x� y =

{
0, x+ y 6 k − 1
(x+ y)− (k − 1), x+ y > k − 1

x ∨ y = max{x, y}, x→ y =

{
k − 1, x 6 y
(k − 1)− x+ y, x > y

is a residuated lattice.

Proof. It is easy to see that (Wk,∨,∧, 0, k − 1) is a bounded lattice. Since, + is
commutative and associative, then � is commutative and associative. Also, for
any x 6= 0, x+ (k− 1) > k− 1 implies that x� (k− 1) = x+ (k− 1)− (k− 1) = x,
i.e., (k−1) is the identity and so (Wk,�, (k−1)) is a commutative monoid. Hence,
it is enough to show that (�,→) are adjoint pair. Let x, y, z ∈Wk and x� y 6 z.
If y 6 z, then x 6 k − 1 = y → z. Now, let y > z. If x + y 6 k − 1, then
we get x 6 (k − 1) − y 6 (k − 1) − y + z = y → z. If x + y > k − 1, then
x� y = (x+ y)− (k − 1) 6 z and so x 6 (k − 1)− y + z = y → z.

Conversely, let x 6 y → z. If x + y 6 k − 1, then x � y = 0 6 z. Now, let
x+ y > k− 1. If y 6 z, then x+ y 6 x+ z and so we get k− 1 < x+ y 6 x+ z 6
(k − 1) + z. Thus x + y 6 (k − 1) + z. Hence x � y = x + y − (k − 1) 6 z. If
y > z, then x 6 y → z = (k − 1)− y + z implies that x+ y − (k − 1) 6 z. Hence
x� y 6 z.

Proposition 3.2. (Qn,∨,∧,�,→, 1, n) is a residuated lattice with respect to the

operations:

x ∧ y = min{x, y}, x� y =

{
1, xy 6 n,
xy
n , xy > n

x ∨ y = max{x, y}, x→ y =

{
n, x 6 y,
n
xy, x > y

Proof. It is easy to check that (Qn,∨,∧, 1, n) is a bounded lattice and (Qn,�, n) is
a commutative monoid. Hence, we will prove the condition (RL3). Let x, y, z ∈ Qn
and x � y 6 z. If y 6 z then x 6 n = y → z. Now, let y > z. If xy 6 n then
x 6 n

y 6 n
y z = y → z. If xy > n then x� y = xy

n 6 z and so x 6 n
y z = y → z.

Conversely, let x 6 y → z. If xy 6 n, then x� y = 1 6 z. Now, let xy > n. If
y 6 z , then n < xy 6 xz. Since x

n 6 1, then 1 < xy
n 6 x

nz 6 z. Thus x� y 6 z.
Now, if y > z then x 6 y → z = n

y z and so xy
n 6 z. Hence, x� y 6 z.

Theorem 3.3. For any in�nite countable set X, there exist binary operations

�,→,∨ and ∧ on X and constants 0, 1 ∈ X such that (X,∨,∧,�,→ 0, 1) is a

residuated lattice.

Proof. Let X be an in�nite countable set. Since Qn in Proposition 3.2 is an in�nite
countable set, then |Qn| = |X|. Thus there exists a bijection f : Qn → X. Hence,
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for any x, y ∈ X, there exist t, s ∈ Qn such that f(t) = x and f(s) = y. Now, we
de�ne the order � on X as: x � y i� t 6 s. It is easy to check that (X,�) is
a lattice with 0X = f(1) as the least and 1X = f(n) as the greatest element of
it. Hence, there exist operations ∨ and ∧ on X such that (X,∨,∧, 0X , 1X) is a
bounded lattice. Now, we de�ne the operations � and → on X as follows:

x� y =

{
f(1), ts 6 n,
f( tsn ), ts > n

x→ y =

{
f(n), t 6 s,
f(nst ), t > s

Since f is a bijection, then operations � and → are well-de�ned. Moreover, � is
commutative and associative. Since, for any x ∈ X there exists t ∈ Qn such that
x = f(t). Hence, x� 1X = f(t)� f(n) = f( tnn ) = f(t) = x. So 1X is the identity
and (X,�, 1X) is a commutative monoid. Now, we claim that (�,→) are adjoint
pair. Let x, y, z ∈ X, then there exist t, s, u ∈ Qn such that x = f(t), y = f(s)
and z = f(u). Let x� y � z. If s 6 u, then x � f(n) = y → z. Now, let s > u. If
ts 6 n, then t 6 n

