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Fundamental residuated lattices

Rajab Ali Borzooei and Sogol Niazian

Abstract. For any countable set X, we construct a residuated lattice and a weak hyper resid-
uated lattice on X. Next, using the notion of (strongly) regular relation we construct the cor-
responding quotient weak hyper residuated lattice. Finally, by considering the fundamental
relation we define the fundamental residuated lattice and we show that any residuated lattice is
a fundamental residuated lattice.

1. Introduction

The study of residuated lattices originated in the context of the theory of ring
ideals in 1930. The collection of all two-sided ideals of a ring forms a lattice
upon which one can impose a natural monoid structure making this object into a
residuated lattice. Such ideas were investigated by Ward and Dilworth in a series of
papers such as [11]. Since that time, there has been substantial research regarding
some specific classes of residuated structures, see for example [4] and [7]. The
study of hyperstructures started in 1934 by Marty at 8th Congress of Scandinavian
Mathematicians [10], which introduce the concept of hypergroup. Since then other
classic hyperstructures have also been studied and many researches have been
worked on this new field of modern algebra and developed it [3]. Recently, S.
Ghorbani et al. [6], applied the hyperstructures to MV -algebras and introduced
the concept of hyper MV-algebra, which is a generalization of MV-algebra. In
the follow we constructed weak hyper residuated lattices [2] as a generalization
of the concept of residuated lattices that contain of the classes of MV -algebras,
BL-algebras, and Heyting algebras, subclasses of the class of residuated lattices.
Now we prove that any residuated lattice is a fundamental residuated lattice.

2. Preliminaries

Recall that a hypergroupoid (H, *,1) is called a commutative semihypergroup with
1 as the identity, if it satisfies the following axioms:
() o+ (ys2) = (+y) 2
(1) zxy=yxuzx,
(7i1) x € 1lx*ux.
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By a residuated lattice, we mean an algebraic structure (L,V,A,*,—,0,1) of
type (2,2,2,2,0,0) satisfying the following conditions:
(RL1) (L,V,A,0,1) is a bounded lattice,
(RL2) (L,*,1) is a commutative monoid,
(RL3) the pair (x,—) is an adjoint pair, i.e., z*y < z if and only if z <y — 2
for z,y,z € L.

Proposition 2.1. [2] Let A, B and C be nonempty subsets of a weak hyper resid-
uated lattice (L,V,N\,®,—,0,1). Then for all x,y,z € L we have:

(i

l<«As l1leAhd and A0 < 0 A,
(i) r<y=1l€x—y, and ALK B=1€ A— B,

(#9t) if 1 is a scalar, thenl €x -y =z <y, and1 € A—- B = ALK B,

if 1 is a scalar, then x € 1 — =,

(v

)
)
)
(v) 1le(@—=z)N(x—1)N(0— ),
)
(vi) AKX B-C & AOB<(C & B<A-C,

(vit) zOy L x,y, and A® B < A, B.

Definition 2.2. [5] Let R be an equivalence relation on a hypergroupoid (H, o).
If A and B are two nonempty subsets of H, then

(i) ARB means that for each a € A there exists b € B such that aRb and for
all b € B there exists a € A such that bRa,

(i1) ARB means that aRb for all a € A and b € B,

(#it) R is called regular on the right (on the left) if aRb implies (aox)R(box) (resp.,
(voa)R(wob)) for all a,b,x € H. A relation regular on the right and left is
called regular,

(iv) R is strongly regular on the right (on the left) if aRb implies (aox)R(box)
(resp., (xoa)R(wob)), for all a,b,x € H. If R is regular on the right and left,
then it is called strongly regular.

From now by £ will be denoted a weak hyper residuated lattice (L, V, A, ®, —, 0, 1).

3. Countable (weak hyper) residuated lattices

Let Wy be a finite set and let QQ,, be the set of all rational numbers in the
interval [1,n], n > 1. Below using these sets we construct finite and infinite
residuated lattices and show that (weak hyper) residuated lattices with the same
cardinality are isomorphic.
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Theorem 3.1. Let Wy, = {0,1,...,k—1}. Then (Wy,V,A,®,—,0,k—1), where

s _J 0, r+y<k-—1

vAy = min{z,y}, ny_{ (z+y)—(k—-1), z+y>k—-1
k—1, T <
xVy = max{z,y}, z%y{ (k=1 —z+y $>Z

15 a residuated lattice.

