$\mathrm{H}_{v} \mathrm{MV}$-algebras, I

Mahmood Bakhshi

Abstract

The aim of this paper is to introduce the concept of $\mathrm{H}_{v} \mathrm{MV}$-algebras as a common generalization of MV-algebras and hyper MV-algebras. After giving some basic properties and related results, the concepts of $\mathrm{H}_{v} \mathrm{MV}$-subalgebras, $\mathrm{H}_{v} \mathrm{MV}$-ideals and weak H_{v} MV-ideals are introduced and some of their properties and the connections between them are obtained.

1. Introduction

In 1958, Chang [1], introduced the concept of an MV-algebra as an algebraic proof of completeness theorem for \aleph_{0}-valued Łukasiewicz propositional calculus, see also [2]. Many mathematicians have worked on MV-algebras and obtained significant results. Mundici [6] proved that MV-algebras and abelian ℓ-groups with strong unit are categorically equivalent.

The hyperstructure theory (called also multialgebras) was introduced in 1934 by Marty [5]. Around the 40 's, several authors worked on hypergroups, especially in France and in the United States, but also in Italy, Russia and Japan. Recently, Ghorbani et al. [4] applied the hyperstructures to MV-algebras and introduced the concept of hyper MV-algebras. Now hyperstructures have many applications to several sectors of both pure and applied sciences such as: geometry, hypergraphs, binary relations, lattices, fuzzy set and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence and probabilities.
H_{v}-structures were introduced by Vougiouklis in [7] as a generalization of the well-known algebraic hyperstructures (hypergroup, hyperring, hypermodule and so on). The reader will find in [8] some basic definitions and theorems about $H_{v^{-}}$ structures. A survey of some basic definitions, results and applications one can find in [3] and [8].

In this paper, in order to obtain a suitable generalization of MV-algebras and hyper MV-algebras which may be equivalent (categorically) to a certain subclass of the class of \mathbf{H}_{v}-groups, the concept of $\mathrm{H}_{v} \mathrm{MV}$-algebra is introduced and some related results are obtained. In particular, weak $\mathrm{H}_{v} \mathrm{MV}$-ideals generated by a subset are characterized.

[^0]Keywords: MV-algebra, H_{v} MV-algebra, H_{v} MV-ideal.

2. Preliminaries

In this section we present some basic definitions and results.
Definition 2.1. An MV-algebra is an algebra $\left(M ;+{ }^{*}, 0\right)$ of type $(2,1,0)$ satisfying the following axioms:
(MV1) + is associative,
(MV2) + is commutative,
(MV3) $x+0=x$,
(MV4) $\left(x^{*}\right)^{*}=x$,
(MV5) $x+0^{*}=0^{*}$,
(MV6) $\left(x^{*}+y\right)^{*}+y=\left(y^{*}+x\right)^{*}+x$.
On any MV-algebra M we can defina a partial ordering \leqslant by putting $x \leqslant y$ if and only if $x^{*}+y=0^{*}$.

Definition 2.2. A hyper MV- algebra is a nonempty set H endowed with a binary hyperoperation ' \oplus ', a unary operation ${ }^{* *}$ ' and a constant ' 0 ' satisfying the following conditions: $\forall x, y, z \in M$,
(HMV1) $x \oplus(y \oplus z)=(x \oplus y) \oplus z$,
(HMV2) $x \oplus y=y \oplus x$,
(HMV3) $\left(x^{*}\right)^{*}=x$,
(HMV4) $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$,
(HMV5) $0^{*} \in x \oplus 0^{*}$,
(HMV6) $0^{*} \in x \oplus x^{*}$,
(HMV7) $x \ll y$ and $y \ll x$ imply $x=y$, where $x \ll y$ is defined as $0^{*} \in x^{*} \oplus y$.
For $A, B \subseteq H, A \ll B$ is defined as $a \ll b$ for some $a \in A$ and $b \in B$.
Proposition 2.3. In any hyper MV-algebra H for all $x, y \in H$ we have

1. $0 \ll x \ll 0^{*}$,
2. $x \ll x$,
3. $x \ll y$ implies that $y^{*} \ll x^{*}$,
4. $x \ll x \oplus y$,
5. $0 \oplus 0=\{0\}$,
6. $x \in x \oplus 0$.

