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Successively orthogonal systems

of k-ary operations

Galina B. Belyavskaya

Abstract. Systems of k-ary operations, k > 2, generalizing orthogonal sets are considered.

These systems have the following property: every k successive k-ary operations of the system

are orthogonal. We call these systems successively orthogonal, establish some properties, give

examples and methods of construction of these systems.

1. Introduction

It is known that k-ary operations correspond to k-dimensional hypercubes, k > 2,
which are objects of combinatorial analysis. A binary quasigroup is an algebraic
equivalent of a Latin square and a k-ary quasigroup respects to a permutation cube
of the dimension k (cf. [6]). The algebraic approach is useful for research of such
combinatorial objects. All of these objects and their corresponding orthogonal sets
(systems) have many applications in various areas including a�ne and projective
geometries, design of experiments, in error-correcting and error-detecting coding
theory and cryptology; see for example [10].

In this article systems of k-ary operations, k > 2, generalizing orthogonal sys-
tems of k-operations (of k-dimensional hypercubes) are considered. These systems
are ordered and have the property: every k successive k-ary operations of the sys-
tem are orthogonal. We call such system successively orthogonal (shortly, a SOS).

It is evident that every orthogonal set of k-operations (i.e., a set in which every
k-tuple of k-operations is orthogonal) is a SOS.

Such type of systems arose, for example, in the article [11], dealing with pow-
ers of row-latin squares (see Example 1) and in the papers [5, 7, 8, 9] under
investigation of systems of operations, related to complete recursive MDS-codes.
In the last papers a sequence of k-ary operations f (0) = f, f (1), . . . , f (s), . . ., ob-
tained recursively from a function f : Qk → Q that corresponds to the com-
plete k-recursive code K(n/f (0), f (1), . . . , f (n−k−1)) with the check functions:
f (0), f (1), . . . , f (n−k−1) (see Example 2) is considered. A function f is called re-
cursively r-di�erentiable if all functions f (0), f (1), . . . , f (r) are k-ary quasigroups.
In the article [7], the authors prove that r-di�erentiable quasigroups correspond
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to complete recursive codes and they suggest di�erent methods of construction of
binary recursively 1-di�erentiable quasigroups.

V. Izbash and P. Syrbu in [9, Proposition 2] proved that if a k-operation f is
a k-ary quasigroup, then f (i) = fθi, i = 1, 2, . . . , s, . . ., where

θ : Qk → Qk, θ(xk1) = (x2, x3, . . . , xk, f(xk1))

for all (xk1) ∈ Qk (this result for k = 2 was announced in [4]). In this case, θ is
a permutation on the set Qk. They also proved that any k successive operations
of this sequence are orthogonal [9, Proposition 3], i.e., the respective sequence is
a successively orthogonal system.

We prove these results for any 1-invertible k-ary operation f . We research in
more detail the corresponding recursive sequence and, as a corollary, we establish
the number of di�erent k-operations in this sequence for any given 1-invertible
k-ary operation f . We consider a notion of a strongly recursively r-di�erentiable
k-ary quasigroup, suggest distinct methods of construction and corresponding ex-
amples of successively orthogonal systems of binary and k-ary, k > 2, operations.

2. Preliminaries

At �rst we recall some necessary notions, little-known results with respect to k-ary
operations and with respect to their orthogonal systems.

By xji we will denote the sequence xi, xi+1, . . . , xj , i 6 j. If j < i, then xji is
the empty sequence, 1, s = {1, 2, . . . , s} . Let Q be a �nite or an in�nite set, k > 1
be a positive integer, and let Qk denote the Cartesian power of the set Q.

A k-ary operation A (brie�y, a k-operation) on a setQ is a mapping A : Qk → Q
de�ned by A(xk1)→ xk+1. In this case, we write A(xk1) = xk+1.

A k-ary groupoid (Q,A) of order n is a set Q with one k-ary operation A,
de�ned on Q, where |Q| = n.

An k-operation A on Q is called i-invertible for some i ∈ 1, k if the equation

A(ai−1
1 , xi, a

k
i+1) = ak+1

has a unique solution for each �xed k-tuple (ai−1
1 , aki+1, ak+1) ∈ Qk.

For an i-invertible k-operation there exists the i-inverse n-operation (i)A, de-
�ned in the following way:

(i)A(xi−1
1 , xk+1, x

k
i+1) = xi ⇔ A(xk1) = xk+1 for all xk+1

1 ∈ Qk+1.

It is evident that A(xi−1
1 , (i)A(xk1), xki+1) = (i)A(xi−1

1 , A(xk1), xki+1) = xi and
(i)[(i)A] = A for i ∈ 1, k.