Proof. Tt is easy to see that (W, V,A,0,k — 1) is a bounded lattice. Since, + is
commutative and associative, then ® is commutative and associative. Also, for
any z # 0, x4+ (k—1) > k—1implies that x © (k—1) =2+ (k—1)—(k—1) =z,
i.e., (k—1) is the identity and so (Wy, ®, (k—1)) is a commutative monoid. Hence,
it is enough to show that (®, —) are adjoint pair. Let z,y,z € Wi and 2 Oy < z.
fy<z,thenez<k—-—1=y — 2 Now,let y >z Ifz+y< k-1, then
wegetzr < (k—1)—-y< (k-1)—-y+z=y =2z Hax+4+y>k-—1, then
zy=(x4+y)—(k—1)<zandsoz< (k—1)—y+z=y— 2

Conversely, let t <y — z. fx4+y <k—1,then z©y =0 < z. Now, let
z+y>k—1. HHy<z, thenas+y<x+zandsoweget k—1<z+y<z+2z<
(k—1)+z Thusz+y<(k—1)+2 HencezoOy=a+y—(k—1) <z If
y>z thenz <y— 2= (k—1)—y+ z implies that z +y — (k — 1) < 2. Hence
rOy < 2. O

Proposition 3.2. (Q,,V,A,®,—,1,n) is a residuated lattice with respect to the
operations:

. _J L my<mn,

x Ay = min{z,y}, x@y—{ oy
xVy = max{z,y} :E—>y:{n’ TSY,
Y Y x>y

Proof. Tt is easy to check that (Q,, V, A, 1,n) is a bounded lattice and (Q,,, ®,n) is
a commutative monoid. Hence, we will prove the condition (RL3). Let z,y,z € Q,
and Oy <z Ify<zthenz <n=y— 2z Now,let y >z If zy < n then
xggéﬂz:y—)z. Ifxy>nthenx®y:%Szandsoxé%zzy%z.
Conversely, let x <y — z. If zy < n, then x ©y =1 < z. Now, let xy > n. If
y < z,thenn <zy < xz. Since%él,then1<%<%z<z. Thus z ©y < z.
Now,ify>zthenx<y—>z:gzandso % < z. Hence, z © y < z. O

Theorem 3.3. For any infinite countable set X, there exist binary operations
®,—,V and A on X and constants 0,1 € X such that (X,V,A\,®,— 0,1) is a
residuated lattice.

Proof. Let X be an infinite countable set. Since Q,, in Proposition 3.2 is an infinite
countable set, then |Q,| = |X|. Thus there exists a bijection f : Q, — X. Hence,
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for any x,y € X, there exist t,s € Q,, such that f(¢t) =« and f(s) = y. Now, we
define the order < on X as: ¢ <y iff ¢ < s. It is easy to check that (X, <) is
a lattice with Ox = f(1) as the least and 1x = f(n) as the greatest element of
it. Hence, there exist operations V and A on X such that (X,V,A,0x,1x) is a
bounded lattice. Now, we define the operations ® and — on X as follows:

), ts<n, _ f(n), t<s,
“”@y—{f(t;), ts>n Ty = {f(n;), t>s

Since f is a bijection, then operations ® and — are well-defined. Moreover, ® is
commutative and associative. Since, for any x € X there exists ¢ € Q,, such that
z = f(t). Hence, 2 ® 1x = f(t) ® f(n) = f(£2) = f(t) = . So 1x is the identity
and (X, ®,1x) is a commutative monoid. Now, we claim that (®,—) are adjoint
pair. Let z,y,z € X, then there exist t,s,u € Q, such that x = f(¢), y = f(s)
and z = f(u). Let z ©®y = z. If s < w, then < f(n) =y — z. Now, let s > u. If
ts <n, then t < 2 < Zu. So, we get x = f(t) X f(%u) =y — 2. If ts > n, since
zOy = f(%) < f(u) = z, then & <wu. Sot < n% Hence, z = f(t) X f(n¥) =
y — z. Conversely, let ¢ <y — z. If ts < n, then z ©y = f(1) < z. Now, let
ts > n. If s < u, then we get n < ¢s < tu and so 1 < £s < Lu < u. Hence,
Oy =f(2) 2 f(u) =2 Ifs>u,sincex = f(t) 2y — z = f(n%), then t <n.
So, ¥ < wu. Hence, z ®y = f(£) < f(u) = z. Therefore, (X,V,A,®,—,0x,1x)
is an infinite countable residuated lattice. O