s 6 n
s u. So, we get x = f(t) � f(ns u) = y → z. If ts > n, since

x � y = f( tsn ) � f(u) = z, then ts
n 6 u. So t 6 nus . Hence, x = f(t) � f(nus ) =

y → z. Conversely, let x � y → z. If ts 6 n, then x � y = f(1) � z. Now, let
ts > n. If s 6 u, then we get n < ts 6 tu and so 1 < t

ns 6 t
nu 6 u. Hence,

x�y = f( tsn ) � f(u) = z. If s > u, since x = f(t) � y → z = f(nus ), then t 6 nus .
So, tsn 6 u. Hence, x � y = f( tsn ) � f(u) = z. Therefore, (X,∨,∧,�,→, 0X , 1X)
is an in�nite countable residuated lattice.

Theorem 3.4. All (weak hyper) residuated lattices with the same cardinality are

isomorphic.

Proof. Let (X,∨X ,∧X ,�X ,→X , 0X , 1X) be a (weak hyper) residuated lattice and
let Y be the set with the same cardinality as X. Then there exists a bijection
f : X → Y . Put 0Y = f(0X) and 1Y = f(1X). Since for any y1, y2 ∈ Y there exist
x1, x2 ∈ X such that y1 = f(x1) and y2 = f(x2) on Y we can de�ne the following
hyperoperations:

y1 ∨Y y2 = f(x1 ∨X x2), y1 ∧Y y2 = f(x1 ∧X x2),

y1 �Y y2 = f(x1 �X x2), y1 →Y y2 = f(x1 →X x2).

It is not di�cult to check that (Y,∨Y ,∧Y ,�Y ,→Y , 0Y , 1Y ) is a (weak hyper)
residuated lattice. The map ϕ : X → Y de�ned by ϕ(x) = f(x) is an isomorphosm
isomorphism between these two (weak hyper) residuated lattices.

Corollary 3.5. Let X be a nonempty countable set. Then we can construct a
residuated lattice on X such that X ∼= Wk or X ∼= Qn.

Proof. Since X is a �nite or an in�nite countable set, then |X| = |Wk|, for k ∈ N
or |X| = |Qn| for n ∈ N. By Theorem 3.1 and Proposition 3.2, Wk and Qn are
residuated lattices and so by Theorem 3.4, we can construct a residuated lattice
on X such that X ∼= Wk or X ∼= Qn.
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Theorem 3.6. Consider two residuated lattices L1 = (L1,∨1,∧1,→1,�1, 01, 11)
and L2 = (L2,∨2,∧2,→2,�2, 02, 12). Then (L1 × L2,∨,∧,→,�, (01, 02), (11, 12))
denoted by L1 × L2 with the operations:

(x1, y1) ∨ (x2, y2) = (x1 ∨1 x2, y1 ∨2 y2),

(x1, y1) ∧ (x2, y2) = (x1 ∧1 x2, y1 ∧2 y2),

(x1, y1)→ (x2, y2) = {(x1 →1 x2, y2), (x1 →1 x2, y1 →2 y2)},
(x1, y1)� (x2, y2) = {(x1 �1 x2, y1), (x1 �1 x2, y2), (x1 �1 x2, y1 �2 y2)}

is a weak hyper residuated lattice (with the natural ordering).

Proof. It is obvious that (L1 × L2,∨,∧, (01, 02), (11, 12)) is a bounded lattice and
the hyperoperation ”� ” is associative and commutative. Since,

(1, 1)� (x, y) = {(1�1 x, 1), (1�1 x, y), (1�1 x, 1�2 y)}
= {(x, 1), (x, y)} = (x, y)� (1, 1),

(L1 ×L2,�, (11, 12)) is a commutative semihypergroup with (1, 1) as the identity.
Now, we will show that it satis�es (WHRL3), that is:

(x1, y1)� (x2, y2)� (z1, z2)⇔ (x1, y1)� (x2, y2)→ (z1, z2).