Definition 2.4. A nonempty subset I of hyper MV-algebra H is called a

- hyper MV-ideal if
$\left(I_{0}\right) \quad x \ll y$ and $y \in I$ imply $x \in I$,
$\left(I_{1}\right) \quad x \oplus y \subseteq I$ for all $x, y \in I$,
- weak hyper MV-ideal if $\left(I_{0}\right)$ holds and

$$
\left(I_{2}\right) \quad x \oplus y \ll I \text { for all } x, y \in I
$$

Obviously, every hyper MV-ideal is a weak hyper MV-ideal.

3. $\mathrm{H}_{v} \mathrm{MV}$-algebras

Definition 3.1. An $H_{v} \mathrm{MV}$-algebra is a nonempty set H endowed with a binary hyperoperation ' \oplus ', a unary operation '*' and a constant ' 0 ' satisfying the following conditions:

```
\(\left(\mathrm{H}_{v} \mathrm{MV} 1\right) \quad x \oplus(y \oplus z) \cap(x \oplus y) \oplus z \neq \emptyset, \quad\) (weak associativity)
( \(\left.\mathrm{H}_{v} \mathrm{MV} 2\right) \quad x \oplus y \cap y \oplus x \neq \emptyset, \quad\) (weak commutativity)
\(\left(\mathrm{H}_{v} \mathrm{MV} 3\right)\left(x^{*}\right)^{*}=x\),
\(\left(\mathrm{H}_{v} \mathrm{MV} 4\right) \quad\left(x^{*} \oplus y\right)^{*} \oplus y \cap\left(y^{*} \oplus x\right)^{*} \oplus x \neq \emptyset\),
\(\left(\mathrm{H}_{v} \mathrm{MV} 5\right) \quad 0^{*} \in x \oplus 0^{*} \cap 0^{*} \oplus x\),
\(\left(\mathrm{H}_{v} \mathrm{MV6}\right) 0^{*} \in x \oplus x^{*} \cap x^{*} \oplus x\),
(H \(\left.\mathrm{H}_{v} \mathrm{MV} 7\right) \quad x \in x \oplus 0 \cap 0 \oplus x\),
( \(\mathrm{H}_{v}\) MV8) \(0^{*} \in x^{*} \oplus y \cap y \oplus x^{*}\) and \(0^{*} \in y^{*} \oplus x \cap x \oplus y^{*}\) imply \(x=y\).
```

Remark 3.2. On any $\mathrm{H}_{v} \mathrm{MV}$-algebra H, we can define a binary relation ' \preceq ' by

$$
x \preceq y \Leftrightarrow 0^{*} \in x^{*} \oplus y \cap y \oplus x^{*}
$$

Hence, the condition ($\mathrm{H}_{v} \mathrm{MV} 8$) can be redefined as follows:

$$
x \preceq y \text { and } y \preceq x \text { imply } x=y .
$$

Let A and B be nonempty subsets of H. By $A \preceq B$ we mean that there exist $a \in A$ and $b \in B$ such that $a \preceq b$. For $A \subseteq H$, we denote the set $\left\{a^{*}: a \in A\right\}$ by A^{*}, and 0^{*} by 1 .

Obviously, every hyper MV-algebra is an $\mathrm{H}_{v} \mathrm{MV}$-algebra but the converse is not true. We say $\mathrm{H}_{v} \mathrm{MV}$-algebra H is proper if it is not a hyper MV-algebra.