Theorem 3.4. All (weak hyper) residuated lattices with the same cardinality are
isomorphic.

Proof. Let (X,Vx,Ax,®x,—x,0x,1x) be a (weak hyper) residuated lattice and
let Y be the set with the same cardinality as X. Then there exists a bijection
f: X =Y. PutOy = f(0x) and 1y = f(1x). Since for any y;,y2 € Y there exist
x1, 22 € X such that y; = f(z1) and y2 = f(z2) on Y we can define the following
hyperoperations:

Y1 Vy y2 = f(21 Vx 72), Y1 Ay y2 = f(x1 Ax 12),
Y1 Oy y2 = f(21 Ox 72), 1 —y y2 = f(z1 —x 22).

It is not difficult to check that (Y,Vy,Ay,®y,—vy,0y,1ly) is a (weak hyper)
residuated lattice. The map ¢ : X — Y defined by ¢(z) = f(z) is an isomorphosm
isomorphism between these two (weak hyper) residuated lattices. O

Corollary 3.5. Let X be a nonempty countable set. Then we can construct a
residuated lattice on X such that X £ W, or X 2 Q,.

Proof. Since X is a finite or an infinite countable set, then | X| = |Wy/|, for k € N
or | X| = |Q,| for n € N. By Theorem 3.1 and Proposition 3.2, Wy and Q,, are
residuated lattices and so by Theorem 3.4, we can construct a residuated lattice
on X such that X 2 W, or X 2Q,. O
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Theorem 3.6. Consider two residuated lattices L1 = (L1,V1,A1,—1,©1,01,11)
and Lo = (L2, V2, N2, —2,©2,02,12). Then (L1 X Lo, V, A\, =, ®, (01,02), (11, 12))
denoted by L1 X Lo with the operations:

(z1,91) V (22, 92) = (z1 V1 22, Y1 V2 ¥2),

(x1,91) A (22,92) = (1 AL 22, Y1 A2 Y2),
(x1,91) = (22, 92) = {(x1 =1 T2, 92), (21 =1 T2, 51 =2 Y2)},

(21,91) © (22, 92) = {(z1 ©1 22, 51), (21 O1 22,92), (21 O1 22,91 O2y2)}

is a weak hyper residuated lattice (with the natural ordering).

Proof. Tt is obvious that (Ly x Lo, V, A, (01,02),(11,12)) is a bounded lattice and
the hyperoperation ” ® ” is associative and commutative. Since,

(L 1) © (Iay) = {(1 OF 1)7 (1 ©1 xvy)a (1 ©12,102 y)}
= {(l‘, 1)) (xvy)} = (x,y) © (L 1)7

(L1 x Lg,®,(11,13)) is a commutative semihypergroup with (1,1) as the identity.
Now, we will show that it satisfies (WHRL3), that is:

(z1,91) © (22,92) < (21, 22) & (21,y1) < (22,y2) = (21, 22)-
Let (21,41), (z2,¥2), (21, 22) € L1 x L. If (z1,91) © (z2,%2) < (21, 22), then
{(z1 ©1 22,11), (21 O122,y2), (x1 O1 X2, Y1 D2 Y2)} <K (21, 22).

Now,

(i) if (x1 ®1 @2,91) < (21,22), then 21 ®1 29 < 21 and y; < 22. By (WHRL3),
1 K g —1 21 and so (z1,y1) < (T2 =1 21, 22) € (T2,y2) = (21, 22).