Let (x1, y1), (x2, y2), (z1, z2) ∈ L1 × L2. If (x1, y1)� (x2, y2)� (z1, z2), then

{(x1 �1 x2, y1), (x1 �1 x2, y2), (x1 �1 x2, y1 �2 y2)} � (z1, z2).

Now,

(i) if (x1 �1 x2, y1) 6 (z1, z2), then x1 �1 x2 � z1 and y1 6 z2. By (WHRL3),
x1 � x2 →1 z1 and so (x1, y1) 6 (x2 →1 z1, z2) ∈ (x2, y2)→ (z1, z2).

(ii) if (x1�1 x2, y2) 6 (z1, z2), then (x1�1 x2)� z1 and y2 6 z2. By (WHRL3),
x1 � x2 →1 z1 and by Proposition 2.6 (ii), 1 ∈ y2 →2 z2. So,

(x1, y1) 6 (x2 →1 z1, 1) ⊆ (x2 →1 z1, y2 →2 z2) ∈ (x2, y2)→ (z1, z2).

(iii) if (x1�1 x2, y1�2 y2) 6 (z1, z2), then (x1�1 x2 � z1 and y1�2 y2 � z2. So,
by (WHRL3), we have x1 � x2 →1 z1 and y1 � y2 →2 z2. Thus

(x1, y1) 6 (x2 →1 z1, y2 →2 z2) ∈ (x2, y2)→ (z1, z2).

Conversely, if (x1, y1)� (x2, y2)→ (z1, z2), then

(x1, y1)� {(x2 →1 z1, z2), (x2 →1 z1, y2 →2 z2)}.

Now,
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(i) if (x1, y1) 6 (x2 →1 z1, z2), then x1 � x2 →1 z1 and y1 6 z2. So, by
(WHRL3), we have x1 �1 x2 � z1. Therefore, (x1 �1 x2, y1) 6 (z1, z2).

(ii) if (x1, y1) 6 (x2 →1 z1, y2 →2 z2), then x1 � x2 →1 z1 and y1 6 y2 →2 z2.
So, by (WHRL3), we have x1 �1 x2 � z1 and y1 �2 y2 � z2. Therefore,
(x1 �1 x2, y1 �2 y2) 6 (z1, z2).

Corollary 3.7. For any nonempty countable set X we can construct a weak hyper

residuated lattice on X.

Proof. By Corollary 3.5, we can construct a residuated lattice on X and by The-
orem 3.6, we can construct a weak hyper residuated lattice on X × L, for any
residuated lattice L.

Theorem 3.8. Let (L,∨,∧) be a lattice and two elements e0, e1 /∈ L. If L̄ =
L ∪ {e0, e1}, then (L̄, ∨̄, ∧̄,�,→, e0, e1) is a weak hyper residuated lattice, where

x∧̄y =


x ∧ y, x, y ∈ L,
e0, x = e0 or y = e0,
x, x ∈ L̄ and y = e1,
y, x = e1 and y ∈ L̄.

x� y = {e0, x∧̄y},

x∨̄y =


x ∨ y x, y ∈ L,
e1 x = e1 or y = e1,
x, x ∈ L̄ and y = e0,
y x = e0 and y ∈ L̄,

x→ y =

{
{e0, x, e1}, x = y,
{x, e1}, otherwise.

Proof. It is easy to see that (L̄, ∨̄, ∧̄, e0, e1) is a bounded lattice. Since ∧ is com-
mutative, associative and x ∈ {e0, x} = {e0, x∧̄e1} = x � e1, then (L̄,�, e1) is a
commutative semihypergroup with e1 as the identity. Moreover, since, e0 ∈ x� y
and e1 ∈ y → z, then we get x�y � z if and only if x� y → z. Hence, the proof
is completed and (L̄, ∨̄, ∧̄,�,→, e0, e1) is a weak hyper residuated lattice.

4. Quotient weak hyper residuated lattice

Let (L,∨,∧,�,→, 0, 1) be a weak hyper residuated lattice. For any subset A ⊆ L,
we denote by L(A), the set of all �nite combinations of elements A with ∗, where
∗ ∈ (∨,∧,�,→).