Example 3.3. Let $H=\{0, a, 1\}$ and the operations \oplus and * be defined as follows:

\oplus	0	a	1
0	$\{0\}$	$\{\mathrm{a}\}$	$\{0, \mathrm{a}, 1\}$
a	$\{0, \mathrm{a}\}$	$\{1\}$	$\{0,1\}$
1	$\{0,1\}$	$\{0, \mathrm{a}, 1\}$	$\{0, \mathrm{a}, 1\}$
$*$	1	a	0

Then $\left(H ; \oplus,{ }^{*}, 0\right)$ is a proper $\mathbf{H}_{v} \mathrm{MV}$-algebra.
Example 3.4. Similarly, $H=\{0, a, b, 1\}$ with the operations \oplus and ${ }^{*}$ defined by

\oplus	0	a	b	1
0	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
a	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{0, \mathrm{~b}\}$	$\{0,1\}$	$\{\mathrm{a}, \mathrm{b}, 1\}$
b	$\{\mathrm{a}, \mathrm{b}\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{0\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
1	$\{0, \mathrm{a}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$	$\{1\}$	$\{0, \mathrm{a}, \mathrm{b}, 1\}$
$*$	1	b	a	0

is a proper $\mathrm{H}_{v} \mathrm{MV}$-algebra.

Proposition 3.5. In any $\mathrm{H}_{v} \mathrm{MV}$-algebra H for $x, y \in H$ and $A, B \subseteq H$ the following hold:

1. $x \preceq x, A \preceq A$,
2. $0 \preceq x \preceq 1,0 \preceq A \preceq 1$,
3. $x \preceq y$ implies $y^{*} \preceq x^{*}$,
4. $A \preceq B$ implies $B^{*} \preceq A^{*}$,
5. $A \preceq B$ implies that $0^{*} \in\left(A^{*} \oplus B\right) \cap\left(B \oplus A^{*}\right)$,
6. $\left(x^{*}\right)^{*}=x$ and $\left(A^{*}\right)^{*}=A$,
7. $0^{*} \in\left(A \oplus A^{*}\right) \cap\left(A^{*} \oplus A\right)$,
8. $A \cap B \neq \emptyset$ implies that $A \preceq B$,
9. $(A \cap B)^{*}=A^{*} \cap B^{*}$,
10. $(A \oplus B) \cap(B \oplus A) \neq \emptyset$,
11. $A \oplus(B \oplus C) \cap(A \oplus B) \oplus C \neq \emptyset$,
12. $\left(A^{*} \oplus B\right)^{*} \oplus B \cap\left(B^{*} \oplus A\right)^{*} \oplus A \neq \emptyset$.

The following example shows that the relation \preceq is not transitive.
Example 3.6. In the $\mathbf{H}_{v} \mathrm{MV}$-algebra $\left(H ; \oplus,{ }^{*}, 0\right)$, where $H=\{0, a, b, c, 1\}$ and the operations are defined by

\oplus	0	a	b	c	1
0	$\{0\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{~b}\}$	$\{0, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
a	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
b	$\{0, \mathrm{~b}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
c	$\{0, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$
1	$\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}, 1\}$				
$*$	1	b	a	c	0

we have $a \preceq b$ and $b \preceq c$ while $a \npreceq c$, because $0^{*} \notin\{0, a, b, c\}=a^{*} \oplus c$.
Now let $x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}$.
Theorem 3.7. In any $\mathrm{H}_{v} \mathrm{MV}$-algebra H for all $x, y, z \in H$ and all nonempty subsets A and B of H we have:
(1) $x \odot(y \odot z) \cap(x \odot y) \odot z \neq \emptyset$,
(2) $x \odot y \cap y \odot x \neq \emptyset$,
(3) $0 \in x \odot 0 \cap 0 \odot x$,
(4) $0 \in x \odot x^{*} \cap x^{*} \odot x$,
(5) $x \in x \odot 1 \cap 1 \odot x$,
(6) $1 \in x \odot y^{*} \cap y^{*} \odot x$ and $1 \in y \odot x^{*} \cap x^{*} \odot y$ imply $x=y$,
(7) $(A \oplus B)^{*}=A^{*} \odot B^{*}$,
(8) $(A \odot B)^{*}=A^{*} \oplus B^{*}$,
(9) $x \in x \oplus x$ if and only if $x^{*} \in x^{*} \odot x^{*}$,
(10) $x \in x \odot x$ if and only if $x^{*} \in x^{*} \oplus x^{*}$.