(ii) if (1 ®1 22,92) < (21, 22), then (1 ©1 22) < 21 and Y2 < z2. By (WHRL3),
21 < T9 —1 z1 and by Proposition 2.6 (ii), 1 € yo —2 22. So,

(w1,91) < (22 =1 21,1) C (w2 =1 21, Y2 —2 22) € (T2,92) — (21, 22)-

(iil) if (z1 ©1 22,91 O2%2) < (21, 22), then (z1 O1 22 K 21 and Y1 Oz y2 K 22. So,
by (WHRL3), we have z1 < 2 —1 21 and y1 < ya —2 22. Thus

(x1,y1) < (22 =1 21, Y2 =2 22) € (22,y2) = (21, 22).
Conversely, if (z1,y1) < (z2,y2) — (21, 22), then
(x1,91) < {(x2 =1 21, 22), (T2 =1 21,92 —2 22) }-

Now,
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(i) if (w1,y1) < (22 —1 21,22), then 77 < 79 —1 21 and y; < 22. So, by
(WHRLS3), we have x; ®1 23 < z1. Therefore, (x1 ®1 z2,y1) < (21, 22).

(11) if (xl,yl) < (.132 —1 21,Y2 —2 ZQ), then r1 KL T2 —1 21 and Y1 < Y2 —2 22.
So, by (WHRL3), we have z1 ®1 x5 < 21 and y; O2 y2 < 29. Therefore,
(1 ©1 22,91 @2 y2) < (21, 22). O

Corollary 3.7. For any nonempty countable set X we can construct a weak hyper
residuated lattice on X.

Proof. By Corollary 3.5, we can construct a residuated lattice on X and by The-
orem 3.6, we can construct a weak hyper residuated lattice on X x L, for any

residuated lattice L. O

Theorem 3.8. Let (L,V,A) be a lattice and two elements eg,e; ¢ L. If L =
LU {eg,e1}, then (L,V,A,®,—, e, e1) is a weak hyper residuated lattice, where

Ny, z,y€L,
o) e, x=egor y=eo, _ X
Y = r, x€Landy=e, 2@y = {0, 2Ay},
y, x=-e;and y €< L.
zVy z,y€L,
_—_— el T=e or y=en, o {eo,z,e1}, 2z =1y,
VY = r, x€Landy= e, x—>y—{ {z,e1}, otherwise.
y x=eyand y €< L,

Proof. Tt is easy to see that (L,V,A,eg,e;) is a bounded lattice. Since A is com-
mutative, associative and = € {eg,z} = {eo,zAe1} = x ® eq, then (L, ®,e;) is a
commutative semihypergroup with e; as the identity. Moreover, since, eg € x ®© y
and e; € y — z, then we get £ ®y < z if and only if + < y — z. Hence, the proof
is completed and (L, V, A, ®, —, eg, e1) is a weak hyper residuated lattice. O

4. Quotient weak hyper residuated lattice

Let (L,V,A,®,—,0,1) be a weak hyper residuated lattice. For any subset A C L,
we denote by L£(A), the set of all finite combinations of elements A with x, where
x € (V,N,©,—).

Let 81 = {(x,z) |z € L}. For any integer n > 1, the relation £, is defined as
follows:

xfny < F(ai,a2,...,a,) € L™, Ju € L(a1,as,...,a,) such that {z,y} C u.

It is clear that (3, is reflexive and f,, is symmetric for any n > 1. Then the
relation § = |J,,~; Bn is reflexive and symmetric. Now, let §* be the transitive

closure of 3.
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Proposition 4.1. 5* is a strongly reqular relation with respect to — and ©, and
1s compatible with V and A.

Proof. For any x,y € L, if x8*y, then there exist ag,a;,...,a; € L such that
ag =z, a; =y and there exist {¢1,...,¢} C N such that

T=ag Bg, a1 By, a2 ... ar—2 Bg,_, G1—1 Bg, At =Y.

Since, foralli € {1,...,t}, we have a;,_1 By, a;, then there exist z1,...,24 € Lsuch
that {a;—1,a;} Cu € L(z1,...,24). Now, for all i € {1,...,t}, j € {1,...,¢}
and s € L, we have

ai_1®s§u®s€£(z;®s), aiG)sgu@sGE(z;@s).

