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H,MV-algebras, I

Mahmood Bakhshi

Abstract. The aim of this paper is to introduce the concept of H,MV-algebras as a common
generalization of MV-algebras and hyper MV-algebras. After giving some basic properties and
related results, the concepts of H, MV-subalgebras, H, MV-ideals and weak H,MV-ideals are in-
troduced and some of their properties and the connections between them are obtained.

1. Introduction

In 1958, Chang [1], introduced the concept of an MV-algebra as an algebraic proof
of completeness theorem for Ny-valued Lukasiewicz propositional calculus, see also
[2]. Many mathematicians have worked on MV-algebras and obtained significant
results. Mundici [6] proved that MV-algebras and abelian ¢-groups with strong
unit are categorically equivalent.

The hyperstructure theory (called also multialgebras) was introduced in 1934
by Marty [5]. Around the 40’s, several authors worked on hypergroups, especially
in France and in the United States, but also in Italy, Russia and Japan. Recently,
Ghorbani et al. [4] applied the hyperstructures to MV-algebras and introduced the
concept of hyper MV-algebras. Now hyperstructures have many applications to
several sectors of both pure and applied sciences such as: geometry, hypergraphs,
binary relations, lattices, fuzzy set and rough sets, automata, cryptography, com-
binatorics, codes, artificial intelligence and probabilities.

H,-structures were introduced by Vougiouklis in [7] as a generalization of the
well-known algebraic hyperstructures (hypergroup, hyperring, hypermodule and
so on). The reader will find in [8] some basic definitions and theorems about H,-
structures. A survey of some basic definitions, results and applications one can
find in [3] and [§].

In this paper, in order to obtain a suitable generalization of MV-algebras and
hyper MV-algebras which may be equivalent (categorically) to a certain subclass of
the class of H,-groups, the concept of H,MV-algebra is introduced and some related
results are obtained. In particular, weak H,MV-ideals generated by a subset are
characterized.
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2. Preliminaries

In this section we present some basic definitions and results.

Definition 2.1. An MV-algebra is an algebra (M;+,*,0) of type (2,1,0) satisfying
the following axioms:
(MV1) + is associative,

(MV2) + is commutative,

(MV3) 40 =z,

(MV4) (z*)* =z,

(MV5) x4 0* = 07,

(MV6) (z*+y)*+y=(y* +2) +ux.

On any MV-algebra M we can defina a partial ordering < by putting x <y if
and only if z* + y = 0*.

Definition 2.2. A hyper MV- algebra is a nonempty set H endowed with a binary
hyperoperation ‘@®’, a unary operation ‘*’ and a constant ‘0’ satisfying the following
conditions: Vx,y,z € M,

(HMV1) 2@ (y@®2)=(zdy) ® =,
(HMV2) 2dy =y Dz,
(HMV3) (2*)* ==,
(HMVY) (" @y) @y=(y* @) @,
(HMV5) 0* € & 0%,
(
(

N D

HMV6) 0% € z @ 2,
HMV7) = < y and y < = imply 2 = y, where & < y is defined as 0* € z* G y.

For A,B C H, A < B is defined as a < b for some a € A and b € B.

Proposition 2.3. In any hyper MV-algebra H for all z,y € H we have
1. 007,

rLx,

x < y implies that y* < z*,

r<Lrdy,

040 =0},

6. xcxd0.

AN e

Definition 2.4. A nonempty subset I of hyper MV-algebra H is called a
e hyper MV -ideal if
(Ip) x<yandye T imply z €1,
() x@y CIforal z,yel,
o weak hyper MV-ideal if (Iy) holds and
() @y forall z,yel.

Obviously, every hyper MV-ideal is a weak hyper MV-ideal.
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3. H,MV-algebras

Definition 3.1. An H,MV-algebra is a nonempty set H endowed with a binary
hyperoperation ‘@’, a unary operation ‘*’ and a constant ‘0’ satisfying the following
conditions:
) 2D (YD) N(zdy) ® 2z #0, (weak associativity)
) zhyNydx #£0, (weak commutativity)
) (%) ==,
HMVY) (z*@y) ©yn(y* @x) dx#0,
) 0 €xad0* N0* B,
) 0*cex@a*Na* dua,
) zex®d0N0Ox,

) 0 ex*dynNy@a*and 0* € y* DaxNady* imply z = y.

