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Successively orthogonal systems

of k-ary operations

Galina B. Belyavskaya

Abstract. Systems of k-ary operations, k > 2, generalizing orthogonal sets are considered.
These systems have the following property: every k successive k-ary operations of the system
are orthogonal. We call these systems successively orthogonal, establish some properties, give
examples and methods of construction of these systems.

1. Introduction

It is known that k-ary operations correspond to k-dimensional hypercubes, k > 2,
which are objects of combinatorial analysis. A binary quasigroup is an algebraic
equivalent of a Latin square and a k-ary quasigroup respects to a permutation cube
of the dimension k (cf. [6]). The algebraic approach is useful for research of such
combinatorial objects. All of these objects and their corresponding orthogonal sets
(systems) have many applications in various areas including affine and projective
geometries, design of experiments, in error-correcting and error-detecting coding
theory and cryptology; see for example [10].

In this article systems of k-ary operations, k > 2, generalizing orthogonal sys-
tems of k-operations (of k-dimensional hypercubes) are considered. These systems
are ordered and have the property: every k successive k-ary operations of the sys-
tem are orthogonal. We call such system successively orthogonal (shortly, a SOS).

It is evident that every orthogonal set of k-operations (i.e., a set in which every
k-tuple of k-operations is orthogonal) is a SOS.

Such type of systems arose, for example, in the article [11], dealing with pow-
ers of row-latin squares (see Example 1) and in the papers [5, 7, 8, 9] under
investigation of systems of operations, related to complete recursive MDS-codes.
In the last papers a sequence of k-ary operations f(©) = f, fM .. &) ob-
tained recursively from a function f: QF — @ that corresponds to the com-
plete k-recursive code K (n/f©, fM .. f=k=1) yith the check functions:
fO @ fn=k=1) (see Example 2) is considered. A function f is called re-
cursively r-differentiable if all functions (@, f . . f") are k-ary quasigroups.
In the article [7], the authors prove that r-differentiable quasigroups correspond
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to complete recursive codes and they suggest different methods of construction of
binary recursively 1-differentiable quasigroups.

V. Izbash and P. Syrbu in [9, Proposition 2| proved that if a k-operation f is
a k-ary quasigroup, then f() = f0% i =1,2,... s,..., where

0:Q" - Q*, O(x]f) = (22,3, .. ,xk,f(x’f))

for all (z}) € QF (this result for k = 2 was announced in [4]). In this case, 6 is
a permutation on the set Q*. They also proved that any k successive operations
of this sequence are orthogonal [9, Proposition 3], i.e., the respective sequence is
a successively orthogonal system.

We prove these results for any l-invertible k-ary operation f. We research in
more detail the corresponding recursive sequence and, as a corollary, we establish
the number of different k-operations in this sequence for any given 1-invertible
k-ary operation f. We consider a notion of a strongly recursively r-differentiable
k-ary quasigroup, suggest distinct methods of construction and corresponding ex-
amples of successively orthogonal systems of binary and k-ary, k > 2, operations.

2. Preliminaries

At first we recall some necessary notions, little-known results with respect to k-ary
operations and with respect to their orthogonal systems. ‘

By z] we will denote the sequence x;,it1,...,z;, ¢ < j. If j < i, then z] is
the empty sequence, 1,5 = {1,2,...,s} . Let Q be a finite or an infinite set, k > 1
be a positive integer, and let Q¥ denote the Cartesian power of the set Q.

A k-ary operation A (briefly, a k-operation) on a set Q is a mapping A : Q¥ — Q
defined by A(2¥) — z41;. In this case, we write A(z¥) = z41.

A k-ary groupoid (Q,A) of order n is a set @ with one k-ary operation A,
defined on @, where |Q| = n.

An k-operation A on Q is called i-invertible for some i € 1, k if the equation

i—1 k
Alay ", @, a84,) = akg

has a unique solution for each fixed k-tuple (ai™',a¥, |, ar41) € Q.