Let β1 = {(x, x) |x ∈ L}. For any integer n > 1, the relation βn is de�ned as
follows:

xβny ⇔ ∃(a1, a2, . . . , an) ∈ Ln, ∃u ∈ L(a1, a2, . . . , an) such that {x, y} ⊆ u.

It is clear that β1 is re�exive and βn is symmetric for any n > 1. Then the
relation β =

⋃
n≥1 βn is re�exive and symmetric. Now, let β? be the transitive

closure of β.
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Proposition 4.1. β? is a strongly regular relation with respect to → and �, and
is compatible with ∨ and ∧.

Proof. For any x, y ∈ L, if xβ?y, then there exist a0, a1, . . . , at ∈ L such that
a0 = x, at = y and there exist {q1, . . . , qt} ⊆ N such that

x = a0 βq1 a1 βq2 a2 . . . at−2 βqt−1
at−1 βqt at = y.

Since, for all i ∈ {1, . . . , t}, we have ai−1 βqi ai, then there exist z1, . . . , zqi ∈ L such
that {ai−1, ai} ⊆ u ∈ L(z1, . . . , zqi). Now, for all i ∈ {1, . . . , t}, j ∈ {1, . . . , qi}
and s ∈ L, we have

ai−1 � s ⊆ u� s ∈ L(zij � s), ai � s ⊆ u� s ∈ L(zij � s).

So, for all v ∈ ai−1 � s, and v́ ∈ ai � s we have v βqi+1
v́. Thus, by de�nition of

β?, we get

∀z ∈ x� s = a0 � s and ∀w ∈ y � s = at � s we have z β? w.

Therefore, β? is a right (and similarly a left) strongly regular relation with respect
to �.

Now, by replacing→ with � in the above, it is easy to see that β? is a strongly
regular relation on L with respect to →. Moreover,

ai−1 ∧ s ∈ u ∧ s ∈ L(zij ∧ s), ai ∧ s ∈ u ∧ s ∈ L(zij) ∧ s.

So, {ai−1 ∧ s, ai ∧ s} ⊆ u ∈ L(zij ∧ s). Hence, (ai−1 ∧ s, ai ∧ s) ∈ βqi+1
and we get

x ∧ s = a0 ∧ s β? at ∧ s = y ∧ s. Similarly, we get that x ∨ s β? y ∨ s. Therefore
β? is compatible with respect to ∧ and ∨.

Note: From now on, when we say R is a regular-compatible relation on L, we
means that R is regular with respect to � and→, and it is compatible with respect
to ∨ and ∧.

De�nition 4.2. Let R be a regular-compatibe relation on L. We denote the set
of all equivalence classes of R by L

R and for any R(x), R(y) ∈ L
R we de�ne the

operations

R(x)∨̄R(y) = R(x ∨ y), R(x)∧̄R(y) = R(x ∧ y),

R(x)�̄R(y) =
⋃

t∈x�y
R(t), R(x)→̄R(y) =

⋃
t∈x→y

R(t).

Also, R(x) � R(y) if and only if x 6 y.

Theorem 4.3. Let R be an equivalence relation on L. Then R is a regular-

compatible relation on L if and only if (LR , ∨̄, ∧̄, �̄, →̄, R(0), R(1)) is a weak hyper

residuated lattice.
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Proof. (⇒) Let R be a regular relation on L. First, we claim that ∨̄, ∧̄, �̄ and
→̄ are well-de�ned. Let R(x1) = R(x2) and R(y1) = R(y2). Then x1Rx2 and
y1Ry2. Since R is compatible with respect to ∨ and ∧, then (x1 ∨ y1)R(x2 ∨ y2)
and (x1 ∧ y1)R(x2 ∧ y2) i.e., R(x1)∨̄R(y1) = R(x2)∨̄R(y2) and R(x1)∧̄R(y1) =
R(x2)∧̄R(y2) and so ∨̄ and ∧̄ are well-de�ned.