Remark 3.2. On any H,MV-algebra H, we can define a binary relation ‘<’ by
r=y & 0Fex"pynyd .

Hence, the condition (H,MV8) can be redefined as follows:
r <yand y X ximply x = y.

Let A and B be nonempty subsets of H. By A < B we mean that there exist
a € A and b € B such that a < b. For A C H, we denote the set {a* : a € A} by
A* and 0* by 1.

Obviously, every hyper MV-algebra is an H,MV-algebra but the converse is not
true. We say H,MV-algebra H is proper if it is not a hyper MV-algebra.

Example 3.3. Let H = {0, a, 1} and the operations & and * be defined as follows:

& 0 a 1
0 {0} {a}  {0,a,1}
a  {0a} {1} {0,1}
1 {0,1} {0,a,1} {0,a,1}
* 1 a 0

Then (H;®,*,0) is a proper H,MV-algebra. O
Example 3.4. Similarly, H = {0, a,b, 1} with the operations ® and * defined by

©® 0 a b 1
0 {0,a} {0,a,b} {0,a,b} {0,a,b,1}
a {0,a,b,1} {0,b} {0,1} {a,b,1}
b {a,b} {0,a,b,1} {0} {0,a,b,1}
1 {0,a,1} {0,a,b,1} {1} {0,a,b,1}
* 1 b a 0

is a proper H,MV-algebra. O
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Proposition 3.5. In any H,MV-algebra H for z,y € H and A,B C H the fol-
lowing hold:

1.

e B T o

—_ =
= O

12.

r=xz, ASA,

0<z<1,0<A<1,

r <y implies y* < x*,

A = B implies B* < A*,

A < B implies that 0* € (A* ® B)N (B @ A*),
(x*)* = and (A*)* = A,

0e (A A" )N (A* @ A),

AN B # 0 implies that A < B,

(AN B)* = A* N B*,

(AeB)N(B® A) #10,

A (BeCO)N(A®B)aC #10,

(A*@B)*®BN(B*® A)*® A#0. O

The following example shows that the relation =< is not transitive.

Example 3.6. In the H,MV-algebra (H;®,*,0), where H = {0, a,b, ¢, 1} and the
operations are defined by

©® 0 a b c 1

0 {0} {0,a} {0,b} {0,c} {0,a,b,c,1}
a {0,a} {0,a} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
b {0,b} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c} {0,a,b,c,1}
C {O,C} {07a3bﬁc71} {0’a7b7c} {07a5bﬂc71} {0’a7b7c71}
1 {0,a,b,l} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1} {0,a,b,c,1}
* 1 b a ¢ 0

we have a < b and b < ¢ while a £ ¢, because 0* &€ {0,a,b,c} = a* @ c. O

Now let z ©y = (* ® y*)*.

Theorem 3.7. In any H,MV-algebra H for all x,y,z € H and all nonempty
subsets A and B of H we have:

(1)

T o W N

e N e N T e T
© 00 g O
NN NI S N N N

—
=)

zOYoz)N(z0y) ©z#0,

rOyNy©z#0,

0ex0N0Gz,

Dexzoxr*Na* o,

rexOIN1O,

lezoy* Ny*Orandl cyoz*Na* Oy imply x =y,
(A® B)* = A* ® B*,

(A® B)* = A* @ B*,

re€x®x if and only if x* € x* © x*,

re€x@x if and only if x* € x* O x*.
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Proof. 1t is enough to observe that for z,y,z € H,

zoyoz) = (Jrotte(y @)}
@ et) ey o)}
U{(a:* Ottt Cyt @)

= (JHoracrr ot it ey @2}

= U{a* et @ (Y @)}

and similarly
(x@y)@z:U{a* ca€ (oY )@z}

This proves (1).
The proofs of (2) — (6) follow from (H,MV2) and (H,MV5)-(H,MVT). The
proofs of (7) — (10) follow from the definition. O