For an i-invertible k-operation there exists the i-inverse n-operation (A, de-
fined in the following way:

(i)A(xi_l,a:k+1,xf+1) =a; & A(z¥) = 234, for all 281 € QL
Tt is evident that;él(zi_l,(i)A(x’f),xﬁl) = WA A(2h), 2%, ) = z; and

O[@DA] = Aforicl,k.

A k-ary quasigroup (or simply, a k-quasigroup) is a k-groupoid (@, A) such that
the k-operation A is i-invertible for each i € 1,k (cf. [3].
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Another equivalent definition of a k-quasigroup is the following. A k-ary quasi-
group is a k-groupoid such that in the equality A(zY) = zx.1 each set of k ele-
ments from x’f“ uniquely defines the (k + 1)-th element. Sometimes a quasigroup
k-operation A is considered as a k-quasigroup.

The k-operation E;, 1 < i < k, on Q: E;(2}) = x; is called the i-th identity
operation (or the i-th selector) of arity k.

In the binary case, the selectors are denoted by F1 = F, E5 = E.

Let Qf be the set of all n-ary operations on a finite or an infinite set . On

Q) define a binary operation @ (the i-multiplication) as follows:
(A® B)(z}) = Az, B(a}), 2k 1), A, B e Qy, ot € Q"

Shortly this equality can be written as A@B AEIY B ,EF,,), where E; is the
i-th selector. In [1], it was proved that (Qk, _ )Q is a semigroup with the identity
E;. .

If A; is the set of all i-invertible k-operations from €0 for some i € 1, k, then
(As; EB)Q is a group. In this group E; is the identity, the inverse element for A is

the operation (VA € A; since A@E E; @A A, AEB(Z A= ')AQBA E;.

All 2-invertible binary operatlons glven on a set Q, form the group (Ag; )
under the multiplication (A - B)(z,y) = A(z, B(z,y)).

Let 0 € Sk41 be a permutation of degree k + 1. The k-operation “A defined
by the equality “A(zJ*) = z,,,, which is equivalent to the equality A(z}) = zj4q
is called a o-parastrophe of a quasigroup A and is a quasigroup. Any i-inverse
operation for a quasigroup A is its parastrophe.

If o(k+ 1) = k + 1, a parastrophe is called principal. A principal parastrophe
exists for any k-operation.

Recall some useful information from [1] (for the case k = 2, see [2]).

Let < Ay, As, ..., Ay > (briefly, < A¥ >) be a k-tuple of k-operations defined
on a set Q). This k-tuple defines the unique mapping 6 : Q¥ — Q* in the following
way:

0: (a1) = (Ar(af), Az(a}), ..., Ap(a1)), (or briefly, 0 : (a7) — (A})(a7)).

Conversely, any mapping Q¥ into Q* uniquely defines the k-tuple < A¥ > of
k-operations on Q: if f(x%) = (y¥), then we define A;(x}) = y; for all i € 1,k.
Thus we obtain the mapping 0 = (A}), where

0(a) = (AT) (1) = (A} (a])).

If C is a k-operation on Q and  is a mapping Q* into Q*, then the operation
C#, defined by the equality CO(z}) = C(6(x})), is also a k-operation.
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Let CO = D and 0 = (A%), then D(z}) = C(A%(2%)) or briefly, D = C(A¥). If
0 = (BY) and ¢ = (A}) are mappings from Q* into Q*, then

0h = (AN = (A10, Az0,. .., Aph) = (A;0)5_,.

If = (BY) is a permutation on Q¥, then B; = E;0 and B;0~' = B,;(Bf)™! = E;
ieT k.

Definition 1. [1]. A k-tuple < A} > of k-operations on a set @ is called orthogonal
if the system {4;(x%) = a;}*_, has a unique solution for all a} € Q*.

The k-tuple < E¥ > of selectors of arity k is the identity permutation on Q"
and is orthogonal.

There is a close connection between orthogonal k-tuples of k-operations on @
and permutations on Q* by virtue of the following result of [1]:

A k-tuple < A¥ > of k-operations is orthogonal if and only if the mapping
0 = (A¥) is a permutation on Q.