SinceR is regular relation, then x1Rx2 implies (x1 → y1)R̄(x2 → y1) and y1Ry2

implies (x2 → y1)R̄(x2 → y2). By de�nition of R̄, we get (x1 → y1)R̄(x2 → y2).
Now, we show that R(x1)→̄R(y1) = R(x2)→̄R(y2): If R(s) ∈ R(x1)→̄R(y1), then
R(s) = R(t) for some t ∈ x1 → y1. Since (x1 → y1)R̄(x2 → y2), then there
exists t′ ∈ x2 → y2 such that tRt′. Thus R(t) = R(t′) and so R(s) = R(t′) ∈
R(x2)→̄R(y2). Therefore, R(x1)→̄R(y1) ⊆ R(x2)→̄R(y2). By the similar way, we
can prove that R(x2)→̄R(y2) ⊆ R(x1)→̄R(y1). So, →̄ is well-de�ned. By replacing
� with →, we conclude that �̄ is well-de�ned, too.

Now, we prove that (LR , ∨̄, ∧̄, R(0), R(1)) is a bounded lattice. Since for all
x ∈ L, 0 6 x 6 1, then we get R(0) � R(x) � R(1). Also, since R is compatible
with respect to ∨,∧, then it is clear that (LR , ∨̄, ∧̄) is a bounded lattice with R(0)
as least element and R(1) as greatest one.

Moreover, we show that (LR , �̄, R(1)) is a commutative semihypergroup with 1

as the identity. Let R(x), R(y), R(z) ∈ L
R . Then

R(x)�̄R(y) =
⋃

t∈x�y
R(t) =

⋃
t∈y�x

R(t) = R(y)�̄R(x).

Hence, (LR , �̄) is commutative. Since

R(x)�̄(R(y)�̄R(z)) = R(x)�̄
⋃

t∈y�z
R(t) =

⋃
t́∈x�(y�z)

R(t́)

=
⋃

s∈(x�y)�z

R(s) = (
⋃

ś∈x�y

R(ś))�̄R(z)

= (R(x)�̄(R(y))�̄R(z),

we see that �̄ is associative. Also R(x) ∈ R(x)�̄R(1), since x ∈ x � 1 and
R(x)�̄R(1) =

⋃
t∈x�1R(t). Thus R(1) is an identity.

Finally, we verify the condition (WHRL3). For this, let R(x)�̄R(y) � R(z).
Then

⋃
t∈x�y R(t) � R(z) and so there exists t ∈ x � y such that R(t) � R(z)

i.e., t 6 z (by de�nition of �). Thus x � y � z and so, by (WHRL3), we get
x� y → z. Therefore, there exists t́ ∈ y → z such that x 6 t́ and so

R(x) � R(t́) ∈
⋃

t́∈y→z

R(t́) = R(y)→̄R(z).

Hence, we get R(x) � R(y)→̄R(z). The converse can be proved, by the similar
way.
(⇐) Let (LR , ∨̄, ∧̄, �̄, →̄, R(0), R(1)) be a weak hyper residuated lattice and let
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a, b, c ∈ L be such that aRb. Then R(a) = R(b) and so R(a)→̄R(c) = R(b)→̄R(c).
Hence,

⋃
t∈a→cR(t) =

⋃
t́∈b→cR(t́). So, for any t ∈ a → c there exists t́ ∈ b → c

such that R(t) = R(t́) i.e. t Rt́. Thus a → c R̄ b → c. Similarly, c → a R̄ c → b.
By the similar way, we can prove that a � cR̄b � c and c � aR̄c � b. Hence, R is
regular respect to→ and �. In the follow, it is easy to prove that R is compatible
respect to ∨ and ∧. Therefore R is a regular-compatible relation on L.

Theorem 4.4. Let f : L → L′ be a homomorphism between two weak hyper

residuated lattices. Then there exists a regular-compatible relation Rf on L, such
that f(L) ∼= L

Rf
. Specially, if f is onto, then L′ ∼= L

Rf
.