On H we also define two binary hyperoperations ‘v’ and ‘A’ as
eVy=(@oy)ey, zAy=@ey)oy=(@"Vvy)"

Theorem 3.8. In any H,MV-algebra H, the following hold:
(1) Ay =2"Vy", (xVy" =z"Ay",

(zVy)N(yvae)#0, (xAy)N(yAz) #0,

x€(xVr)n(xAz),

0e(zn0)N(0AZ),

le(zvl)n(lva),

z€(xzVO)N(OVaz),
)

)
)
)
)
)
7 ze€(xAl)N(1Ax),
)
)
)
)
)

o~~~ —
o~~~

x Xy impliesyc€xzVyandx € x Ny,
rEey®ax impliesl € yVa*,
xz €y@x implies 0 € y \a*,
Ifrex®x, then0 € x A ™,
Ifrex®ux, thenl € xVa*.

VY =@roy) ey =@@oy) ey =((zey)oy) =@ Ay)"

Similarly, the second equality is proved.
(2). It follows from (H,MV4).
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(3). From 0 € z ® z* it follows that x € 0@z C (z ©@ 2*) ®x = = V z. From
0* € x @ z* it follows that

r=@")" e(0@0z") " C(z@s") @) =xda") Oz =aAx.

(4). From 1 = 0* € x @ 0* it follows that 0 € 10 C (x ®0*) ®0 = z A 0.
Similarly, from z* € 0@ z* it follows that 0 € z* ©x C (0@ z*) ®x = 0 Az. Thus,
0e(zA0)N(0AX).

(9. Ifzeyor,then1=0"€caxda*C(yOz)dar* =yVa*.

(10). frceyPa,then0cz0a* C(y@a)Oa* =y At

The proofs of the other cases are easy. O

Proposition 3.9. Let x € H. Then

(1) 0exAa* ifand onlyif 2@ x 2 x if and only if z* 2 2* O z*,
(2) 1exva® ifandonlyif x*®ax* 22" ifand only if = <z O x. O

4. Homomorphisms, subalgebras and H,MV-ideals

In this section, homomorphisms, H,MV-subalgebras, weak H,MV-ideals and H,MV-
ideals are introduced and some their properties are obtained.

Definition 4.1. Let (H;®,*,0y) and (K;®,*,0x) be H,MV-algebras and let
f+ H— K be a function satisfying the following conditions:

(Om) = Ok,

(z7) = f(z)*,

(%) =2 fl2)",

(zoy) = f(z) @ f(y),

(zoy) C flz) @ f(y).

f is called a homomorphism if it satisfies (1), (2) and (4), and it is called a weak

homomorphism if it satisfies (1), (3) and (5). Clearly, f(1) = 1if f is a homomor-
phism. Note that (1) is not a consequence of (2) and (4).

nf
) f
3) f
) f
) f

Example 4.2. The set H = {0, a, 1} with the operations defined by the table

0 a 1
{0y {0.a} {0,1}
{0,a} {01} {a1}
{o.1}  {a1} {1}
1 0

a

*|— o o|®

is an H,MV-algebra. The function f: H — H such that f(0) =1, f(1) = 0 and
f(a) = a satisfies (2) and (4) but not (1). O
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Further, for simplicity, we will use the same symbols for operations in H and
K.

Theorem 4.3. Let f : H — K be a homomorphism.
(1) f is one-to-one if and only if ker f = {0}.

(2) f is an isomorphism if and only if there exists a homomorphism f=* from
K onto H such that ff~' =1g and f~1f = 1y.