So, for all v € a;_1 ©® s, and ¥ € a; ©® s we have v 3, ., ¥. Thus, by definition of
B*, we get

VzEx®s=ap®s and Yw € y® s =a; ® s we have z * w.

Therefore, 5* is a right (and similarly a left) strongly regular relation with respect
to ©.

Now, by replacing — with ® in the above, it is easy to see that 8* is a strongly
regular relation on L with respect to —. Moreover,

ai,l/\sEu/\seﬁ(z;»/\s)7 ai/\SEU/\SEE(Z;)/\S.

So, {ai—1 As,ai Ns} Cu € L(25 A s). Hence, (a;—1 As,a; As) € By, and we get
xANs=agNs P* a Ns=yAs. Similarly, we get that x Vs * y V s. Therefore
B* is compatible with respect to A and V. O

Note: From now on, when we say R is a regular-compatible relation on £, we
means that R is regular with respect to ® and —, and it is compatible with respect
to V and A.

Definition 4.2. Let R be a regular-compatibe relation on £. We denote the set
of all equivalence classes of R by £ and for any R(z),R(y) € % we define the
operations

R(z)VR(y) = R(xVy),  R(x)AR(y) = R(z Ay),
R(x)®R(y)= |J R(t),  R@)=Ry)= |J RO).
tex@y tecx—y

Also, R(z) < R(y) if and only if x < .

Theorem 4.3. Let R be an equivalence relation on L. Then R is a regqular-
compatible relation on L if and only if (%, V, A, ®,=, R(0),R(1)) is a weak hyper
residuated lattice.
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Proof. (=) Let R be a regular relation on £. First, we claim that V, A, ® and
= are well-defined. Let R(z1) = R(z2) and R(y1) = R(y2). Then xRz, and
y1Ryo. Since R is compatible with respect to V and A, then (z1 V y1)R(x2 V y2)
and (21 A y1)R(x2 A yo) e, R(z1)VR(y1) = R(z2)VR(y2) and R(x1)AR(y1) =
R(z2)AR(y2) and so V and A are well-defined.

Since R is regular relation, then 21 Rz implies (21 — y1)R(22 — y1) and y; Ry-
implies (ro2 — y1)R(x2 — y2). By definition of R, we get (v1 — y1)R(z2 — y2).
Now, we show that R(z1)=>R(y1) = R(z2)=R(y2): If R(s) € R(x1)=>R(y1), then
R(s) = R(t) for some t € z; — y;. Since (v1 — y1)R(r2 — y2), then there
exists t' € xa — y2 such that tRt’. Thus R(t) = R(t') and so R(s) = R(t') €
R(x2)=R(y2). Therefore, R(x1)=R(y1) C R(x2)=>R(y2). By the similar way, we
can prove that R(z2)=>R(y2) C R(x1)=>R(y1). So, = is well-defined. By replacing
® with —, we conclude that ® is well-defined, too.

Now, we prove that (£,V,A, R(0),R(1)) is a bounded lattice. Since for all
x € L,0< a <1, then we get R(0) = R(x) < R(1). Also, since R is compatible
with respect to V, A, then it is clear that (%, V, A) is a bounded lattice with R(0)
as least element and R(1) as greatest one.

Moreover, we show that (%, ®, R(1)) is a commutative semihypergroup with 1
as the identity. Let R(z), R(y), R(z) € £. Then

R=)OR(y)= |J R = |J R()=R(y)OR(x).

texQy teyOz

Hence, (%, ©®) is commutative. Since

R(z)&(R(y)OR(2) =R@x)® | J R = |J R

teyoz texo(yoz2)
= U Re)=(U R6)ORE)
SE(zQY)Oz sex®y
= (R(z)O(R(y))OR(2),

we see that © is associative. Also R(z) € R(z)OR(1), since z € = ® 1 and
R(z)OR(1) = U,cpeq B(t). Thus R(1) is an identity.

Finally, we verify the condition (WHRL3). For this, let R(z)®OR(y) = R(z).
Then ;e 0, B(t) = R(2) and so there exists t € x © y such that R(t) = R(z)
ie., t < z (by definition of <). Thus z ® y < z and so, by (WHRL3), we get
& < y — z. Therefore, there exists f € y — z such that < f and so

R(z) 2 R(f)e | R()=R(y)=R(2).

