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HvMV-algebras, I

Mahmood Bakhshi

Abstract. The aim of this paper is to introduce the concept of HvMV-algebras as a common
generalization of MV-algebras and hyper MV-algebras. After giving some basic properties and
related results, the concepts of HvMV-subalgebras, HvMV-ideals and weak HvMV-ideals are in-
troduced and some of their properties and the connections between them are obtained.

1. Introduction

In 1958, Chang [1], introduced the concept of an MV-algebra as an algebraic proof
of completeness theorem for ℵ0-valued �ukasiewicz propositional calculus, see also
[2]. Many mathematicians have worked on MV-algebras and obtained signi�cant
results. Mundici [6] proved that MV-algebras and abelian `-groups with strong
unit are categorically equivalent.

The hyperstructure theory (called also multialgebras) was introduced in 1934
by Marty [5]. Around the 40's, several authors worked on hypergroups, especially
in France and in the United States, but also in Italy, Russia and Japan. Recently,
Ghorbani et al. [4] applied the hyperstructures to MV-algebras and introduced the
concept of hyper MV-algebras. Now hyperstructures have many applications to
several sectors of both pure and applied sciences such as: geometry, hypergraphs,
binary relations, lattices, fuzzy set and rough sets, automata, cryptography, com-
binatorics, codes, arti�cial intelligence and probabilities.

Hv-structures were introduced by Vougiouklis in [7] as a generalization of the
well-known algebraic hyperstructures (hypergroup, hyperring, hypermodule and
so on). The reader will �nd in [8] some basic de�nitions and theorems about Hv-
structures. A survey of some basic de�nitions, results and applications one can
�nd in [3] and [8].

In this paper, in order to obtain a suitable generalization of MV-algebras and
hyperMV-algebras which may be equivalent (categorically) to a certain subclass of
the class of Hv-groups, the concept of HvMV-algebra is introduced and some related
results are obtained. In particular, weak HvMV-ideals generated by a subset are
characterized.
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2. Preliminaries

In this section we present some basic de�nitions and results.

De�nition 2.1. AnMV-algebra is an algebra (M ; +,∗ , 0) of type (2,1,0) satisfying
the following axioms:

(MV1) + is associative,
(MV2) + is commutative,
(MV3) x + 0 = x,
(MV4) (x∗)∗ = x,
(MV5) x + 0∗ = 0∗,
(MV6) (x∗ + y)∗ + y = (y∗ + x)∗ + x.

On any MV-algebra M we can de�na a partial ordering 6 by putting x 6 y if
and only if x∗ + y = 0∗.

De�nition 2.2. A hyper MV- algebra is a nonempty set H endowed with a binary
hyperoperation `⊕', a unary operation `∗' and a constant `0' satisfying the following
conditions: ∀x, y, z ∈ M ,

(HMV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(HMV2) x⊕ y = y ⊕ x,
(HMV3) (x∗)∗ = x,
(HMV4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,
(HMV5) 0∗ ∈ x⊕ 0∗,
(HMV6) 0∗ ∈ x⊕ x∗,
(HMV7) x � y and y � x imply x = y, where x � y is de�ned as 0∗ ∈ x∗⊕y.

For A,B ⊆ H, A � B is de�ned as a � b for some a ∈ A and b ∈ B.

Proposition 2.3. In any hyper MV-algebra H for all x, y ∈ H we have

1. 0 � x � 0∗,
2. x � x,
3. x � y implies that y∗ � x∗,
4. x � x⊕ y,
5. 0⊕ 0 = {0},
6. x ∈ x⊕ 0.

De�nition 2.4. A nonempty subset I of hyper MV-algebra H is called a

• hyper MV-ideal if

(I0) x � y and y ∈ I imply x ∈ I,

(I1) x⊕ y ⊆ I for all x, y ∈ I,

• weak hyper MV-ideal if (I0) holds and

(I2) x⊕ y � I for all x, y ∈ I.