A k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid (Q,A) such that
the k-operation A is i-invertible for each i ∈ 1, k (cf. [3].
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Another equivalent de�nition of a k-quasigroup is the following. A k-ary quasi-

group is a k-groupoid such that in the equality A(xk1) = xk+1 each set of k ele-
ments from xk+1

1 uniquely de�nes the (k+ 1)-th element. Sometimes a quasigroup
k-operation A is considered as a k-quasigroup.

The k-operation Ei, 1 6 i 6 k, on Q: Ei(x
k
1) = xi is called the i-th identity

operation (or the i-th selector) of arity k.
In the binary case, the selectors are denoted by E1 = F , E2 = E.
Let Ωk be the set of all n-ary operations on a �nite or an in�nite set Q. On

Ωk de�ne a binary operation ⊕
i
(the i-multiplication) as follows:

(A⊕
i
B)(xk1) = A(xi−1

1 , B(xk1), xki+1), A,B ∈ Ωk, x
k
1 ∈ Qk.

Shortly this equality can be written as A⊕
i
B = A(Ei−1

1 , B,Eki+1), where Ei is the

i-th selector. In [1], it was proved that (Ωk;⊕
i
)Q is a semigroup with the identity

Ei.
If Λi is the set of all i-invertible k-operations from Ωk for some i ∈ 1, k, then

(Λi;⊕
i
)Q is a group. In this group Ei is the identity, the inverse element for A is

the operation (i)A ∈ Λi since A⊕
i
Ei = Ei ⊕

i
A = A, A⊕

i

(i)A = (i)A⊕
i
A = Ei.

All 2-invertible binary operations, given on a set Q, form the group (Λ2; ·)
under the multiplication (A ·B)(x, y) = A(x,B(x, y)).

Let σ ∈ Sk+1 be a permutation of degree k + 1. The k-operation σA de�ned
by the equality σA(xσk

σ1
) = xσk+1

which is equivalent to the equality A(xk1) = xk+1

is called a σ-parastrophe of a quasigroup A and is a quasigroup. Any i-inverse
operation for a quasigroup A is its parastrophe.

If σ(k + 1) = k + 1, a parastrophe is called principal. A principal parastrophe
exists for any k-operation.

Recall some useful information from [1] (for the case k = 2, see [2]).
Let < A1, A2, . . . , Ak > (brie�y, < Ak1 >) be a k-tuple of k-operations de�ned

on a set Q. This k-tuple de�nes the unique mapping θ : Qk → Qk in the following
way:

θ : (xk1)→ (A1(xk1), A2(xk1), . . . , Ak(xk1)), (or brie�y, θ : (xk1)→ (Ak1)(xk1) ).

Conversely, any mapping Qk into Qk uniquely de�nes the k-tuple < Ak1 > of
k-operations on Q: if θ(xk1) = (yk1 ), then we de�ne Ai(x

k
1) = yi for all i ∈ 1, k.

Thus we obtain the mapping θ = (Ak1), where

θ(xk1) = (Ak1)(xk1) = (Ak1(xk1)).

If C is a k-operation on Q and θ is a mapping Qk into Qk, then the operation
Cθ, de�ned by the equality Cθ(xk1) = C(θ(xk1)), is also a k-operation.
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Let Cθ = D and θ = (Ak1), then D(xk1) = C(Ak1(xk1)) or brie�y, D = C(Ak1). If
θ = (Bk1 ) and ϕ = (Ak1) are mappings from Qk into Qk, then

ϕθ = (Ak1)θ = (A1θ,A2θ, . . . , Akθ) = (Aiθ)
k
i=1.

If θ = (Bk1 ) is a permutation on Qk, then Bi = Eiθ and Biθ
−1 = Bi(B

k
1 )−1 = Ei,

i ∈ 1, k.

De�nition 1. [1]. A k-tuple< Ak1 > of k-operations on a setQ is called orthogonal

if the system {Ai(xk1) = ai}ki=1 has a unique solution for all ak1 ∈ Qk.
The k-tuple < Ek1 > of selectors of arity k is the identity permutation on Qk

and is orthogonal.
There is a close connection between orthogonal k-tuples of k-operations on Q

and permutations on Qk by virtue of the following result of [1]:

A k-tuple < Ak1 > of k-operations is orthogonal if and only if the mapping

θ = (Ak1) is a permutation on Qk.

Some properties of k-operations can be expressed by means of orthogonality.
For example, a k-operation A is i-invertible (1 6 i 6 k) if and only if the k-tuple
< Ei−1

1 , A,Eki+1 > is orthogonal (or equivalently, the mapping θ = (Ei−1
1 , A,Eki+1)

is a permutation). A k-operation A is a k-quasigroup if and only if the k-tuple
< Ei−1

1 , A,Eki+1 > is orthogonal for any i ∈ 1, k [1].