Proof. It is enough to observe that for $x, y, z \in H$,

$$
\begin{aligned}
x \odot(y \odot z) & =\bigcup\left\{x \odot t: t \in\left(y^{*} \oplus z^{*}\right)^{*}\right\} \\
& =\bigcup\left\{\left(x^{*} \oplus t^{*}\right)^{*}: t \in\left(y^{*} \oplus z^{*}\right)^{*}\right\} \\
& =\bigcup\left\{\left(x^{*} \oplus t^{*}\right)^{*}: t^{*} \in y^{*} \oplus z^{*}\right\} \\
& =\bigcup\left\{a^{*}: a \in x^{*} \oplus t^{*}: t^{*} \in y^{*} \oplus z^{*}\right\} \\
& =\bigcup\left\{a^{*}: a \in x^{*} \oplus\left(y^{*} \oplus z^{*}\right)\right\}
\end{aligned}
$$

and similarly

$$
(x \odot y) \odot z=\bigcup\left\{a^{*}: a \in\left(x^{*} \oplus y^{*}\right) \oplus z^{*}\right\}
$$

This proves (1).
The proofs of $(2)-(6)$ follow from $\left(\mathrm{H}_{v} \mathrm{MV} 2\right)$ and $\left(\mathrm{H}_{v} \mathrm{MV} 5\right)-\left(\mathrm{H}_{v} \mathrm{MV} 7\right)$. The proofs of $(7)-(10)$ follow from the definition.

On H we also define two binary hyperoperations ' V ' and ' \wedge ' as

$$
x \vee y=\left(x \odot y^{*}\right) \oplus y, \quad x \wedge y=\left(x \oplus y^{*}\right) \odot y=\left(x^{*} \vee y^{*}\right)^{*}
$$

Theorem 3.8. In any $\mathrm{H}_{v} \mathrm{MV}$-algebra H, the following hold:
(1) $(x \wedge y)^{*}=x^{*} \vee y^{*},(x \vee y)^{*}=x^{*} \wedge y^{*}$,
(2) $(x \vee y) \cap(y \vee x) \neq \emptyset,(x \wedge y) \cap(y \wedge x) \neq \emptyset$,
(3) $x \in(x \vee x) \cap(x \wedge x)$,
(4) $0 \in(x \wedge 0) \cap(0 \wedge x)$,
(5) $1 \in(x \vee 1) \cap(1 \vee x)$,
(6) $x \in(x \vee 0) \cap(0 \vee x)$,
(7) $x \in(x \wedge 1) \cap(1 \wedge x)$,
(8) $x \preceq y$ implies $y \in x \vee y$ and $x \in x \wedge y$,
(9) $x \in y \odot x$ implies $1 \in y \vee x^{*}$,
(10) $x \in y \oplus x$ implies $0 \in y \wedge x^{*}$,
(11) If $x \in x \oplus x$, then $0 \in x \wedge x^{*}$,
(12) If $x \in x \odot x$, then $1 \in x \vee x^{*}$.

Proof. (1). Let $x, y \in H$. Then,

$$
x^{*} \vee y^{*}=\left(x^{*} \odot y\right) \oplus y^{*}=\left(x \oplus y^{*}\right)^{*} \oplus y^{*}=\left(\left(x \oplus y^{*}\right) \odot y\right)^{*}=(x \wedge y)^{*}
$$

Similarly, the second equality is proved.
(2). It follows from ($\mathrm{H}_{v} \mathrm{MV} 4$).
(3). From $0 \in x \odot x^{*}$ it follows that $x \in 0 \oplus x \subseteq\left(x \odot x^{*}\right) \oplus x=x \vee x$. From $0^{*} \in x \oplus x^{*}$ it follows that

$$
x=\left(x^{*}\right)^{*} \in\left(0 \oplus x^{*}\right)^{*} \subseteq\left(\left(x \oplus x^{*}\right)^{*} \oplus x^{*}\right)^{*}=\left(x \oplus x^{*}\right) \odot x=x \wedge x .
$$

(4). From $1=0^{*} \in x \oplus 0^{*}$ it follows that $0 \in 1 \odot 0 \subseteq\left(x \oplus 0^{*}\right) \odot 0=x \wedge 0$. Similarly, from $x^{*} \in 0 \oplus x^{*}$ it follows that $0 \in x^{*} \odot x \subseteq\left(0 \oplus x^{*}\right) \odot x=0 \wedge x$. Thus, $0 \in(x \wedge 0) \cap(0 \wedge x)$.
(9). If $x \in y \odot x$, then $1=0^{*} \in x \oplus x^{*} \subseteq(y \odot x) \oplus x^{*}=y \vee x^{*}$.
(10). If $x \in y \oplus x$, then $0 \in x \odot x^{*} \subseteq(y \oplus x) \odot x^{*}=y \wedge x^{*}$.