Hence, we get R(z) = R(y)—=R(z). The converse can be proved, by the similar
way.
(<) Let (£,V,A,®,=,R(0),R(1)) be a weak hyper residuated lattice and let
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a,b,c € L be such that aRb. Then R(a) = R(b) and so R(a)>R(c) = R(b)=>R(c).
Hence, Uycqe B(t) = Uscpe R(f). So, for any t € a — ¢ there exists f € b — ¢
such that R(t) = R({) i.e. t Rf. Thus @ — ¢ R b — c¢. Similarly, ¢ = a R ¢ — b.
By the similar way, we can prove that ¢ ® cRb® ¢ and ¢ ® aRc ® b. Hence, R is
regular respect to — and ©®. In the follow, it is easy to prove that R is compatible
respect to V and A. Therefore R is a regular-compatible relation on L. O

Theorem 4.4. Let f : L — L' be a homomorphism between two weak hyper
residuated lattices. Then there exists a regular-compatible relation Ry on L, such
that f(L) = R%. Specially, if f is onto, then L' = Rif.

Proof. Let Ry = {(z,y) € L?|f(z) = f(y)}). It is obvious that Ry is an equiva-
lence relation on L. Let x,y,a € L be such that Ry y. Then f(z) = f(y). Since
f is a homomorphism, then it is easy to see that Ry is compatible with Vv and A.
Also, f(x — a) = f(x) =’ f(a) = fly) =’ f(a) = f(y — a), it follows that for
all w € x — a there exists v € y — a such that f(u) = f(v) i.e., uRpv. Similarly,
regularity to the left can be shown. Also, by replacing ® with —, we get Ry is
regular with respect to ©. Hence, Ry is a regular-compatible relation on £ and so
by Theorem 4.3, R% is a weak hyper residuated lattice. Now, let g : f(L) — R% is

defined by g(f(z)) = Rs(x). Since
f(@) = fy) & Ri(x) = Rp(y) < g(f(2)) = 9(f(y),

then g is well defined and one-to-one. Moreover, by Theorem 4.3, g is a homomor-

phism and it is easy to see that g is onto. Therefore, g is an isomorphism and so
~ L M H [a) L

f(L) = s Now, if f is onto, then £ = e O

Theorem 4.5. If R is a strongly reqular-compatible relation on L, then % s a

residuated lattice.

Proof. Let R be a strongly regular-compatible relation on £. By Theorem 4.3,
% is a weak hyper residuated lattice. Now, it is enough to prove that for any
xz,y € L, |R(x)=>R(y)] = 1 and |R(x)OR(y)| = 1. If R(t),R(f) € R(z)=R(y),
then t,{ € * — y. Since R is strongly regular and Rz, then z — y Rz — y
and so t R f. Hence, R(t) = R({) and this implies that |R(z)=R(y)| = 1. By
the similar way, we can prove that |R(z)OR(y)| = 1. Therefore, % is a residuated
lattice on L. O

Proposition 4.6. Let R be a strongly regular-compatible relation on L. If L' is a
residuated lattice and f : L — L' is a homomorphism, then the equivalence relation
Ry is a strongly regular-compatible relation.

Proof. Let R be a strongly regular-compatible relation on £, xRy and a € L.
Since f(z) = f(y) we get

f@na)=f(x)Afla) = fly) A fla) = flyNa)



188 R. A. Borzooei and S. Niazian

and so (zAa)Ry(yAa). Similarly, (zVa)Rs(yVa). Thus Ry is compatible respect
to A and V. Also, for any v € x — a and v € y — a, we get

f(u) € f(x = a) = f(x) = fla) = fy) = fla) = fly = a) > f(v).

Since L' is a residuated lattice, then |f(z — a)] =1 = |f(y — a)| and so f(u) =
f(v) i.e., uRv. Thus * — a Ry y — a. Hence Ry is a strongly regular on the right
and similarly on the left respect to —. By the similar way, we can prove that Ry
is strongly regular respect to ©. Therefore, Ry is a strongly regular-compatible
relation. O

Theorem 4.7. The relation 8* is the smallest strongly reqular-compatible relation
on L such that the quotient ﬁ% is a residuated lattice.