De�nition 2. [1] A set {A1, A2, . . . , At}, t > k, of k-operations on a set Q is
called orthogonal if every k-tuple of k-operations of the set is orthogonal.

De�nition 3. [1] A set Σ = {At1}, t > 1, of k-ary operations on a set Q is called
strongly orthogonal if the set Σ = {Ek1 , At1} is orthogonal.

Note that in a strongly orthogonal set Σ = {At1} all k-ary operations are k-ary
quasigroups, and the number t of k-operations in Σ can be smaller than arity k.

De�nition 4. [6] Two �nite k-ary operations A and B on a set Q of order
q > 3 is called orthogonal if the system of equations {A(xk1) = a, B(xk1) = b} has
exactly qk−2 solutions for any a, b ∈ Q.

3. Successively orthogonal systems

In this section we consider systems of k-operations that generalize orthogonal sets.

De�nition 5. An ordered system Σ = {At1} of k-ary operations, k > 2, t > k,
given on a set Q, is called successively orthogonal system (brie�y, a SOS), if any
successive k operations are orthogonal.

It is evident that every (strongly) orthogonal set of k-operations is a succes-
sively orthogonal system. Give some other examples of a SOS.

Example 1. In [11], Donald A.Norton studies power sets of row-latin squares of
order n > 3, i.e., squares all rows of which are permutations. A �nite 2-invertible
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binary groupoid (Q,A) corresponds to a row-latin square A, de�ned on a set
Q = {a1, a2, . . . , an}, the operation Ai(x, y) = A(x,Ai−1(x, y)) respects to the

power A
i
of a row-latin square A. The identity square I (all its rows are identical

permutations) corresponds to the selector E2(x, y) = E(x, y) = y, the ai-th row
of the square A is the translation Laix = A(ai, x) of the groupoid (Q,A).

Let (Q,A) be a �nite 2-invertible operation of order n, p(ai), ai ∈ Q, be the
order of the translation Lai of (Q,A) in SQ,

p = l.c.m.[p(a1), p(a2), . . . , p(an)].

Then from the results of [11] it follows that Ap = E (the same, A
p

= I), but
Aq 6= E for 0 < q < p, the operations A,A2, . . . , Ap−1 form a series of 2-invertible
operations. If (Q,A) is a quasigroup, then each two adjacent operations in the
series are orthogonal and we have a SOS.

Note that ifm is the smallest power for a quasigroup (Q,A) such that Am is not
a quasigroup (2 6 m 6 p), then any m successive powers of A form an orthogonal
set of 2-invertible operations (follows from Theorem 4 of [11] for row-latin squares).
Thus we have a SOS of powers of the quasigroup A as well.

Example 2. In [7, 8], it was considered a complete k-recursive code C(n, f) =
(x1, x2, . . . xk, f

(0)(xk1), f (1)(xk1), . . . , f (n−k−1)(xk1) | (xk1) ∈ Qk) over an alphabet
Q with words of length n, 2 6 k 6 n, de�ned by a k-operation f : Qk → Q.
The functions f (0), f (1), . . . , f (n−k−1) are called k-recursive derivatives of f and
are de�ned as follows:

f (0)(xk1) = f(xk1),

f (1)(xk1) = f(xk2 , f
(0)(xk1)),

f (2)(xk1) = f(xk3 , f
(0)(xk1), f (1)(xk1)), . . . ,

f (t)(xk1) = f(xkt+1, f
(0)(xk1), . . . , f t−1(xk1)) if t < k,

f (t)(xk1) = f(f (t−k)(xk1), f (t−k+1)(xk1), . . . , f (t−1)(xk1)) if t > k.

V. Izbash and P. Syrbu in [9, Proposition 3], proved that if a k-operation f is a
k-quasigroup, then every k successive k-recursive derivatives f (i), f (i+1), . . . , f (i+k−1)

of a k-quasigroup f are orthogonal. Hence, the system Σ = {f (0), f (1), . . . , f (t), . . .}
is a SOS.

4. Methods of construction of SOS

Below we suggest some methods of construction of successively orthogonal sets of
k-ary operations, k > 2, using k-quasigroups or invertible k-operations.

At �rst we consider the binary case, based on Example 1.
Let (Λ2;⊕

2
)Q = (Λ2; ·)Q be the group of all 2-invertible binary operations, given

on a set Q, where (A ·B)(x, y) = A((x,B(x, y)).
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Theorem 1. Let A1, A2, . . . , At be binary quasigroups with the order s1, . . . , st
respectively in the group (Λ2; ·)Q. Then the system

F,E,A1, A
2
1, . . . , A

s1−1
1 , F, E,A2, A

2
2, . . . , A

s2−1
2 , . . . , F, E,At, A

2
t , . . . , A

st−1
t

is a SOS.