The proofs of the other cases are easy.

Proposition 3.9. Let $x \in H$. Then

(1) $0 \in x \wedge x^{*}$ if and only if $x \oplus x \preceq x$ if and only if $x^{*} \preceq x^{*} \odot x^{*}$,
(2) $1 \in x \vee x^{*}$ if and only if $x^{*} \oplus x^{*} \preceq x^{*}$ if and only if $x \preceq x \odot x$.

4. Homomorphisms, subalgebras and $\mathrm{H}_{v} \mathrm{MV}$-ideals

In this section, homomorphisms, $\mathrm{H}_{v} \mathrm{MV}$-subalgebras, weak $\mathrm{H}_{v} \mathrm{MV}$-ideals and $\mathrm{H}_{v} \mathrm{MV}$ ideals are introduced and some their properties are obtained.

Definition 4.1. Let $\left(H ; \oplus,{ }^{*}, 0_{H}\right)$ and $\left(K ; \otimes,{ }^{\star}, 0_{K}\right)$ be $\mathrm{H}_{v} \mathrm{MV}$-algebras and let $f: H \longrightarrow K$ be a function satisfying the following conditions:
(1) $f\left(0_{H}\right)=0_{K}$,
(2) $f\left(x^{*}\right)=f(x)^{\star}$,
(3) $f\left(x^{*}\right) \preceq f(x)^{\star}$,
(4) $f(x \oplus y)=f(x) \otimes f(y)$,
(5) $f(x \oplus y) \subseteq f(x) \otimes f(y)$.
f is called a homomorphism if it satisfies (1), (2) and (4), and it is called a weak homomorphism if it satisfies (1), (3) and (5). Clearly, $f(1)=1$ if f is a homomorphism. Note that (1) is not a consequence of (2) and (4).

Example 4.2. The set $H=\{0, a, 1\}$ with the operations defined by the table

\oplus	0	a	1
0	$\{0\}$	$\{0, \mathrm{a}\}$	$\{0,1\}$
a	$\{0, \mathrm{a}\}$	$\{0, \mathrm{a}, 1\}$	$\{\mathrm{a}, 1\}$
1	$\{0,1\}$	$\{\mathrm{a}, 1\}$	$\{1\}$
$*$	1	a	0

is an $\mathbf{H}_{v} \mathrm{MV}$-algebra. The function $f: H \longrightarrow H$ such that $f(0)=1, f(1)=0$ and $f(a)=a$ satisfies (2) and (4) but not (1).

Further, for simplicity, we will use the same symbols for operations in H and K.

Theorem 4.3. Let $f: H \longrightarrow K$ be a homomorphism.
(1) f is one-to-one if and only if ker $f=\{0\}$.
(2) f is an isomorphism if and only if there exists a homomorphism f^{-1} from K onto H such that $f f^{-1}=1_{K}$ and $f^{-1} f=1_{H}$.

Proof. We prove only (1). Assume that f is one-to-one and $x \in k e r f$. Then, $f(x)=0=f(0)$ whence $x=0$, i.e., $\operatorname{ker} f=\{0\}$. Conversely, assume that $\operatorname{ker} f=\{0\}$ and $f(x)=f(y)$, for $x, y \in H$. Then,

$$
0^{*} \in f(x)^{*} \oplus f(y) \cap f(y) \oplus f(x)^{*}=f\left(x^{*} \oplus y\right) \cap f\left(y \oplus x^{*}\right)
$$

whence $f(s)=0^{*}=f(t)$, for some $t \in x^{*} \oplus y$ and $s \in y \oplus x^{*}$. Hence, $f\left(s^{*}\right)=$ $f\left(t^{*}\right)=0$, i.e., $s^{*}, t^{*} \in \operatorname{ker} f=\{0\}$ and so $0^{*}=s \in y \oplus x^{*}$ and $0^{*}=t \in x^{*} \oplus y$ whence $x \preceq y$. Similarly, we can show that $y \preceq x$. Thus, $x=y$, i.e., f is one-to-one.