Proof. By Proposition 4.1, 5* is a strongly regular-compatible relation on £ and
so by Theorem 4.5, 5% is a residuated lattice. Let p be an equivalence relation

on L such that % is a residuated lattice. Now, if 7 : L — % be the natural

projection w(x) = p(x) and zf*y, then there exist z1,...,2, € L™ such that
{z,y} C u € L(z1,..., zn). Since {n(x),7(y)} C 7(u) and |r(u)] = 1, then
m(xz) = w(y) and so p(x) = p(y) i.e., xpy. Thus g* C p. O

Proposition 4.8. If L1 and Ly are two weak hyper residuated lattices, then the
cartesian product L1 X Lo is a weak hyper residuated lattice with the operations

(xlayl)v(any2) (Z‘l\/ﬂ?Q, 1\/y2)
(w1,91) A (22,92) = (1 A 22,91 A ya),
(xlvyl) © (anyZ) = {(avb)|a €210 l.va SEINO; y2}7
(1,91) = (22, 92) = {(a,V)|a € 21 — 22,V € y1 — 2}
Proof. The proof is straightforward. O

Lemma 4.9. Let L1 and Lo be two weak hyper residuated lattices. Then for
a,c € Ly, b,d € Ly we have (a,b)B7 . (c,d) if and only if af} c and bB},d

Proof. Since u € L£(Ly x L) if and only if there exist u; € £(L1) and ug € L(L2)
such that u = u; X ug, then (a,b)8% , . (c,d) if and only if there exist u € £, and
v € Lo such that {(a,b),(c,d)} C u x v if and only if {a,c} C v and {b,d} C v if
and only if a7 c and b5}, d. O

Theorem 4.10. Let £y and Ly be two weak hyper residuated lattices. Then
£1><£2 ~ 111 % £2

Brixco,  Bry Bz, "
£1><£2 Ly * _ * *
Proof. Let ¢ : BE s - BE, /3£ be defined by ¢(8*(z,y)) = (8*(), 8*(y)).

First, by Lemma 4.9, we have (§* (xhyl) = B*(x2,y2) if and only if g*(z1) =
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B*(x2) and B*(y1) = B*(y2) if and only if p(8*(x1,vy1)) = @(B*(72,y2)), for any
(z1,11), (x2,y2) € L1 X La. So, ¢ is well defined and one to one. Also, we have

o(B* (x1,y1)VB (22, 92)) = (B (21 V 22,91 V y2))
= (8%(x1 V x2), B (¥1Vy2)
= (B*(z1)VB*(22), B*(y1)VB*(y2))
= (B%(x1), B%(y1)) vV (B%(z2), B%(y2))
= (B (z1,91)) V (8" (22, 92))

and similarly, W(/B*($1791)7\5*($2a y2)) = @(3*(561’91)) A@(ﬂ*($27y2)) Moreover,

P(B" (w1, y1) =07 (w2, y2)) = #( U B*(a,b))

acxi —x2,bEY1 —Y2

- U e

ac€xi—x2,bEY1 Y2

= U (87 (a), 57(b))

ac€xi—x2,bEY1 Y2

=( U 5@ U s

acExr1—T2 bey1 —y2
= (8" (x1)=0"(x2), 8" (y1) =67 (y2))
= (B%(21), 67 (31)) = (8% (w2), B"(y2))
= (B (x1,41)) = #(B" (22, 2)).

o~ o~

By the similar way, (8" (21,y1)08%(22,52)) = @(B*(z1,51)) © @(B*(2,¥2)).
Hence, ¢ is an isomorphism. O

Corollary 4.11. Let all Ly, ..., L, be a weak hyper residuated lattice. Then

LlXLQX'“XﬁnEﬁXéX Xﬁ
621)([:2)(.‘)([:” ﬁik /85 h /81‘:, '
Proof. The proof is similar to the proof of Theorem 4.10. O

Theorem 4.12. Let X and Y be two sets such that | X| = |Y|. If X is a weak
hyper residuated lattice, then on'Y we can construct a weak hyper residuated lattice
such that 2 =~ X

Bx By "
Proof. By Theorem 3.4, on Y we can construct a weak hyper residuated lattice and

an isomorphism ¢ : X — Y. Now, we define 1) : Bé — B};*V as (6% (x)) = B*(¢(x)).