Proof. Consider the system Σ1 = {F,E,A1, A
2
1, . . . , A

s1−1
1 }, where Ai1(x, y) =

A1(x,Ai−1
1 (x, y)). Each operation of Σ1 is orthogonal to its predecessor since A1

is a quasigroup, and Ai−1
1 is a 2-invertible operation. But s1 is the order of the

quasigroup A1 in the group (Λ2; ·)Q (As11 = E), so all operations A1, A
2
1, . . . , A

s1−1
1

are distinct 2-invertible operations and the operation As1−1
1 is orthogonal to the

selector F . The selectors F and E are orthogonal as well. Analogously, using
binary quasigroups A2, . . . , At we obtain a SOS. �

Remark. Analogously, we can use the powers of quasigroups under the left mul-
tiplication (A ◦ B)(x, y) = A(B(x, y), y) of 1-invertible operations, if A(i)(x, y) =
A(A(i−1)(x, y), y). In this case, we obtain the following SOS:

E,F,A1, A
(2)
1 , . . . , A

(s1−1)
1 ,

E, F,A2, A
(2)
2 , . . . , A

(s2−1)
2 , . . . , E, F,At, A

(2)
t , . . . , A

(st−1)
t ,

where si is the order of the respective quasigroup in the group (Λ1; ◦)Q.

Example 3. Consider the binary quasigroup A1(x, y) = (1−a)x+ay over the �eld
GF(11), where 1 is the identity of the �eld and the element a has order 5 in the
multiplicative group of GF(11). Then A2

1(x, y) = A(x,A(x, y)) = (1−a)x+a((1−
a)x+ay) = (1−a)x+ax−a2x+a2y = (1−a2)x+a2y, A3

1(x, y) = (1−a3)x+a3y,
A4

1(x, y) = (1− a4)x+ a4y, A5
1(x, y) = (1− a5)x+ a5y = y = E(x, y).

And let b be the generating element of the multiplication group of the �eld
and A2(x, y) = (1 − b)x + by, then we obtain the following SOS containing 13
quasigroups:

F,E,A1, A
2
1, A

3
1, A

4
1, F, E,A2, A

2
2, . . . , A

9
2.

Let A−1 be the inverse element for a binary 2-invertible operation A in the
group (Λ2; ·)Q. Simultaneously this operation is the right inverse quasigroup for
(Q,A), if (Q,A) is a quasigroup.

Proposition 1. Let (Q,A) be a binary quasigroup, s be the order of A in the

group (Λ2; ·)Q, A−(i) = (Ai)−1. Then the system

Σ = {A−(s−1), A−(s−2), . . . , A−1, E,A,A2, . . . , As−1}

is a SOS of 2-invertible binary operations.

Proof. Indeed, in this case, A (A−1) is a quasigroup, so it is orthogonal to the
selector E (F , if instead E in the SOS to use F . In this SOS we can use also both
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selectors). It is easy to see that any two successive operations are also orthogonal
since A and A−1 are quasigroups, and the rest operations are 2-invertible. �

Let k > 3. Consider k-invertible k-operations A and B on a set Q and the k-th
multiplication of these operations:

C(xk1) = (A⊕k B)(xk1) = A(xk−1
1 , B(xk1)).

In this case, the k-operation C is also k-invertible, and all k-invertible operations
on Q consist the group (Λk;⊕

k
)Q under the multiplication A ⊕k B. The identity

of this group is the selector Ek : Ek(xk1) = xk.

Now consider the following power set ΣA = {A,A2, . . . As−1}, generated by a
k-invertible k-operation A of order s ( As = Ek) in the group (Λk;⊕k)Q, where
Ai(xk1) = A(xk−1

1 , Ai−1(xk1)), i = 2, 3, . . . , s − 1. The number of distinct �nite
k-operations in ΣA is equal s− 1 .

In contrast to the binary case, for k > 3 the set ΣA is not a SOS since the
following statement is valid.

Proposition 2. For each integer k > 3 and for any k-invertible k-operation A of

order s > k in the group (Λk;⊕k)Q, | Q |> 3, the k-tuple < Ai, Ai+1, Ai+k−1 > of

successive powers of A, i ∈ 1, s− k, is not orthogonal.

Proof. Let k > 3, ΣA = {A,A2, . . . , As−1} be the power set, generated by a k-
invertible k-operation A, where Ai(xk1) = A(xk−1

1 , Ai−1(xk1)), i = 2, 3, . . . , s − 1.
Consider the k-tuple < Ai, Ai+1, . . . , Ai+k−1 > and the respective system of equa-
tions if a 6= b (a, b ∈ Q) :

Ai(xk1) = a,Ai+1(xk1) = a,Ai+2(xk1) = a, . . . , Ai+k−1(xk1) = b.