Obviously, every hyper MV-ideal is a weak hyper MV-ideal.
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3. HvMV-algebras

De�nition 3.1. An HvMV-algebra is a nonempty set H endowed with a binary
hyperoperation `⊕', a unary operation `∗' and a constant `0' satisfying the following
conditions:

(HvMV1) x⊕ (y ⊕ z) ∩ (x⊕ y)⊕ z 6= ∅, (weak associativity)
(HvMV2) x⊕ y ∩ y ⊕ x 6= ∅, (weak commutativity)
(HvMV3) (x∗)∗ = x,
(HvMV4) (x∗ ⊕ y)∗ ⊕ y ∩ (y∗ ⊕ x)∗ ⊕ x 6= ∅,
(HvMV5) 0∗ ∈ x⊕ 0∗ ∩ 0∗ ⊕ x,
(HvMV6) 0∗ ∈ x⊕ x∗ ∩ x∗ ⊕ x,
(HvMV7) x ∈ x⊕ 0 ∩ 0⊕ x,
(HvMV8) 0∗ ∈ x∗ ⊕ y ∩ y ⊕ x∗ and 0∗ ∈ y∗ ⊕ x ∩ x⊕ y∗ imply x = y.

Remark 3.2. On any HvMV-algebra H, we can de�ne a binary relation `�' by

x � y ⇔ 0∗ ∈ x∗ ⊕ y ∩ y ⊕ x∗.

Hence, the condition (HvMV8) can be rede�ned as follows:

x � y and y � x imply x = y.

Let A and B be nonempty subsets of H. By A � B we mean that there exist
a ∈ A and b ∈ B such that a � b. For A ⊆ H, we denote the set {a∗ : a ∈ A} by
A∗, and 0∗ by 1.

Obviously, every hyper MV-algebra is an HvMV-algebra but the converse is not
true. We say HvMV-algebra H is proper if it is not a hyper MV-algebra.

Example 3.3. Let H = {0, a, 1} and the operations ⊕ and ∗ be de�ned as follows:

⊕ 0 a 1
0 {0} {a} {0,a,1}
a {0,a} {1} {0,1}
1 {0,1} {0,a,1} {0,a,1}
∗ 1 a 0

Then (H;⊕,∗ , 0) is a proper HvMV-algebra.

Example 3.4. Similarly, H = {0, a, b, 1} with the operations ⊕ and ∗ de�ned by

⊕ 0 a b 1
0 {0,a} {0,a,b} {0,a,b} {0,a,b,1}
a {0,a,b,1} {0,b} {0,1} {a,b,1}
b {a,b} {0,a,b,1} {0} {0,a,b,1}
1 {0,a,1} {0,a,b,1} {1} {0,a,b,1}
∗ 1 b a 0

is a proper HvMV-algebra.
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Proposition 3.5. In any HvMV-algebra H for x, y ∈ H and A,B ⊆ H the fol-

lowing hold:

1. x � x, A � A,

2. 0 � x � 1, 0 � A � 1,
3. x � y implies y∗ � x∗,

4. A � B implies B∗ � A∗,

5. A � B implies that 0∗ ∈ (A∗ ⊕B) ∩ (B ⊕A∗),
6. (x∗)∗ = x and (A∗)∗ = A,

7. 0∗ ∈ (A⊕A∗) ∩ (A∗ ⊕A),
8. A ∩B 6= ∅ implies that A � B,

9. (A ∩B)∗ = A∗ ∩B∗,

10. (A⊕B) ∩ (B ⊕A) 6= ∅,
11. A⊕ (B ⊕ C) ∩ (A⊕B)⊕ C 6= ∅,
12. (A∗ ⊕B)∗ ⊕B ∩ (B∗ ⊕A)∗ ⊕A 6= ∅.

The following example shows that the relation � is not transitive.

Example 3.6. In the HvMV-algebra (H;⊕,∗ , 0), where H = {0, a, b, c, 1} and the
operations are de�ned by

⊕ 0 a b c 1
0 {0} {0,a} {0,b} {0,c} {0,a,b,c,1}
a {0,a} {0,a} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
b {0,b} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1}
c {0,c} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1} {0,a,b,c,1}
1 {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
∗ 1 b a c 0

we have a � b and b � c while a 6� c, because 0∗ 6∈ {0, a, b, c} = a∗ ⊕ c.

Now let x� y = (x∗ ⊕ y∗)∗.