Proof. Let Rf = {(x, y) ∈ L2|f(x) = f(y)}). It is obvious that Rf is an equiva-
lence relation on L. Let x, y, a ∈ L be such that x Rf y. Then f(x) = f(y). Since
f is a homomorphism, then it is easy to see that Rf is compatible with ∨ and ∧.
Also, f(x → a) = f(x) →′ f(a) = f(y) →′ f(a) = f(y → a), it follows that for
all u ∈ x→ a there exists v ∈ y → a such that f(u) = f(v) i.e., uRfv. Similarly,
regularity to the left can be shown. Also, by replacing � with →, we get Rf is
regular with respect to �. Hence, Rf is a regular-compatible relation on L and so
by Theorem 4.3, L

Rf
is a weak hyper residuated lattice. Now, let g : f(L)→ L

Rf
is

de�ned by g(f(x)) = Rf (x). Since

f(x) = f(y)⇔ Rf (x) = Rf (y)⇔ g(f(x)) = g(f(y)),

then g is well de�ned and one-to-one. Moreover, by Theorem 4.3, g is a homomor-
phism and it is easy to see that g is onto. Therefore, g is an isomorphism and so
f(L) ∼= L

Rf
. Now, if f is onto, then L ∼= L

Rf
.

Theorem 4.5. If R is a strongly regular-compatible relation on L, then L
R is a

residuated lattice.

Proof. Let R be a strongly regular-compatible relation on L. By Theorem 4.3,
L
R is a weak hyper residuated lattice. Now, it is enough to prove that for any

x, y ∈ L, |R(x)→̄R(y)| = 1 and |R(x)�̄R(y)| = 1. If R(t), R(t́) ∈ R(x)→̄R(y),

then t, t́ ∈ x → y. Since R is strongly regular and xRx, then x → y ¯̄R x → y
and so t R t́. Hence, R(t) = R(t́) and this implies that |R(x)→̄R(y)| = 1. By
the similar way, we can prove that |R(x)�̄R(y)| = 1. Therefore, LR is a residuated
lattice on L.

Proposition 4.6. Let R be a strongly regular-compatible relation on L. If L′ is a

residuated lattice and f : L → L′ is a homomorphism, then the equivalence relation

Rf is a strongly regular-compatible relation.

Proof. Let R be a strongly regular-compatible relation on L, xRfy and a ∈ L.
Since f(x) = f(y) we get

f(x ∧ a) = f(x) ∧ f(a) = f(y) ∧ f(a) = f(y ∧ a)
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and so (x∧a)Rf (y∧a). Similarly, (x∨a)Rf (y∨a). Thus Rf is compatible respect
to ∧ and ∨. Also, for any u ∈ x→ a and v ∈ y → a, we get

f(u) ∈ f(x→ a) = f(x)→ f(a) = f(y)→ f(a) = f(y → a) 3 f(v).

Since L′ is a residuated lattice, then |f(x → a)| = 1 = |f(y → a)| and so f(u) =

f(v) i.e., uRv. Thus x→ a ¯̄Rf y → a. Hence Rf is a strongly regular on the right
and similarly on the left respect to →. By the similar way, we can prove that Rf
is strongly regular respect to �. Therefore, Rf is a strongly regular-compatible
relation.

Theorem 4.7. The relation β? is the smallest strongly regular-compatible relation

on L such that the quotient Lβ? is a residuated lattice.

Proof. By Proposition 4.1, β? is a strongly regular-compatible relation on L and
so by Theorem 4.5, Lβ? is a residuated lattice. Let ρ be an equivalence relation

on L such that L
ρ is a residuated lattice. Now, if π : L → L

ρ be the natural

projection π(x) = ρ(x) and xβ?y, then there exist z1, . . . , zn ∈ Ln such that
{x, y} ⊆ u ∈ L(z1, . . . , zn). Since {π(x), π(y)} ⊆ π(u) and |π(u)| = 1, then
π(x) = π(y) and so ρ(x) = ρ(y) i.e., xρy. Thus β? ⊆ ρ.

Proposition 4.8. If L1 and L2 are two weak hyper residuated lattices, then the

cartesian product L1 × L2 is a weak hyper residuated lattice with the operations

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2),

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2),

(x1, y1)� (x2, y2) = {(a, b)|a ∈ x1 � x2, b ∈ y1 � y2},
(x1, y1)→ (x2, y2) = {(a′, b′)|a′ ∈ x1 → x2, b

′ ∈ y1 → y2}.

Proof. The proof is straightforward.