Some properties of k-operations can be expressed by means of orthogonality.
For example, a k-operation A is i-invertible (1 < 4 < k) if and only if the k-tuple
< EIY A, Eﬁl > is orthogonal (or equivalently, the mapping 6 = (Ei™* A, Efﬂ)
is a permutation). A k-operation A is a k-quasigroup if and only if the k-tuple
< E{"', A, EF,, > is orthogonal for any i € 1,k [1].

Definition 2. [1] A set {41, As,..., A}, t > k, of k-operations on a set @ is
called orthogonal if every k-tuple of k-operations of the set is orthogonal.

Definition 3. [1] A set X = iAﬁ}, t > 1, of k-ary operations on a set () is called
strongly orthogonal if the set ¥ = {EF, A%} is orthogonal.

Note that in a strongly orthogonal set > = {A{} all k-ary operations are k-ary
quasigroups, and the number ¢ of k-operations in ¥ can be smaller than arity k.

Definition 4. [6] Two finite k-ary operations A and B on a set @ of order
q > 3 is called orthogonal if the system of equations {A(z%) = a, B(z¥) =b} has
exactly ¢*~2 solutions for any a,b € Q.

3. Successively orthogonal systems

In this section we consider systems of k-operations that generalize orthogonal sets.

Definition 5. An ordered system X = {A}{} of k-ary operations, k > 2, t > k,
given on a set @, is called successively orthogonal system (briefly, a SOS), if any
successive k operations are orthogonal.

It is evident that every (strongly) orthogonal set of k-operations is a succes-
sively orthogonal system. Give some other examples of a SOS.

Example 1. In [11], Donald A. Norton studies power sets of row-latin squares of
order n > 3, i.e., squares all rows of which are permutations. A finite 2-invertible
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binary groupoid (Q, A) corresponds to a row-latin square A, defined on a set
Q = {a1,as,...,a,}, the operation A’(z,y) = A(z, A"~ '(z,y)) respects to the
power A" of a row-latin square A. The identity square I (all its rows are identical
permutations) corresponds to the selector Fy(z,y) = E(z,y) = y, the a;-th row
of the square A is the translation L.,z = A(a;, z) of the groupoid (Q, A).

Let (Q, A) be a finite 2-invertible operation of order n, p(a;), a; € Q, be the
order of the translation L, of (Q,A) in Sg,

p= l'c'm'[p(al)ap(G‘Q)a e ap(an)]'

Then from the results of [11] it follows that A? = E (the same, A" = I), but
A9+ E for 0 < ¢ < p, the operations A, A2, ..., AP~! form a series of 2-invertible
operations. If (@, A) is a quasigroup, then each two adjacent operations in the
series are orthogonal and we have a SOS. O

Note that if m is the smallest power for a quasigroup (@, A) such that A™ is not
a quasigroup (2 < m < p), then any m successive powers of A form an orthogonal
set of 2-invertible operations (follows from Theorem 4 of [11] for row-latin squares).
Thus we have a SOS of powers of the quasigroup A as well.

Example 2. In [7, 8], it was considered a complete k-recursive code C(n, f) =
(z1, T2, ... xp, FO@F), fO(h), ..., fOFD(2k) | (2F) € Q) over an alphabet
Q with words of length n, 2 < k < n, defined by a k-operation f: QF — Q.
The functions £, fM) . f(=k=1) are called k-recursive derivatives of f and
are defined as follows:

FO@t) = (),
fO @) = £@f, O @),
f () = fah, FO @D, FOED),
FO@t) = flato, fO@D),. . f7 @) it <k,
Oy = F(FO9 ok, FORD (), L FOD (k) > R
V. Izbash and P. Syrbu in [9, Proposition 3], proved that if a k-operation f is a

k-quasigroup, then every k successive k-recursive derivatives f(*, fi+1) - fli+h=1)
of a k-quasigroup f are orthogonal. Hence, the system ¥ = {0, f(__ f® 1
is a SOS. O

4. Methods of construction of SOS

Below we suggest some methods of construction of successively orthogonal sets of
k-ary operations, k > 2, using k-quasigroups or invertible k-operations.

At first we consider the binary case, based on Example 1.