Theorem 3.7. In any HvMV-algebra H for all x, y, z ∈ H and all nonempty

subsets A and B of H we have:

(1) x� (y � z) ∩ (x� y)� z 6= ∅,
(2) x� y ∩ y � x 6= ∅,
(3) 0 ∈ x� 0 ∩ 0� x,

(4) 0 ∈ x� x∗ ∩ x∗ � x,

(5) x ∈ x� 1 ∩ 1� x,

(6) 1 ∈ x� y∗ ∩ y∗ � x and 1 ∈ y � x∗ ∩ x∗ � y imply x = y,

(7) (A⊕B)∗ = A∗ �B∗,

(8) (A�B)∗ = A∗ ⊕B∗,

(9) x ∈ x⊕ x if and only if x∗ ∈ x∗ � x∗,

(10) x ∈ x� x if and only if x∗ ∈ x∗ ⊕ x∗.
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Proof. It is enough to observe that for x, y, z ∈ H,

x� (y � z) =
⋃
{x� t : t ∈ (y∗ ⊕ z∗)∗}

=
⋃
{(x∗ ⊕ t∗)∗ : t ∈ (y∗ ⊕ z∗)∗}

=
⋃
{(x∗ ⊕ t∗)∗ : t∗ ∈ y∗ ⊕ z∗}

=
⋃
{a∗ : a ∈ x∗ ⊕ t∗ : t∗ ∈ y∗ ⊕ z∗}

=
⋃
{a∗ : a ∈ x∗ ⊕ (y∗ ⊕ z∗)}

and similarly

(x� y)� z =
⋃
{a∗ : a ∈ (x∗ ⊕ y∗)⊕ z∗}.

This proves (1).
The proofs of (2) − (6) follow from (HvMV2) and (HvMV5)-(HvMV7). The

proofs of (7)− (10) follow from the de�nition.

On H we also de�ne two binary hyperoperations `∨' and `∧' as

x ∨ y = (x� y∗)⊕ y, x ∧ y = (x⊕ y∗)� y = (x∗ ∨ y∗)∗.

Theorem 3.8. In any HvMV-algebra H, the following hold:

(1) (x ∧ y)∗ = x∗ ∨ y∗, (x ∨ y)∗ = x∗ ∧ y∗,

(2) (x ∨ y) ∩ (y ∨ x) 6= ∅, (x ∧ y) ∩ (y ∧ x) 6= ∅,
(3) x ∈ (x ∨ x) ∩ (x ∧ x),

(4) 0 ∈ (x ∧ 0) ∩ (0 ∧ x),

(5) 1 ∈ (x ∨ 1) ∩ (1 ∨ x),

(6) x ∈ (x ∨ 0) ∩ (0 ∨ x),

(7) x ∈ (x ∧ 1) ∩ (1 ∧ x),

(8) x � y implies y ∈ x ∨ y and x ∈ x ∧ y,

(9) x ∈ y � x implies 1 ∈ y ∨ x∗,

(10) x ∈ y ⊕ x implies 0 ∈ y ∧ x∗,

(11) If x ∈ x⊕ x, then 0 ∈ x ∧ x∗,

(12) If x ∈ x� x, then 1 ∈ x ∨ x∗.

Proof. (1). Let x, y ∈ H. Then,

x∗ ∨ y∗ = (x∗ � y)⊕ y∗ = (x⊕ y∗)∗ ⊕ y∗ = ((x⊕ y∗)� y)∗ = (x ∧ y)∗.

Similarly, the second equality is proved.
(2). It follows from (HvMV4).
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(3). From 0 ∈ x � x∗ it follows that x ∈ 0 ⊕ x ⊆ (x � x∗) ⊕ x = x ∨ x. From
0∗ ∈ x⊕ x∗ it follows that

x = (x∗)∗ ∈ (0⊕ x∗)∗ ⊆ ((x⊕ x∗)∗ ⊕ x∗)∗ = (x⊕ x∗)� x = x ∧ x.

(4). From 1 = 0∗ ∈ x ⊕ 0∗ it follows that 0 ∈ 1 � 0 ⊆ (x ⊕ 0∗) � 0 = x ∧ 0.
Similarly, from x∗ ∈ 0⊕x∗ it follows that 0 ∈ x∗�x ⊆ (0⊕x∗)�x = 0∧x. Thus,
0 ∈ (x ∧ 0) ∩ (0 ∧ x).