Lemma 4.9. Let L1 and L2 be two weak hyper residuated lattices. Then for

a, c ∈ L1, b, d ∈ L2 we have (a, b)β?L1×L2
(c, d) if and only if aβ?L1

c and bβ?L2
d.

Proof. Since u ∈ L(L1 × L2) if and only if there exist u1 ∈ L(L1) and u2 ∈ L(L2)
such that u = u1×u2, then (a, b)β?L1×L2

(c, d) if and only if there exist u ∈ L1 and
v ∈ L2 such that {(a, b), (c, d)} ⊆ u× v if and only if {a, c} ⊆ u and {b, d} ⊆ v if
and only if aβ?L1

c and bβ?L2
d.

Theorem 4.10. Let L1 and L2 be two weak hyper residuated lattices. Then
L1×L2

β?
L1×L2

∼= L1

β?
L1
× L2

β?
L2

.

Proof. Let ϕ : L1×L2

β?
L1×L2

→ L1

β?
L1
× L2

β?
L2

be de�ned by ϕ(β?(x, y)) = (β?(x), β?(y)).

First, by Lemma 4.9, we have β?(x1, y1) = β?(x2, y2) if and only if β?(x1) =
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β?(x2) and β?(y1) = β?(y2) if and only if ϕ(β?(x1, y1)) = ϕ(β?(x2, y2)), for any
(x1, y1), (x2, y2) ∈ L1 × L2. So, ϕ is well de�ned and one to one. Also, we have

ϕ(β?(x1, y1)∨̄β?(x2, y2)) = ϕ(β?(x1 ∨ x2, y1 ∨ y2))

= (β?(x1 ∨ x2), β?(y1 ∨ y2)

= (β?(x1)∨̄β?(x2), β?(y1)∨̄β?(y2))

= (β?(x1), β?(y1)) ∨ (β?(x2), β?(y2))

= ϕ(β?(x1, y1)) ∨ ϕ(β?(x2, y2))

and similarly, ϕ(β?(x1, y1)∧̄β?(x2, y2)) = ϕ(β?(x1, y1))∧ϕ(β?(x2, y2)). Moreover,

ϕ(β?(x1, y1)→̄β?(x2, y2)) = ϕ(
⋃

a∈x1→x2,b∈y1→y2

β?(a, b))

=
⋃

a∈x1→x2,b∈y1→y2

ϕ(β?(a, b))

=
⋃

a∈x1→x2,b∈y1→y2

(β?(a), β?(b))

= (
⋃

a∈x1→x2

β?(a),
⋃

b∈y1→y2

β?(b))

= (β?(x1)→̄β?(x2), β?(y1)→̄β?(y2))

= (β?(x1), β?(y1))→ (β?(x2), β?(y2))

= ϕ(β?(x1, y1))→ ϕ(β?(x2, y2)).

By the similar way, ϕ(β?(x1, y1)�̄β?(x2, y2)) = ϕ(β?(x1, y1)) � ϕ(β?(x2, y2)).
Hence, ϕ is an isomorphism.

Corollary 4.11. Let all L1, . . . ,Ln be a weak hyper residuated lattice. Then

L1 × L2 × ...× Ln
β?L1×L2×...×Ln

∼=
L1

β?1
× L2

β?2
× ...× Ln

β?n
.

Proof. The proof is similar to the proof of Theorem 4.10.

Theorem 4.12. Let X and Y be two sets such that |X| = |Y |. If X is a weak

hyper residuated lattice, then on Y we can construct a weak hyper residuated lattice

such that X
β?
X

∼= Y
β?
Y
.

Proof. By Theorem 3.4, on Y we can construct a weak hyper residuated lattice and
an isomorphism ϕ : X → Y . Now, we de�ne ψ : X

β?
X
→ Y

β?
Y
as ψ(β?(x)) = β?(ϕ(x)).
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Let y1, y2 ∈ Y be arbitrary. Since ϕ is an isomorphism, then ψ is onto and
there exist x1, x2 ∈ X such that y1 = ϕ(x1), y2 = ϕ(x2) and by

β?X(x1) = β?X(x2) ⇔ x1β
?x2

⇔ ∃u ∈ L(X) such that {x1, x2} ⊆ u
⇔ ϕ(u) ∈ L(Y ) such that {ϕ(x1), ϕ(x2)} ⊆ ϕ(u)

⇔ β?Y (y1) = β?Y (y2).

we see that ψ is well-de�ned and one-to-one.