Proposition 4.4. A nonempty subset S of H is an $\mathrm{H}_{v} \mathrm{MV}$-subalgebra of H if and only if $0 \in S$ and $x^{*} \oplus y \subseteq S$ for all $x, y \in S$.

Definition 4.5. A nonempty subset I of H such that $x \preceq y$ and $y \in I$ imply $x \in I$ is called
an $\mathrm{H}_{v} \mathrm{MV}$-ideal if $x \oplus y \subseteq I$, for all $x, y \in I$, and
a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal if $x \oplus y \preceq I$, for all $x, y \in I$.
From Proposition 3.5 (8) it follows that every H_{v} MV-ideal is a weak H_{v} MVideal.

Theorem 4.6. A nonempty subset I of H is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal if and only if $x \preceq y$ and $y \in I$ imply $x \in I$ and for all $x, y \in I$ we have $(x \oplus y) \cap I \neq \emptyset$.

Theorem 4.7. If I is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of an $\mathrm{H}_{v} \mathrm{MV}$-algebra H in which $x \preceq x \vee y$ holds for all $x, y \in H$, then $0 \in I$, and $a \odot b^{*} \subseteq I$ together with $b \in I$ imply $a \in I$.

Proof. If I is an H_{v} MV-idealm then obviously, $0 \in I$. Now, let $a \odot b^{*} \subseteq I$ and $b \in I$. Then, $a \preceq a \vee b=\left(a \odot b^{*}\right) \oplus b \subseteq I$, whence $a \in I$.

Definition 4.8. A nonempty subset A of H is called S_{\odot}-reflexive if $x \odot y \cap A \neq \emptyset$ implies that $x \odot y \subseteq A$. Similarly, A is called S_{\oplus}-reflexive if $x \oplus y \cap A \neq \emptyset$ implies that $x \oplus y \subseteq A$.

Theorem 4.9. If in an $\mathrm{H}_{v} \mathrm{MV}$-algebra H for all $x, y \in H$ we have $x \wedge y \preceq x \preceq x \vee y$, then each its S_{\odot}-reflexive and S_{\oplus}-reflexive subset is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.

Proof. Let $x, y \in H$ be such that $x \preceq y$ and $y \in I$. Then, $0^{*} \in x^{*} \oplus y$ and so $0 \in x \odot y^{*}$, whence $\left(x \odot y^{*}\right) \cap I \neq \emptyset$. Since, I is S_{\odot}-reflexive, $x \odot y^{*} \subseteq I$ and so $x \in I$. Thus, $x \preceq y$ and $y \in I$ imply $x \in I$. Now, let $x, y \in I$. Then, $(x \oplus y) \odot y^{*}=x \wedge y^{*} \preceq x$ and hence, $c \preceq x \in I$, where $c \in x \wedge y^{*}$. This implies that $c \in I$ and so $(x \oplus y) \odot y^{*} \cap I \neq \emptyset$. Hence, there exists $a \in x \oplus y$ such that $a \odot y^{*} \cap I \neq \emptyset$ combining $y \in I$ we get $a \in I$, i.e., $x \oplus y \cap I \neq \emptyset$, whence $x \oplus y \subseteq I$. Thus, I is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.

Corollary 4.10. In a hyper MV-algebra, every S_{\odot}-reflexive and S_{\oplus}-reflexive subset I that $x \preceq y$ and $y \in I$ imply $x \in I$ is a hyper MV-ideal.

Theorem 4.11. Let $f: H \longrightarrow K$ be a homomorphism. Then
(1) kerf is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.
(2) If I is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of $K, f^{-1}(I)$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.
(3) Assume that $x \preceq x \vee y$ holds for all $x, y \in H$. If f is onto and I is an $S_{\odot^{-}}$ reflexive $\mathrm{H}_{v} \mathrm{MV}$-ideal of H containing ker f, then $f(I)$ is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of K.