(9). If x ∈ y � x, then 1 = 0∗ ∈ x⊕ x∗ ⊆ (y � x)⊕ x∗ = y ∨ x∗.
(10). If x ∈ y ⊕ x, then 0 ∈ x� x∗ ⊆ (y ⊕ x)� x∗ = y ∧ x∗.
The proofs of the other cases are easy.

Proposition 3.9. Let x ∈ H. Then

(1) 0 ∈ x ∧ x∗ if and only if x⊕ x � x if and only if x∗ � x∗ � x∗,

(2) 1 ∈ x ∨ x∗ if and only if x∗ ⊕ x∗ � x∗ if and only if x � x� x.

4. Homomorphisms, subalgebras and HvMV-ideals

In this section, homomorphisms, HvMV-subalgebras, weak HvMV-ideals and HvMV-
ideals are introduced and some their properties are obtained.

De�nition 4.1. Let (H;⊕,∗ , 0H) and (K;⊗,? , 0K) be HvMV-algebras and let
f : H −→ K be a function satisfying the following conditions:

(1) f(0H) = 0K ,

(2) f(x∗) = f(x)?,

(3) f(x∗) � f(x)?,

(4) f(x⊕ y) = f(x)⊗ f(y),

(5) f(x⊕ y) ⊆ f(x)⊗ f(y).

f is called a homomorphism if it satis�es (1), (2) and (4), and it is called a weak

homomorphism if it satis�es (1), (3) and (5). Clearly, f(1) = 1 if f is a homomor-
phism. Note that (1) is not a consequence of (2) and (4).

Example 4.2. The set H = {0, a, 1} with the operations de�ned by the table

⊕ 0 a 1
0 {0} {0,a} {0,1}
a {0,a} {0,a,1} {a,1}
1 {0,1} {a,1} {1}
∗ 1 a 0

is an HvMV-algebra. The function f : H −→ H such that f(0) = 1, f(1) = 0 and
f(a) = a satis�es (2) and (4) but not (1).
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Further, for simplicity, we will use the same symbols for operations in H and
K.

Theorem 4.3. Let f : H −→ K be a homomorphism.

(1) f is one-to-one if and only if kerf = {0}.
(2) f is an isomorphism if and only if there exists a homomorphism f−1 from

K onto H such that ff−1 = 1K and f−1f = 1H .

Proof. We prove only (1). Assume that f is one-to-one and x ∈ kerf . Then,
f(x) = 0 = f(0) whence x = 0, i.e., kerf = {0}. Conversely, assume that
kerf = {0} and f(x) = f(y), for x, y ∈ H. Then,

0∗ ∈ f(x)∗ ⊕ f(y) ∩ f(y)⊕ f(x)∗ = f(x∗ ⊕ y) ∩ f(y ⊕ x∗)

whence f(s) = 0∗ = f(t), for some t ∈ x∗ ⊕ y and s ∈ y ⊕ x∗. Hence, f(s∗) =
f(t∗) = 0, i.e., s∗, t∗ ∈ kerf = {0} and so 0∗ = s ∈ y ⊕ x∗ and 0∗ = t ∈ x∗ ⊕ y
whence x � y. Similarly, we can show that y � x. Thus, x = y, i.e., f is
one-to-one.

Proposition 4.4. A nonempty subset S of H is an HvMV-subalgebra of H if and

only if 0 ∈ S and x∗ ⊕ y ⊆ S for all x, y ∈ S.

De�nition 4.5. A nonempty subset I of H such that x � y and y ∈ I imply
x ∈ I is called

an HvMV-ideal if x⊕ y ⊆ I, for all x, y ∈ I, and
a weak HvMV-ideal if x⊕ y � I, for all x, y ∈ I.

From Proposition 3.5 (8) it follows that every HvMV-ideal is a weak HvMV-
ideal.

Theorem 4.6. A nonempty subset I of H is a weak HvMV-ideal if and only if

x � y and y ∈ I imply x ∈ I and for all x, y ∈ I we have (x⊕ y) ∩ I 6= ∅.