Let (As; ?)Q = (Ag; ) be the group of all 2-invertible binary operations, given

on a set Q, where (A - B)(z,y) = A((z, B(z,y)).
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Theorem 1. Let Ay, Ay, ..., A; be binary quasigroups with the order s1,...,s,
respectively in the group (As;-)g. Then the system

FoE, AL A2 AT P B Ay A2 AP F E A A2 AT
is a SOS.

Proof. Consider the system %; = {F, E,Al,A%...?Afl_l}, where Al(z,y) =
Ay (z, Alfl(x, y)). Each operation of 3 is orthogonal to its predecessor since A;
is a quasigroup, and Ail_1 is a 2-invertible operation. But s; is the order of the
quasigroup A; in the group (As;-)g (A = E), so all operations Ay, A%, ..., A?[l_l
are distinct 2-invertible operations and the operation A‘il_l is orthogonal to the
selector F'. The selectors F' and E are orthogonal as well. Analogously, using
binary quasigroups As, ..., A; we obtain a SOS. O

Remark. Analogously, we can use the powers of quasigroups under the left mul-
tiplication (A o B)(z,y) = A(B(z,y),y) of l-invertible operations, if A (z,y) =
A(AG=D(z,),y). In this case, we obtain the following SOS:

E,F A, AP Al

B, F Ay, AD . ASY B F A, AP AT
where s; is the order of the respective quasigroup in the group (A1;0)g.

Example 3. Consider the binary quasigroup A;(z,y) = (1—a)x+ay over the field
GF(11), where 1 is the identity of the field and the element a has order 5 in the
multiplicative group of GF(11). Then A?(x,y) = A(z, A(z,y)) = (1—a)z+a((1—
a)z+ay) = (1—a)r+ax—a’z+a?y = (1—a?)r+a?y, A3(x,y) = (1—a®)z+a3y,
Af(z,y) = (1 —a')z +a'y, A(z,y) = (L —a’)z +a’y =y = E(z,y).

And let b be the generating element of the multiplication group of the field
and Agz(x,y) = (1 — b)z + by, then we obtain the following SOS containing 13
quasigroups:

FanAl»A?aAilstzllvFaEvA%A%a"'7Ag‘ O

Let A~! be the inverse element for a binary 2-invertible operation A in the
group (Ag;-)g. Simultaneously this operation is the right inverse quasigroup for

(Q,A), if (Q, A) is a quasigroup.
Proposition 1. Let (Q,A) be a binary quasigroup, s be the order of A in the
group (Az;-)g, A=) = (A")~1. Then the system

S={ATCT AT AT B A A AT

is a SOS of 2-invertible binary operations.

Proof. Indeed, in this case, A (A™!) is a quasigroup, so it is orthogonal to the
selector E' (F, if instead E in the SOS to use F. In this SOS we can use also both
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selectors). It is easy to see that any two successive operations are also orthogonal
since A and A~! are quasigroups, and the rest operations are 2-invertible. O

Let & > 3. Consider k-invertible k-operations A and B on a set () and the k-th
multiplication of these operations:

O(a) = (A@y B)(2f) = A(2}™", B(at)).

In this case, the k-operation C' is also k-invertible, and all k-invertible operations
on @ consist the group (Ag; ®)g under the multiplication A @ B. The identity
k

of this group is the selector Ej : Ex(2}) = zp.

Now consider the following power set ¥4 = {4, A%, ... A5~1}, generated by a
k-invertible k-operation A of order s ( A° = Ej) in the group (Ag;®x)g, where
Al(zk) = A(zh1, A=Y(2h)),i = 2,3,...,5 — 1. The number of distinct finite
k-operations in Y4 is equal s — 1 .

In contrast to the binary case, for k > 3 the set ¥4 is not a SOS since the
following statement is valid.

Proposition 2. For each integer k > 3 and for any k-invertible k-operation A of
order s >k in the group (Ayg;®r)q, | Q |> 3, the k-tuple < A?, AL ATHF=1 > of

successive powers of A, i € 1,s — k, is not orthogonal.