Now, we show ψ(β?X(x1)�̄β?X(x2)) = ψ(β?X(x1))� ψ(β?X(x2)). Indeed,

ψ(β?X(x1)�̄β?X(x2)) = ψ(
⋃

t∈x1�x2

β?X(t)) =
⋃

t∈x1�x2

ψ(β?X(t))

=
⋃

t∈x1�x2

β?Y (ϕ(t)) =
⋃

t́∈ϕ(x
1
�x2)

β?Y (t́)

=
⋃

t́∈ϕ(x1)�ϕ(x2)

β?Y (t́) = β?Y (ϕ(x1))�̄β?Y ϕ(x2)

= ψ(β?X(x1))� ψ(β?X(x2)).

Similarly for →, ∧ and ∨. Hence, ψ is a homomorphism and so it is an isomor-
phism. Therefore, X

β?
X

∼= Y
β?
Y
.

5. Fundamental residuated lattice

In this section, we de�ne the fundamental rasiduated lattice and show that every
residuated lattice is fundamental.

Theorem 5.1. Let L and Ĺ be two residuated lattices and L × L′ be weak hyper

residuated lattice as in Theorem 3.6. Then L×L′
β?
L×L′

∼= L.

Proof. Let L × L′ be a weak hyper residuated lattice as in Theorem 3.6 and
u ∈ L((x1, y1), . . . , (xn, yn)) ⊆ L(L× L′), where (xi, yi) ∈ L× L′. Then

u ∈ (L(x1, . . . , xn),L(y1, . . . , yn))
⋃

(L(x1, . . . , xn), yi), 1 6 i 6 n.

So, there exist x0 ∈ L(x1, . . . , xn) ⊆ L and y0 ∈ L(y1, . . . , yn) ⊆ L′ such that
u ∈ {(x0, y0), (x0, yi)

n
i=1}. Hence, for any �nite combination u ∈ L(L × L′), we

have u is the form of u = {(x0, t) |x0 is �xed in L, t ∈ L′is variable}. Thus,
for all (a, c) ∈ L2, (b, d) ∈ L′2, we get (a, b)β?(c, d) if and only if there exists
u ∈ L(L×L′) such that {(a, b), (c, d)} ⊆ u if and only if there exist u1 ∈ L(L) and
u2 ∈ L(L′) such that {a, c} ⊆ u1 and {b, d} ⊆ u2 if and only if a = c. Now, de�ne
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ψ : L×L
′

β?
L×L′

→ L, by ψ(β?(a, b)) = a. Since β?(a, b) = β?(c, d) if and only if a = c if

and only if ψ(β?(a, b)) = ψ(β?(c, d)), then ψ is well-de�ned and one to one. Also,

ψ(β?(a, b)→̄β?(c, d)) = ψ(
⋃

(t,t′)∈(a,b)→(c,d)

({β?(t, t′))

= {ψ(β?(t, t′))|(t, t′) ∈ {(a→L c, d), (a→L c, b→L′ d)}}
= {t|t ∈ a→L c} = a→L c

= ψ(β?(a, b))→L ψ(β?(c, d)).

Similarly for other operations. Hence ψ is a homomorphism. It is clear that ψ is
onto. Thus ψ is an isomorphism and L×L′

β?
L×L′

∼= L.

De�nition 5.2. A residuated lattice L is called a fundamental residuated lattice,
if there exists a nontrivial weak hyper residuated lattice X such that Xβ?

∼= L.

Proposition 5.3. Any residuated lattice L is a fundamental residuated lattice.

Proof. By Theorem 3.6, for any residuated lattice L, we can construct a weak
hyper residuated lattice L×L′ that L′ is a nontrivial residuated lattice. Now, by
Theorem 5.1, L×L

′

β?
L×L′

∼= L and so L is fundamental.

Corollary 5.4. Any countable set can be considered as a fundamental residuated

lattice.

Proof. This follows by Corollary 3.7 and Proposition 5.3.
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