Theorem 4.7. If I is an HvMV-ideal of an HvMV-algebra H in which x � x ∨ y
holds for all x, y ∈ H, then 0 ∈ I, and a� b∗ ⊆ I together with b ∈ I imply a ∈ I.

Proof. If I is an HvMV-idealm then obviously, 0 ∈ I. Now, let a � b∗ ⊆ I and
b ∈ I. Then, a � a ∨ b = (a� b∗)⊕ b ⊆ I, whence a ∈ I.

De�nition 4.8. A nonempty subset A of H is called S�-re�exive if x� y∩A 6= ∅
implies that x� y ⊆ A. Similarly, A is called S⊕-re�exive if x⊕ y ∩A 6= ∅ implies
that x⊕ y ⊆ A.

Theorem 4.9. If in an HvMV-algebra H for all x, y ∈ H we have x∧y � x � x∨y,
then each its S�-re�exive and S⊕-re�exive subset is an HvMV-ideal of H.



16 M. Bakhshi

Proof. Let x, y ∈ H be such that x � y and y ∈ I. Then, 0∗ ∈ x∗ ⊕ y and
so 0 ∈ x � y∗, whence (x � y∗) ∩ I 6= ∅. Since, I is S�-re�exive, x � y∗ ⊆ I
and so x ∈ I. Thus, x � y and y ∈ I imply x ∈ I. Now, let x, y ∈ I. Then,
(x ⊕ y) � y∗ = x ∧ y∗ � x and hence, c � x ∈ I, where c ∈ x ∧ y∗. This implies
that c ∈ I and so (x ⊕ y) � y∗ ∩ I 6= ∅. Hence, there exists a ∈ x ⊕ y such that
a� y∗ ∩ I 6= ∅ combining y ∈ I we get a ∈ I, i.e., x⊕ y ∩ I 6= ∅, whence x⊕ y ⊆ I.
Thus, I is an HvMV-ideal of H.

Corollary 4.10. In a hyper MV-algebra, every S�-re�exive and S⊕-re�exive sub-

set I that x � y and y ∈ I imply x ∈ I is a hyper MV-ideal.

Theorem 4.11. Let f : H −→ K be a homomorphism. Then

(1) kerf is a weak HvMV-ideal of H.

(2) If I is an HvMV-ideal of K, f−1(I) is an HvMV-ideal of H.

(3) Assume that x � x ∨ y holds for all x, y ∈ H. If f is onto and I is an S��
re�exive HvMV-ideal of H containing ker f, then f(I) is an HvMV-ideal of

K.

Proof. (1). Let x, y ∈ H be such that x � y and y ∈ kerf . Then, 0∗ ∈ (x∗ ⊕ y) ∩
(y ⊕ x∗) and f(y) = 0. Thus

0∗ = f(0∗) ∈ f(x∗ ⊕ y) ∩ f(y ⊕ x∗) = f(x)∗ ⊕ 0 ∩ 0⊕ f(x)∗,

which implies that f(x) � 0. Hence, f(x) = 0, i.e., x ∈ kerf .
Now, let x, y ∈ kerf . Then, 0 ∈ 0⊕0 = f(x)⊕f(y) = f(x⊕y) and so f(t) = 0,

for some t ∈ x⊕ y. This implies that (x⊕ y) ∩ kerf 6= ∅ and so by Theorem 4.6,
kerf is a weak HvMV-ideal of H.

(2) It is easy.
(3) Assume that f is onto and I is an HvMV-ideal of H. Let x � y and

y ∈ f(I). Then, 0∗ ∈ x∗ ⊕ y ∩ y ⊕ x∗ and y = f(b), for some b ∈ I. Since, f is
onto, there exists a ∈ H such that f(a) = x. Hence,

0∗ ∈ f(a∗)⊕ f(b) ∩ f(b)⊕ f(a∗) = f(a∗ ⊕ b) ∩ f(b⊕ a∗),

whence f(u) = 0∗ = f(v), for some u ∈ a∗ ⊕ b and v ∈ b ⊕ a∗. This implies that
u∗, v∗ ∈ kerf ⊆ I, i.e., a � b∗ ∩ I 6= ∅, whence a � b∗ ⊆ I. Since, b ∈ I, so a ∈ I
and hence, x = f(a) ∈ f(I).