Proof. Let k > 3, ¥4 = {A, A%,..., A*~1} be the power set, generated by a k-
invertible k-operation A, where A?(z%¥) = A(z¥7', A=1(2h)), i = 2,3,...,5 — 1.
Consider the k-tuple < A*, A" .. A*=1 > and the respective system of equa-
tions if a # b (a,b € Q) :

A%.’lﬁk) — ayAH_l(.Z'lf) _ a,AH_Q(.’EIf) =a,.. .,AH_k_l(a?lf) — b

Then Ai(zk) = a, A(z¥ "1 a) = a,..., A(z"¥"1 a) = a, A(2¥~1 @) = b. This system
has not a solution for the k-tuple < a,a,...,a,b > when a # b and k > 3. Thus
the tuple < A*, A**1 . A*k=1 > i5 not orthogonal. O

But theset ¥4 = {4, A%,..., A~} s > k, has one good property when (Q, A)
is a finite k-quasigroup of order ¢ (| @ |= q).

Proposition 3. Let (Q, A) be a k-quasigroup of order q, s be the order of A in
the group (Ay; Dr)g, Xa = {A,A%,..., A1} s > k. Then every two successive
k-operations A* and A" of £ 4,1 € 1,5 — 2, are orthogonal.

Proof. From the system {A*(z¥) = a, A (2¥) = A(zh~1, Al(2})) = b} it follows
that A(z¥71 a) = b. But this equation has exactly ¢*~2 solutions for any a,b € Q
since the (k — 1)-ary operation A, (z¥™1) = A(z¥7',a) is a (k — 1)-quasigroup,
so in it every element b of ) appears exactly ¢*~2 times. Hence, the equation
A(x’f_l,a) = b has exactly ¢®* 2 solutions. For any solution clf_l the equation
Ai(clffl7 73) = a has unique solution since the k-operation A’ is k-invertible. Thus
the k-operations A* and A**! are orthogonal. O
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Proposition 4. Let A be a k-invertible k-operation, given on a set QQ and s be
the order of A in the group (Ax;®)g. Then the system
k

E17E27"'7Ek?717AaE17E27"'aEkflaA27E17E27"'7Ek717A37"

By, Ea, ... Ep 1, A® = E,
is a SOS, where A'(z¥) = A(z¥=1, A1 (2h)), i =2,3,...,5.

Proof. Indeed, any k-tuple < E;, Eji1,...,Ex_1,A  E1,Ea,...,E;j_1 >, j =
2,...,k—1, and any k-tuple < A, E1, E,, ..., E,_; > are orthogonal since every
of the k-operation A%, i =1,2,3,...,s, is k-invertible. O

Corollary 1. If A is a binary 2-invertible operation, given on a set QQ, has the
order s in the group (Ag;-)qg, then the system

F A F A% .  FA'FA=E

is a SOS, where A (x,y) = A(x, A Yx,y)), i =2,3,...,s. O
Proposition 5. Let ¥1 = {A1,As,..., A} and ¥y = {B1,Bs,...,B,} be
strongly orthogonal sets of k-operations. Then the system

Y3 ={E1,Es,...,Ey, A1, Ay, ..., Ay E1, B, ..., E, B, By, ...,By,}

is a SOS.

Proof. Tt easy to see that every k-tuple of successive k-operations is orthogonal
since the systems ¥; and X5 of k-ary quasigroups are strongly orthogonal. O

Theorem 2. Let A # FE; be an 1-invertible k-operation on a set Q, k > 2,
0 = (EY, A) and let s be the order of the permutation 6 in the group Sor. Then
s > k and the sequence of k-operations

E1,Ey, ... Ey, A A0, AQ%, ... AOFL AGF ... A3~ 1

is a SOS.