Then Ai(xk1) = a,A(xk−1
1 , a) = a, . . . , A(xk−1

1 , a) = a,A(xk−1
1 , a) = b. This system

has not a solution for the k-tuple < a, a, . . . , a, b > when a 6= b and k > 3. Thus
the tuple < Ai, Ai+1, . . . , Ai+k−1 > is not orthogonal. �

But the set ΣA = {A,A2, . . . , As−1}, s > k, has one good property when (Q,A)
is a �nite k-quasigroup of order q (| Q |= q).

Proposition 3. Let (Q,A) be a k-quasigroup of order q, s be the order of A in

the group (Λk;⊕k)Q, ΣA = {A,A2, . . . , As−1}, s > k. Then every two successive

k-operations Ai and Ai+1 of ΣA, i ∈ 1, s− 2, are orthogonal.

Proof. From the system {Ai(xk1) = a, Ai+1(xk1) = A(xk−1
1 , Ai(xk1)) = b} it follows

that A(xk−1
1 , a) = b. But this equation has exactly qk−2 solutions for any a, b ∈ Q

since the (k − 1)-ary operation Aa(xk−1
1 ) = A(xk−1

1 , a) is a (k − 1)-quasigroup,
so in it every element b of Q appears exactly qk−2 times. Hence, the equation
A(xk−1

1 , a) = b has exactly qk−2 solutions. For any solution ck−1
1 the equation

Ai(ck−1
1 , xk) = a has unique solution since the k-operation Ai is k-invertible. Thus

the k-operations Ai and Ai+1 are orthogonal. �
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Proposition 4. Let A be a k-invertible k-operation, given on a set Q and s be

the order of A in the group (Λk;⊕
k

)Q. Then the system

E1, E2, . . . , Ek−1, A,E1, E2, . . . , Ek−1, A
2, E1, E2, . . . , Ek−1, A

3, . . . ,

E1, E2, . . . , Ek−1, A
s = Ek

is a SOS, where Ai(xk1) = A(xk−1
1 , Ai−1(xk1)), i = 2, 3, . . . , s.

Proof. Indeed, any k-tuple < Ej , Ej+1, . . . , Ek−1, A
i, E1, E2, . . . , Ej−1 >, j =

2, . . . , k − 1, and any k-tuple < Ai, E1, E2, . . . , Ek−1 > are orthogonal since every
of the k-operation Ai, i = 1, 2, 3, . . . , s, is k-invertible. �

Corollary 1. If A is a binary 2-invertible operation, given on a set Q, has the

order s in the group (Λ2; ·)Q, then the system

F,A, F,A2, . . . , F,As−1, F,As = E

is a SOS, where Ai(x, y) = A(x,Ai−1(x, y)), i = 2, 3, . . . , s.

Proposition 5. Let Σ1 = {A1, A2, . . . , At1} and Σ2 = {B1, B2, . . . , Bt2} be

strongly orthogonal sets of k-operations. Then the system

Σ3 = {E1, E2, . . . , Ek, A1, A2, . . . , At1 , E1, E2, . . . , Ek, B1, B2, . . . , Bt2}

is a SOS.

Proof. It easy to see that every k-tuple of successive k-operations is orthogonal
since the systems Σ1 and Σ2 of k-ary quasigroups are strongly orthogonal. �

Theorem 2. Let A 6= E1 be an 1-invertible k-operation on a set Q, k > 2,
θ = (Ek2 , A) and let s be the order of the permutation θ in the group SQk . Then

s > k and the sequence of k-operations

E1, E2, . . . , Ek, A,Aθ,Aθ
2, . . . , Aθk−1, Aθk, . . . , Aθs−k−1

is a SOS.

Proof. From the 1-invertibility of an k-operation A it follows that the mapping
θ = (Ek2 , A) is a permutation on the set Qk, and A 6= E2, E3, . . . , Ek.

Consider the following mappings which are also permutations:

θ = (Ek2 , A) = (E2, . . . , Ek, A),

θ2 = θ(θ) = (Ek2 , A)(E2, . . . , Ek, A) = (E3, . . . , Ek, A,Aθ), . . . ,

θk−1 = θ(θk−2) = (Ek, A,Aθ, . . . , Aθ
k−2),

θk = θθk−1 = (A,Aθ, . . . , Aθk−1), . . . ,

θt = (Aθt−k, Aθt−k+1, . . . , Aθt−1), t > k.



Successively orthogonal systems 173

These permutations mean that the k-tuples of k-operations corresponding to them
are orthogonal. Let s be the order of the k-permutation θ, i. e., θs = ε =
(E1, E2, . . . , Ek), then

θs = (Aθs−k, Aθs−(k−1), . . . , Aθs−2, Aθs−1) =

(Aθ−k, Aθ−(k−1), . . . , Aθ−2, Aθ−1) = (E1, E2, . . . , Ek).