Let now x, y ∈ f(I). Then, there exist a, b ∈ I such that f(a) = x and f(b) = y.
From a ⊕ b ⊆ I it follows that x ⊕ y ⊆ f(I), proving f(I) is an HvMV-ideal of
K.

De�nition 4.12. Let A be a nonempty subset of H. The smallest (weak) HvMV-
ideal of H containing A is called the (weak)HvMV-ideal generated by A and is
denoted by 〈A〉 (by 〈A〉w respectively).
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It is clear that

〈A〉 ⊇ {x ∈ H : x � (· · · ((a1 ⊕ a2)⊕ · · · )⊕ an, for some n ∈ N, a1, . . . , an ∈ A}.

Theorem 4.13. Assume that |x ⊕ y| < ∞, for all x, y ∈ H, � is transitive and

monotone, and x⊕ y ∈ R(H) = {a ∈ H : |z ⊕ a| = 1 ∀z ∈ H} for all x, y ∈ R(H).
Then

〈A〉w = {x ∈ H : x � (· · · ((a1 ⊕ a2)⊕ · · · )⊕ an, for some n ∈ N, a1, . . . , an ∈ A}

for any nonempty subset A of H contained in R(H).

Proof. Assume that

B = {x ∈ H : x � (· · · ((a1 ⊕ a2)⊕ · · · )⊕ an, for some n ∈ N, a1, . . . , an ∈ A}.

Obviously, A ⊆ B. Now, let x, y ∈ H be such that x � y and y ∈ B. Since,
|x⊕y| < ∞, so y � (· · · ((a1⊕a2)⊕· · · )⊕an for some n ∈ N and a1, a2, . . . , an ∈ A.
This implies that 0∗ ∈ y∗⊕ ((· · · ((a1⊕ a2)⊕ · · · )⊕ an). On the other hand, x � y
implies that y∗ � x∗, whence

0∗ ∈ {0∗} = y∗ ⊕ (· · · ((a1 ⊕ a2)⊕ · · · )⊕ an) � x∗ ⊕ (· · · ((a1 ⊕ a2)⊕ · · · )⊕ an),

which gives 0∗ ∈ x∗⊕(· · · ((a1⊕a2)⊕· · · )⊕an), i.e., x � (· · · ((a1⊕a2)⊕· · · )⊕an).
Thus, x ∈ B.

Now, let x, y ∈ B. Then,

x � (· · · (a1 ⊕ a2)⊕ · · · )⊕ an and y � (· · · (b1 ⊕ b2)⊕ · · · )⊕ bm

for some n, m ∈ N, a1, . . . , an, b1, . . . , bm ∈ A. Since, � is monotone,

x⊕ y � x⊕ ((· · · (b1 ⊕ b2)⊕ · · · )⊕ bm)
� ((· · · (a1 ⊕ a2)⊕ · · · )⊕ an)⊕ ((· · · (b1 ⊕ b2)⊕ · · · )⊕ bm)

and hence there exists u ∈ x⊕ y such that

u � x⊕ ((· · · (a1 ⊕ a2)⊕ · · · )⊕ an)
� ((· · · (a1 ⊕ a2)⊕ · · · )⊕ an)⊕ ((· · · (b1 ⊕ b2)⊕ · · · )⊕ bm)
= (· · · (((· · · (a1 ⊕ a2)⊕ · · · )⊕ an)⊕ b1)⊕ · · · )⊕ bm

because � is transitive. The equality holds for A∩B 6= ∅, and |A| = 1 = |B| imply
A = B. Thus u ∈ B and so x⊕ y � B. Therefore, B is a weak HvMV-ideal of H.
Obviously, B is the least weak HvMV-ideal of H containing A.

Let HvMVI (WHvMVI ) denotes the set of all HvMV-ideals (weak HvMV-ideals)
of H. Then, HvMVI (WHvMVI ) together with the set inclusion, as a partial
ordering, is a poset in which for all Ai ⊆HvMVI ,

∧
Ai =

⋂
Ai and

∨
Ai = 〈Ai〉.

So, we have

Theorem 4.14. (HvMVI ,⊆) is a complete lattice, and if WHvMVI is closed with

respect to the intersection, HvMVI is a complete sublattice of the complete lattice

(WHvMVI ,⊆).
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