Proof. From the l-invertibility of an k-operation A it follows that the mapping
0 = (E%, A) is a permutation on the set Q*, and A # Ey, Es, ..., Ej.
Consider the following mappings which are also permutations:

0= (ES A) = (Ey,..., E, A),
02 = 0(0) = (E5, A)(Es,...,Ex, A) = (Es,...,E, A Af), . ..
OF=1 = 9(0*2) = (Ey, A, AD, ..., AG*?),
0% = 0051 = (A, A0,..., A0 1), ...,
0! = (AQ'=F AQTRTL A0t > k.
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These permutations mean that the k-tuples of k-operations corresponding to them
are orthogonal. Let s be the order of the k-permutation 6, i. e., 8° = ¢ =
(El, EQ, ey Ek), then

0° = (A0°~F, g~ (=1 4072 A0 =

(A07F A== A072 A0 = (B, Ea, ..., Ey).

From these equalities it follows that A95—% = A9—F = B, Ags—(k—1) = gg—k+1 —
B . A0S = A0~ = .
It is evident that s > k since A # Ey, and 6% = (A, A0, A6?,... A9F~1).

Thus we have the following sequence of k-permutations:
£,0,0%, . ...0°71 05 =¢.0,0%....0°=¢,....

This sequence corresponds to the following successively orthogonal system, where
s k-operations are repeated:

Ei,Ey,... By, A A0, A0% ... A0F—1 AQ% ... AgsFL, (1)

Ei,Es,...,Ep, A A0, AQ%, ... A AQF .. AR L O

Corollary 2. In Theorem 2 the k-operation AG°~F=1 is k-invertible.
Proof. Indeed, from the above we get that the k-mapping

0571 = (AG>F AgeR L A0°72) = (A9 TFTL By, B, Eyy)

is a permutation, so the k-tuple < A#S~F=1 Ey Fy, ..., Ex_1 > of operations is
orthogonal, and the k-operation Af#*~*~1 is k-invertible. O

In [7], for a function f: Q* — Q it was defined a complete k-recursive code
K(n/fO, fQ fr=k=1)" £0) — f with the check functions: f(©) (1) . .
f(=k=1) " defined in Example 2.

The function f* is called the i-th recursive derivative of a function f.

A k-quasigroup operation f (k > 2) is called recursively r-differentiable if all
its k-recursive derivatives f(©, f(1) . (") are k-quasigroups.

By Proposition 7 of [7], the system of operations

E:{ElaEQa-~'7Ekaf(0)af(l)7f(2)7"'7f(r)}

is orthogonal.
V. Izbash and P. Syrbu in [9, Proposition 2| proved that if a k-operation f is
a k-quasigroup, then f) = f0° i =1,2,..., where

0:Q" = Q" 0(af) = (w2,23,... 21, f(a}))
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for all (z¥) € QF. In this case, § = (Es, F3,. .., Ey, f) and is a permutation since
f is a quasigroup.

Corollary 3. If a function f is an r-differentiable k-quasigroup, then r < s—k—1,
where s is the order of the permutation 0 = (E%, f). O

Lemma 1. Let A be an I-invertible k-operation, 0 = (E%, A). Then
9_1 = (a((l)A)ﬂElaEQMHEkfl)y (2)

AC (WA (@8, 1,29, .. 281) = T4,

where WA is the I-inverse operation for the k-operation A, and the principal
parastrophe o is defined by the permutation

U(xlu Z2,... ,ﬁEk) = (xa'lvma'Zv e 7xa'k) = (xku T1,T2,... 7xk71)~
Proof. Let 0= = (D1, Ds, ..., Dy), find the k-operations Dy, Da, ..., Dy:
(E%, A)(ES, A)~! = (By, Ba, ... Ey), (E§,A)(Dy,Ds,...,Dy) =

(D2, Ds,...Dy, A(D1,Ds,...,Dy)) = (E1, Es,...Eyg).
Hence, D2 = El,Dg = EQ, .. .,Dk = Ek—la A(Dl,DQ, .. .,Dk) = Ek or

A(D1,Ey,Bs,...,Ex_1) = Ex, A(Dy(2}),21,29,...,25-1) = 24,

whence
Dl(x’f) :(1)A(xk, X1, X2y ey Tp—1)-

Here () A is the 1-inverse operation for the l-invertible k-operation A. Hence,
Dy (z%) = 9(WA)(z¥), where o is the principal parastrophe of (VA defined by
the cyclic permutation o(z1,22,...,7,) = (T4,21,T2,...,2%_1). Thus 671 =
("(WA), By, By, ... Ep_1). O

As a corollary we obtain the result of V.D. Belousov from [2] for a binary quasi-
group A: Di(z,y) = “'A(y,z) = “{(A7)(z,y) and (E,A)~" = (T(A™), F).