Proof. (1). Let $x, y \in H$ be such that $x \preceq y$ and $y \in \operatorname{kerf}$. Then, $0^{*} \in\left(x^{*} \oplus y\right) \cap$ $\left(y \oplus x^{*}\right)$ and $f(y)=0$. Thus

$$
0^{*}=f\left(0^{*}\right) \in f\left(x^{*} \oplus y\right) \cap f\left(y \oplus x^{*}\right)=f(x)^{*} \oplus 0 \cap 0 \oplus f(x)^{*}
$$

which implies that $f(x) \preceq 0$. Hence, $f(x)=0$, i.e., $x \in \operatorname{ker} f$.
Now, let $x, y \in k e r f$. Then, $0 \in 0 \oplus 0=f(x) \oplus f(y)=f(x \oplus y)$ and so $f(t)=0$, for some $t \in x \oplus y$. This implies that $(x \oplus y) \cap \operatorname{ker} f \neq \emptyset$ and so by Theorem 4.6, kerf is a weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of H.
(2) It is easy.
(3) Assume that f is onto and I is an $\mathrm{H}_{v} \mathrm{MV}$-ideal of H. Let $x \preceq y$ and $y \in f(I)$. Then, $0^{*} \in x^{*} \oplus y \cap y \oplus x^{*}$ and $y=f(b)$, for some $b \in I$. Since, f is onto, there exists $a \in H$ such that $f(a)=x$. Hence,

$$
0^{*} \in f\left(a^{*}\right) \oplus f(b) \cap f(b) \oplus f\left(a^{*}\right)=f\left(a^{*} \oplus b\right) \cap f\left(b \oplus a^{*}\right)
$$

whence $f(u)=0^{*}=f(v)$, for some $u \in a^{*} \oplus b$ and $v \in b \oplus a^{*}$. This implies that $u^{*}, v^{*} \in \operatorname{kerf} \subseteq I$, i.e., $a \odot b^{*} \cap I \neq \emptyset$, whence $a \odot b^{*} \subseteq I$. Since, $b \in I$, so $a \in I$ and hence, $x=f(a) \in f(I)$.

Let now $x, y \in f(I)$. Then, there exist $a, b \in I$ such that $f(a)=x$ and $f(b)=y$. From $a \oplus b \subseteq I$ it follows that $x \oplus y \subseteq f(I)$, proving $f(I)$ is an \mathbf{H}_{v} MV-ideal of K.

Definition 4.12. Let A be a nonempty subset of H. The smallest (weak) $\mathrm{H}_{v} \mathrm{MV}$ ideal of H containing A is called the (weak) $\mathrm{H}_{v} \mathrm{MV}$-ideal generated by A and is denoted by $\langle A\rangle$ (by $\langle A\rangle_{w}$ respectively).

It is clear that
$\langle A\rangle \supseteq\left\{x \in H: x \preceq\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right.\right.$, for some $\left.n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}$.
Theorem 4.13. Assume that $|x \oplus y|<\infty$, for all $x, y \in H$, \preceq is transitive and monotone, and $x \oplus y \in R(H)=\{a \in H:|z \oplus a|=1 \forall z \in H\}$ for all $x, y \in R(H)$. Then
$\langle A\rangle_{w}=\left\{x \in H: x \preceq\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right.\right.$, for some $\left.n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\}$
for any nonempty subset A of H contained in $R(H)$.
Proof. Assume that

$$
B=\left\{x \in H: x \preceq\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}, \text { for some } n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A\right\} .\right.
$$

Obviously, $A \subseteq B$. Now, let $x, y \in H$ be such that $x \preceq y$ and $y \in B$. Since, $|x \oplus y|<\infty$, so $y \preceq\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right.$ for some $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in A$. This implies that $0^{*} \in y^{*} \oplus\left(\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right)\right.$. On the other hand, $x \preceq y$ implies that $y^{*} \preceq x^{*}$, whence
$0^{*} \in\left\{0^{*}\right\}=y^{*} \oplus\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right) \preceq x^{*} \oplus\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right)$,
which gives $0^{*} \in x^{*} \oplus\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right)$, i.e., $x \preceq\left(\cdots\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right)$. Thus, $x \in B$.