From these equalities it follows that Aθs−k = Aθ−k = E1, Aθ
s−(k−1) = Aθ−k+1 =

E2, . . . , Aθ
s−1 = Aθ−1 = Ek.

It is evident that s > k since A 6= E1, and θ
k = (A,Aθ,Aθ2, . . . , Aθk−1).

Thus we have the following sequence of k-permutations:

ε, θ, θ2, . . . , θs−1, θs = ε, θ, θ2, . . . , θs = ε, . . . .

This sequence corresponds to the following successively orthogonal system, where
s k-operations are repeated:

E1, E2, . . . , Ek, A,Aθ,Aθ
2, . . . , Aθk−1, Aθk, . . . , Aθs−k−1, (1)

E1, E2, . . . , Ek, A,Aθ,Aθ
2, . . . , Aθk−1, Aθk, . . . , Aθs−k−1, . . . �

Corollary 2. In Theorem 2 the k-operation Aθs−k−1 is k-invertible.

Proof. Indeed, from the above we get that the k-mapping

θs−1 = (Aθs−k−1, Aθs−k, . . . , Aθs−2) = (Aθs−k−1, E1, E2, . . . , Ek−1)

is a permutation, so the k-tuple < Aθs−k−1, E1, E2, . . . , Ek−1 > of operations is
orthogonal, and the k-operation Aθs−k−1 is k-invertible. �

In [7], for a function f : Qk → Q it was de�ned a complete k-recursive code
K(n/f (0), f (1), . . . , f (n−k−1)), f (0) = f , with the check functions: f (0), f (1), . . . ,
f (n−k−1), de�ned in Example 2.

The function f (i) is called the i-th recursive derivative of a function f .
A k-quasigroup operation f (k > 2) is called recursively r-di�erentiable if all

its k-recursive derivatives f (0), f (1), . . . , f (r) are k-quasigroups.
By Proposition 7 of [7], the system of operations

Σ = {E1, E2, . . . , Ek, f
(0), f (1), f (2), . . . , f (r)}

is orthogonal.
V. Izbash and P. Syrbu in [9, Proposition 2] proved that if a k-operation f is

a k-quasigroup, then f (i) = fθi, i = 1, 2, . . ., where

θ : Qk → Qk, θ(xk1) = (x2, x3, . . . , xk, f(xk1))
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for all (xk1) ∈ Qk. In this case, θ = (E2, E3, . . . , Ek, f) and is a permutation since
f is a quasigroup.

Corollary 3. If a function f is an r-di�erentiable k-quasigroup, then r 6 s−k−1,
where s is the order of the permutation θ = (Ek2 , f).

Lemma 1. Let A be an 1-invertible k-operation, θ = (Ek2 , A). Then

θ−1 = (σ((1)A), E1, E2, . . . Ek−1), (2)

A(σ((1)A)(xk1), x1, x2, . . . , xk−1) = xk,

where (1)A is the 1-inverse operation for the k-operation A, and the principal

parastrophe σ is de�ned by the permutation

σ(x1, x2, . . . , xk) = (xσ1, xσ2, . . . , xσk) = (xk, x1, x2, . . . , xk−1).

Proof. Let θ−1 = (D1, D2, . . . , Dk), �nd the k-operations D1, D2, . . . , Dk:

(Ek2 , A)(Ek2 , A)−1 = (E1, E2, . . . Ek), (Ek2 , A)(D1, D2, . . . , Dk) =

(D2, D3, . . . Dk, A(D1, D2, . . . , Dk)) = (E1, E2, . . . Ek).

Hence, D2 = E1, D3 = E2, . . . , Dk = Ek−1, A(D1, D2, . . . , Dk) = Ek or

A(D1, E1, E2, . . . , Ek−1) = Ek, A(D1(xk1), x1, x2, . . . , xk−1) = xk,

whence

D1(xk1) =(1)A(xk, x1, x2, . . . , xk−1).

Here (1)A is the 1-inverse operation for the 1-invertible k-operation A. Hence,
D1(xk1) = σ((1)A)(xk1), where σ is the principal parastrophe of (1)A de�ned by
the cyclic permutation σ(x1, x2, . . . , xk) = (xk, x1, x2, . . . , xk−1). Thus θ−1 =
(σ((1)A), E1, E2, . . . Ek−1). �

As a corollary we obtain the result of V.D. Belousov from [2] for a binary quasi-
group A: D1(x, y) = −1A(y, x) = −1(A−1)(x, y) and (E,A)−1 = (−1(A−1), F ).

Theorem 3. Let a permutation (Ek2 , A) have the order s, then a successively

orthogonal system of Theorem 2 contains s di�erent k-operations, which are re-

peated. If s = k+1, then the k-operation A is a k-quasigroup. For any 1-invertible

k-operation s > k + 1.