Theorem 3. Let a permutation (EY, A) have the order s, then a successively
orthogonal system of Theorem 2 contains s different k-operations, which are re-
peated. If s = k+1, then the k-operation A is a k-quasigroup. For any I-invertible
k-operation s > k + 1.

Proof. Prove that in (1) all operations are distinct. Let A®) = AU) 4 j < s, j >,
then A@' = A, where t = j —i < 5. But then A*~1§ = A and by Lemma 1,

AUV (k) = 4071 (2F) = ATV A)(2F), 21, 20, . .., Tp1) = 25

Thus A=V = F.
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Further, from A¢~1) = A(=2) = B according to (2) it follows
A2 = 07t = By (O(WA), By, By, ... Ex_1) = Ej_1.
Analogously, taking into account that A® = AG=1§, we obtain
0! = (A0 F Agt=(k=D) AGT2 A0 = (B, s, ..., Ey) = 6°.
But s is the least number such that #° = <. We have the contradiction since
t=35—1<s.

If A® = F;, 1 <i<kthent<s—Fk+i—1since A = At-Dg = F; =
As~F+i=1 (it is the i-th component in §° = (A95~F, Ags— (k=1 Afs=2 Ags—1)).
Use the equality (2):

ACD = E67" = B,(°(VA),Er, By, ... Ey 1) = Bi 1,

A(t_2) = Eifle_l = Eifl(o-((l)A)a E17E2) e Ek*l) = Ei727 sy
A = By o0y (7(VA), By, By, . By ) = By,
AU = B0 = Ey(E5, A) = B4,
A2 = By 10 = Ei1(B, A) = Eijo, ...,
AUHE=0) — 10 = Ey,_((EY, A) = E.
It means that
gt—itk+1l — (A(tf(ifl))’ A(t7i+2)’ o 7A(t71),A(t)7A(t+1)7 o 7At+(k7i)) _
(E1,Ea,...,Ep)=0°. Butt<s—k+i—1,s0t—i+k+1<s.

If s=k+1,0=(E} A), then 0*+1 = (A0, A02,... A0%) = (Ey, B, ..., Ey)
and we get the successively orthogonal sequence

E1,Es,...,Ey, A E1,Bs,...,E), A,....

Hence, the mappings (E¥, A), (E§, A, Ey), (E}, A, E1, Ey),..., (A, E}™') are per-
mutations. It means that the k-operation A is i-invertible for any ¢ = 1,2,...k,
i. e., A is a k-quasigroup. O

Above we established that, in general case, r < s —k — 1 for an r-differentiable
k-quasigroup A, where s is the order of the permutation § = (E%, A). Now consider
r-differentiable k-quasigroups with r =s—Fk — 1.

A k-quasigroup (@, A) we shall call strongly recursively r-differentiable if r =
s —k — 1, where s is the order of the permutation § = (E%, A). In this case,
A1) = E,. For the binary quasigroups this notion was introduced in [5].

By Theorem 3, all r = s — k — 1 derivatives of a strongly recursively r-differen-
tiable quasigroup are different.
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From Theorems 2 and 3 we obtain the following corollary for any 1l-invertible
k-function (k-operation) f.