190 R. A. Borzooei and S. Niazian

Let y1,y2 € Y be arbitrary. Since ¢ is an isomorphism, then 1 is onto and
there exist x1,22 € X such that y; = ¢(x1), y2 = ¢(z2) and by

Bx (1) = Px (22) & 187w
< Ju € L(X) such that {z1,22} Cu
& () € L(Y) such that {p(a1), ¢(w2)} C olu)
& By (1) = By (y2).

we see that 1 is well-defined and one-to-one.
Now, we show (8% (21)©8% (2)) = ¢¥(Bx (x1)) © ¥(B% (22)). Indeed,

DBy ()08 () = U Bx@)= J ¢(B%®)

t€x1 Oz tex1Ox2
= U Bet= U 0
tex1 Oz tep(z, Oz2)
= U By (£) = By (o(21)) OBy p(x2)
tep(z1)Op(z2)

= P(Bx (21)) © P(Bx (22))-

Similarly for —, A and V. Hence, 9 is a homomorphism and so it is an isomor-
phism. Therefore, &~ = X O

P B T B

5. Fundamental residuated lattice

In this section, we define the fundamental rasiduated lattice and show that every
residuated lattice is fundamental.

Theorem 5.1. Let £ and £ be two residuated lattices and £ x L' be weak hyper

residuated lattice as in Theorem 3.6. Then ﬁ*xiﬁ/ >~ L.
LxL'

Proof. Let L x L' be a weak hyper residuated lattice as in Theorem 3.6 and
w€ L((x1,y1)s- -, (TnyYn)) € L(L x L"), where (x;,y;) € L x L'. Then

w€ (L1, Zn)y LW1s- -3 Yn)) U(E(a:l,...,zn),yi), 1<i<n

So, there exist xg € L(21,...,2,) € L and yo € L(y1,--.,yn) € L’ such that
u € {(x0,%0), (x0,y:)"_1}. Hence, for any finite combination v € L(L x L), we
have u is the form of v = {(xo,t)|zo is fixed in L, ¢t € L’is variable}. Thus,
for all (a,c) € L?, (b,d) € L', we get (a,b)B*(c,d) if and only if there exists
u € L(L x L') such that {(a,b), (¢,d)} C u if and only if there exist u; € £(L) and
ug € L(L') such that {a,c} C uy and {b,d} C us if and only if a = c¢. Now, define
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E gfﬁ’ — L, by ¥(8*(a,b)) = a. Since B*(a,b) = *(c,d) if and only if a = c if
LxL’

and only if ¥(8*(a,b)) = ¥ (8*(e,d)), then ¢ is well-defined and one to one. Also,

(B (a,b)= (cd)=v( | {8 ET)
(t,t")€(a,b)—(c,d)
= {w(ﬁ*(tvt/))l(tvtl) € {(a —L G d)’ (a = ¢b = d)}}
={tt€ea—rct=a—pc

= ¥(B*(a,0)) =L Y(B7(c, d)).

Similarly for other operations. Hence 1 is a homomorphism. It is clear that v is
onto. Thus v is an isomorphism and £X£~ =~ £ O
LxL’

Definition 5.2. A residuated lattice L is called a fundamental residuated lattice,

if there exists a nontrivial weak hyper residuated lattice X such that ﬁi* >~ L.

Proposition 5.3. Any residuated lattice L is a fundamental residuated lattice.

Proof. By Theorem 3.6, for any residuated lattice £, we can construct a weak
hyper residuated lattice £ x £’ that £’ is a nontrivial residuated lattice. Now, by

Theorem 5.1, LXL' ~ f and so £ is fundamental. O
LXxL'

Corollary 5.4. Any countable set can be considered as a fundamental residuated
lattice.

Proof. This follows by Corollary 3.7 and Proposition 5.3. O
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