Proof. Prove that in (1) all operations are distinct. Let A(i) = A(j), i, j < s, j > i,
then Aθt = A, where t = j − i < s. But then A(t−1)θ = A and by Lemma 1,

A(t−1)(xk1) = Aθ−1(xk1) = A(σ((1)A)(xk1), x1, x2, . . . , xk−1) = xk.

Thus A(t−1) = Ek.
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Further, from A(t−1) = A(t−2)θ = Ek according to (2) it follows

A(t−2) = Ekθ
−1 = Ek(σ((1)A), E1, E2, . . . Ek−1) = Ek−1.

Analogously, taking into account that A(i) = A(i−1)θ, we obtain

θt = (Aθt−k, Aθt−(k−1), . . . , Aθt−2, Aθt−1) = (E1, E2, . . . , Ek) = θs.

But s is the least number such that θs = ε. We have the contradiction since
t = j − i < s.

If A(t) = Ei, 1 6 i 6 k, then t < s − k + i − 1 since A(t) = A(t−1)θ = Ei =
As−k+i−1 (it is the i-th component in θs = (Aθs−k, Aθs−(k−1), . . . , Aθs−2, Aθs−1)).
Use the equality (2):

A(t−1) = Eiθ
−1 = Ei(

σ((1)A), E1, E2, . . . Ek−1) = Ei−1,

A(t−2) = Ei−1θ
−1 = Ei−1(σ((1)A), E1, E2, . . . Ek−1) = Ei−2, . . . ,

A(t−(i−1)) = Ei−(i−2)(
σ((1)A), E1, E2, . . . Ek−1) = E1,

A(t+1) = Eiθ = Ei(E
k
2 , A) = Ei+1,

A(t+2) = Ei+1θ = Ei+1(Ek2 , A) = Ei+2, . . . ,

A(t+(k−i)) = Ek−1θ = Ek−1(Ek2 , A) = Ek.

It means that

θt−i+k+1 = (A(t−(i−1)), A(t−i+2), . . . , A(t−1), A(t), A(t+1), . . . , At+(k−i)) =
(E1, E2, . . . , Ek) = θs. But t < s− k + i− 1, so t− i+ k + 1 < s.

If s = k + 1, θ = (Ek2 , A), then θk+1 = (Aθ,Aθ2, . . . , Aθk) = (E1, E2, . . . , Ek)
and we get the successively orthogonal sequence

E1, E2, . . . , Ek, A,E1, E2, . . . , Ek, A, . . . .

Hence, the mappings (Ek2 , A), (Ek3 , A,E1), (Ek4 , A,E1, E2),. . . , (A,Ek−1
1 ) are per-

mutations. It means that the k-operation A is i-invertible for any i = 1, 2, . . . , k,
i. e., A is a k-quasigroup. �

Above we established that, in general case, r 6 s− k− 1 for an r-di�erentiable
k-quasigroup A, where s is the order of the permutation θ = (Ek2 , A). Now consider
r-di�erentiable k-quasigroups with r = s− k − 1.

A k-quasigroup (Q,A) we shall call strongly recursively r-di�erentiable if r =
s − k − 1, where s is the order of the permutation θ = (Ek2 , A). In this case,
A(r+1) = E1. For the binary quasigroups this notion was introduced in [5].

By Theorem 3, all r = s− k− 1 derivatives of a strongly recursively r-di�eren-
tiable quasigroup are di�erent.
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From Theorems 2 and 3 we obtain the following corollary for any 1-invertible
k-function (k-operation) f .

Corollary 4. If f is an 1-invertible k-function, then f (i) = fθ(i), i = 1, 2, . . . ,
where θ = (Ek2 , f). The sequence of the recursive derivatives has the form

E1, E2, . . . , Ek, f, fθ, fθ
2, . . . , fθk−1, fθk, . . . , fθs−k−1,

E1, E2, . . . , Ek, f, fθ, fθ
2, . . . , fθk−1, fθk, . . . , fθs−k−1, . . . ,

where s is the order of the permutation θ. For a strongly recursively r-di�erentiable
k-quasigroup s = r + k + 1. For an 1-di�erentiable k-quasigroup s > k + 2. For

a 0-di�erentiable k-quasigroup s > k + 1.

Example 4. Give an example of a strongly recursively r-di�erentiable binary
quasigroup (Q,A) of order 7 (Example 2 of [5]) over the �eld GF (7) (in this case,
E1 = F,E2 = E):

A(x, y) = 2(y − x) + x = 6x+ 2y;
A(1)(x, y) = 5x+ 3y;
A(2)(x, y) = 4x+ 4y;
A(3)(x, y) = 3x+ 5y;
A(4)(x, y) = 2x+ 6y;
A(5)(x, y) = F (x, y) = x.