Corollary 4. If f is an I-invertible k-function, then f = f0W =12, ...,
where = (E% | f). The sequence of the recursive derivatives has the form

E13E27"'7Ekafaf07f027~--;fakil,fek,...,fosikil’

Ei, Bay oo By fof0,£0%, . fORT 08 fe TR

where s is the order of the permutation 6. For a strongly recursively r-differentiable
k-quasigroup s =1+ k+ 1. For an 1-differentiable k-quasigroup s > k + 2. For
a O-differentiable k-quasigroup s > k + 1. O

Example 4. Give an example of a strongly recursively r-differentiable binary
quasigroup (@, A) of order 7 (Example 2 of [5]) over the field GF(7) (in this case,
E1 = F, EQ = E)

A(z,y) =2(y — z) + z = 6z + 2y;

This quasigroup is strongly recursively 4-differentiable and generates the or-
thogonal system ¥ = {F, E, A, A1), A® AG) A®1 By Corollary 4, the permu-
tation 6 = (F, A) has the order s =4 + 2+ 1 =7 in the group Syg. O

Example 5. For an illustration of Corollary 4 consider one small example when
k=2, Ay(z,y) = v+ y (mod3), 6; = (E, Ay). Taking into account that A, is an
abelian group, we obtain the following successively orthogonal sequence (modulo
3) with repetition:

FvaAl(x7y) = $+y,A191({E7y) =z+ 2y7A19%('T7y) = 2‘7’.’

A0 (2,y) = 2y, A10] (z,y) = 22 + 2y, 410 (x,y) = 22 + y,
A6 (2,y) =2 = F(z,y), A10](z,y) =y = E(z,y), 1605 (z,9) =2 +y, . ..

The permutation ¢; has the order 8 since 65 = (A4,6%, A167) = (F, E) in the group
Sg and the sequence contains eight different operations. O

Now we change the construction of a successively orthogonal system of Theorem
2, beginning with the first repetition and using other 1-invertible k-operations.

Theorem 4. Let Ay, Ao, ..., A; be 1-invertible k-operations and the permutations
01 = (Eéc’Al)’ 02 = (EgaAQ)) 03 = (E53A3)"' ] 025 = (EécaAt) have the orders
S1,-...,S¢ respectively. Then the system

E\,Ey, ..., Ep, Al A0y, A7, A0 Ak A TR
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E1,Es, ... Ey, Ay, Ay, Agf2, ... Ax05™1 An05 . A0 %1
E\,Eo, ... Ep, Ay Ay, A0%, . AGFY A0E A0

is successively orthogonal.

Proof. Begin with the first repetition, using an 1-invertible k-operation A; # A;
and the permutation 6, = (E%, Ay) of order sy:

E\,Ey, ..., Ep, A, A0y, A7, AP Ak A TR

E1,Es, ..., Ey, Ay, Aoy, Agh2, ... Agf5™1 An0k .. Ay0527F 1

It is evident that we obtain a SOS which can be continued if to use distinct
1-invertible k-operations As, A4, .. .. O

Some operations, different from the selectors, in distinct "fragments" of this
SOS, in general case, can coincide.

Example 6. Continue the sequence of Example 5, using the following k-operations
(k-quasigroups):

Ai(z,y) = z+y (mod3), As(x,y) = 2z +y (mod 3), As(z,y) = z+ 2y (mod 3).
Then 0, = (E, A1), 6, = (E, Ay), 03 = (E, A3) and we obtain the following SOS
(modulo 3):

F,E,A — AWM — 242y, AP =22, A% —2

) } 1(=’E,y) ery, 1 (Z’,y) T+ Y, 1 (CE,y) x, 1 (l',y) Y,

AW (z,y) =22 + 2y, AP (z,y) = 20+ y, ALY = F, A = E,
Ag(,y) = 20 +y, AP (w,y) = 20, A (w,9) = 222 +y) + 20 = 2y,
A (@ y)=a+2y, AV = F, AP = B,

As(w,y) =z + 2y, AP (2,y) = y + 2(x + 2y) = 20 + 2y,

A:(f) (z,y) =z + 2y + 2(2z + 2y) = 2x, Aég)(x, y) = 2z + 2y + 4o = 2y,
A:(f)(x,y) =2z +4y =2x + vy, A:(f)(m,y) =2y+22z+y)=z+y,

Agﬁ)(ac,y) =2z+y+2z+y) ==z, Ag)(:c,y) =xz+y+2zx=y. O

From this example it follows that the order of the permutations 6, 85 and 653
is 8, 6 and 8 respectively. The quasigroups A; and Ag are 1-differentiable, and Ag
is O-differentiable.
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