Now, let $x, y \in B$. Then,

$$
x \preceq\left(\cdots\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n} \quad \text { and } \quad y \preceq\left(\cdots\left(b_{1} \oplus b_{2}\right) \oplus \cdots\right) \oplus b_{m}
$$

for some $n, m \in \mathbb{N}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} \in A$. Since, \preceq is monotone,

$$
\begin{aligned}
x \oplus y & \preceq x \oplus\left(\left(\cdots\left(b_{1} \oplus b_{2}\right) \oplus \cdots\right) \oplus b_{m}\right) \\
& \preceq\left(\left(\cdots\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right) \oplus\left(\left(\cdots\left(b_{1} \oplus b_{2}\right) \oplus \cdots\right) \oplus b_{m}\right)
\end{aligned}
$$

and hence there exists $u \in x \oplus y$ such that

$$
\begin{aligned}
u & \preceq x \oplus\left(\left(\cdots\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right) \\
& \preceq\left(\left(\cdots\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right) \oplus\left(\left(\cdots\left(b_{1} \oplus b_{2}\right) \oplus \cdots\right) \oplus b_{m}\right) \\
& =\left(\cdots\left(\left(\left(\cdots\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n}\right) \oplus b_{1}\right) \oplus \cdots\right) \oplus b_{m}
\end{aligned}
$$

because \preceq is transitive. The equality holds for $A \cap B \neq \emptyset$, and $|A|=1=|B|$ imply $A=B$. Thus $u \in B$ and so $x \oplus y \preceq B$. Therefore, B is a weak H_{v} MV-ideal of H. Obviously, B is the least weak $\mathrm{H}_{v} \mathrm{MV}$-ideal of H containing A.

Let $\mathrm{H}_{v} \mathrm{MVI}\left(\mathrm{WH}_{v} \mathrm{MVI}\right)$ denotes the set of all $\mathrm{H}_{v} \mathrm{MV}$-ideals (weak $\mathrm{H}_{v} \mathrm{MV}$-ideals) of H. Then, $\mathrm{H}_{v} \mathrm{MVI}\left(\mathrm{WH}_{v} \mathrm{MVI}\right)$ together with the set inclusion, as a partial ordering, is a poset in which for all $A_{i} \subseteq \mathrm{H}_{v} \mathrm{MVI}, \bigwedge A_{i}=\bigcap A_{i}$ and $\bigvee A_{i}=\left\langle A_{i}\right\rangle$. So, we have
Theorem 4.14. $\left(\mathrm{H}_{v} \mathrm{MVI}, \subseteq\right)$ is a complete lattice, and if $\mathrm{WH}_{v} \mathrm{MVI}$ is closed with respect to the intersection, $\mathrm{H}_{v} \mathrm{MVI}$ is a complete sublattice of the complete lattice $\left(\mathrm{WH}_{v} \mathrm{MVI}, \subseteq\right)$.

References

[1] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467 - 490.
[2] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), $74-80$.
[3] B. Davvaz, A brief survey of the theory of H_{v}-structures, Proc. 8th International Congress on Algebraic Hyperstructures and Appl., Spanidis Press, (2003), 39 - 70.
[4] Sh. Ghorbani, A. Hassankhani, E. Eslami, Hyper MV-algebras, Set-Valued Math. Appl. 1 (2008), 205 - 222.
[5] F. Marty, Sur une generalization de la notion de groups, 8th Congress Math. Scandinaves, Stockhholm, (1934), $45-49$.
[6] D. Mundici, Interpretation of $A F C^{*}$-algebras in Eukasiewicz sentential calsulus, J. Func. Anal. 65 (1986), $15-63$.
[7] T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. of the 4th Int. Congress on Algebraic Hyperstructures and Appl., World Sientific, (1991), $203-211$.
[8] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, 1994.
Received December, 19, 2013
Department of Mathematics, Univesity of Bojnord, Bojnord, Iran
E-mail: bakhshi@ub.ac.ir

[^0]: 2010 Mathematics Subject Classification: 03B50, 06D35.