This quasigroup is strongly recursively 4-di�erentiable and generates the or-
thogonal system Σ = {F,E,A,A(1), A(2), A(3), A(4)}. By Corollary 4, the permu-
tation θ = (E,A) has the order s = 4 + 2 + 1 = 7 in the group S49.

Example 5. For an illustration of Corollary 4 consider one small example when
k=2, A1(x, y) = x + y (mod 3), θ1 = (E,A1). Taking into account that A1 is an
abelian group, we obtain the following successively orthogonal sequence (modulo
3) with repetition:

F,E,A1(x, y) = x+ y,A1θ1(x, y) = x+ 2y,A1θ
2
1(x, y) = 2x,

A1θ
3
1(x, y) = 2y,A1θ

4
1(x, y) = 2x+ 2y,A1θ

5
1(x, y) = 2x+ y,

A1θ
6
1(x, y) = x = F (x, y), A1θ

7
1(x, y) = y = E(x, y), A1θ

8
1(x, y) = x+ y, . . .

The permutation θ1 has the order 8 since θ
8
1 = (A1θ

6
1, A1θ

7
1) = (F,E) in the group

S9 and the sequence contains eight di�erent operations.

Now we change the construction of a successively orthogonal system of Theorem
2, beginning with the �rst repetition and using other 1-invertible k-operations.

Theorem 4. Let A1, A2, . . . , At be 1-invertible k-operations and the permutations

θ1 = (Ek2 , A1), θ2 = (Ek2 , A2), θ3 = (Ek2 , A3),. . . , θt = (Ek2 , At) have the orders

s1, . . . , st respectively. Then the system

E1, E2, . . . , Ek, A1, A1θ1, A1θ
2
1, . . . , A1θ

k−1
1 , A1θ

k
1 , . . . , A1θ

s1−k−1
1 ,
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E1, E2, . . . , Ek, A2, A2θ2, A2θ
2
2, . . . , A2θ

k−1
2 , A2θ

k
2 , . . . , A2θ

s2−k−1
2 , . . . ,

E1, E2, . . . , Ek, At, Atθt, Atθ
2
t , . . . , Atθ

k−1
t , Atθ

k
t , . . . , Atθ

st−k−1
t

is successively orthogonal.

Proof. Begin with the �rst repetition, using an 1-invertible k-operation A2 6= A1

and the permutation θ2 = (Ek2 , A2) of order s2:

E1, E2, . . . , Ek, A1, A1θ1, A1θ
2
1, . . . , A1θ

k−1
1 , A1θ

k
1 , . . . , A1θ

s1−k−1
1 ,

E1, E2, . . . , Ek, A2, A2θ2, A2θ
2
2, . . . , A2θ

k−1
2 , A2θ

k
2 , . . . , A2θ

s2−k−1
1 .

It is evident that we obtain a SOS which can be continued if to use distinct
1-invertible k-operations A3, A4, . . .. �

Some operations, di�erent from the selectors, in distinct "fragments" of this
SOS, in general case, can coincide.

Example 6. Continue the sequence of Example 5, using the following k-operations
(k-quasigroups):

A1(x, y) = x+ y (mod 3), A2(x, y) = 2x+ y (mod 3), A3(x, y) = x+ 2y (mod 3).
Then θ1 = (E,A1), θ2 = (E,A2), θ3 = (E,A3) and we obtain the following SOS
(modulo 3):

F,E,A1(x, y) = x+ y, A
(1)
1 (x, y) = x+ 2y,A

(2)
1 (x, y) = 2x,A

(3)
1 (x, y) = 2y,

A
(4)
1 (x, y) = 2x+ 2y,A

(5)
1 (x, y) = 2x+ y,A

(6)
1 = F,A(7) = E,

A2(x, y) = 2x+ y, A
(1)
2 (x, y) = 2x, A

(2)
2 (x, y) = 2(2x+ y) + 2x = 2y,

A
(3)
2 (x, y) = x+ 2y,A

(4)
2 = F,A

(5)
2 = E,

A3(x, y) = x+ 2y, A
(1)
3 (x, y) = y + 2(x+ 2y) = 2x+ 2y,

A
(2)
3 (x, y) = x+ 2y + 2(2x+ 2y) = 2x, A

(3)
3 (x, y) = 2x+ 2y + 4x = 2y,

A
(4)
3 (x, y) = 2x+ 4y = 2x+ y, A

(5)
3 (x, y) = 2y + 2(2x+ y) = x+ y,

A
(6)
3 (x, y) = 2x+ y + 2(x+ y) = x, A

(7)
3 (x, y) = x+ y + 2x = y.

From this example it follows that the order of the permutations θ1, θ2 and θ3
is 8, 6 and 8 respectively. The quasigroups A1 and A3 are 1-di�erentiable, and A2

is 0-di�erentiable.
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