Proof. We prove only (1). Assume that f is one-to-one and = € kerf. Then,
f(z) = 0 = f(0) whence = 0, ie., kerf = {0}. Conversely, assume that
kerf = {0} and f(z) = f(y), for z,y € H. Then,

0"efx) o flynfly) @ fl@) =fla"dy) N flydz’)

whence f(s) = 0* = f(t), for some t € z* ® y and s € y ® *. Hence, f(s*) =
f#) =0, 1ie., s*t* €ckerf ={0}andso 0* =se€yPdz*and 0* =t € ax* Dy
whence x < y. Similarly, we can show that y < z. Thus, x = y, i.e., f is
one-to-one. O

Proposition 4.4. A nonempty subset S of H is an H,MV-subalgebra of H if and
only if 0 € S and x*®y C S forallx,y € S. O

Definition 4.5. A nonempty subset I of H such that z < y and y € I imply
x € I is called

an H,MV-ideal if z @y C I, for all z,y € I, and

a weak H,MV-ideal if x @y X I, for all =,y € I.

From Proposition 3.5 (8) it follows that every H,MV-ideal is a weak H,MV-
ideal.

Theorem 4.6. A nonempty subset I of H is a weak H,MV-ideal if and only if
x=yandy €l implyx €I and for all x,y € I we have (x Dy) NI # 0. O

Theorem 4.7. If I is an H,MV-ideal of an H,MV-algebra H in which x < xV y
holds for all x,y € H, then 0 € I, and a ® b* C I together with b € I imply a € I.

Proof. If I is an H,MV-idealm then obviously, 0 € I. Now, let a ® b* C I and
bel Then,a=<aVb=(a®b")®bC I, whenceacI. O

Definition 4.8. A nonempty subset A of H is called Su-reflexive if t ©yN A # ()
implies that z © y C A. Similarly, A is called Sg-reflexive if x ®yN A # () implies
that z ®y C A.

Theorem 4.9. If in an H,MV-algebra H for all x,y € H we have Ay =z < xVy,
then each its Sg-reflexive and Sg-reflexive subset is an H,MV-ideal of H.
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Proof. Let z,y € H be such that x < y and y € I. Then, 0* € z* @ y and
s0 0 € x ® y*, whence (x ©® y*) NI # (. Since, I is Sg-reflexive, z © y* C T
and so x € I. Thus, x <y and y € I imply x € I. Now, let z,y € I. Then,
(r®y) ©y* =z Ay* < x and hence, ¢ X x € I, where ¢ € x A y*. This implies
that ¢ € I and so (z @ y) ® y* NI # 0. Hence, there exists a € z @ y such that
a®y*NI+#Dcombiningy el wegetacl, ie,x®dynNI#(), whence xdy C I.
Thus, I is an H,MV-ideal of H. O

Corollary 4.10. In a hyper MV-algebra, every Sg-reflexive and Sg-reflexive sub-
set I that x <y and y € I imply x € I is a hyper MV-ideal. O

Theorem 4.11. Let f: H — K be a homomorphism. Then
(1) kerf is a weak H,MV-ideal of H.
(2) If Iis an H,MV-ideal of K, f~1(I) is an H,MV-ideal of H.

(3) Assume that x < x V y holds for all z,y € H. If f is onto and I is an S~
reflexive H,MV-ideal of H containing ker f, then f(I) is an H,MV-ideal of
K.

Proof. (1). Let z,y € H be such that x <y and y € kerf. Then, 0* € (z* D y) N
(y®z*) and f(y) = 0. Thus

0" =f0) e fla"@y)Nflyoa™) = flz)" ®0N0& f(z)",

which implies that f(x) < 0. Hence, f(z) =0, i.e., z € kerf.

Now, let z,y € kerf. Then, 0 € 060 = f(2)® f(y) = f(zdy) and so f(t) =0,
for some ¢ € x @ y. This implies that (z @® y) Nkerf # () and so by Theorem 4.6,
kerf is a weak H,MV-ideal of H.

(2) Tt is easy.

(3) Assume that f is onto and I is an H,MV-ideal of H. Let z < y and
y € f(I). Then, 0* € z* @yNy @ z* and y = f(b), for some b € I. Since, f is
onto, there exists a € H such that f(a) = z. Hence,

0" e fl@) @ f(b)Nfb) & f(a®) = fla"®b) N f(bBa®),

whence f(u) = 0* = f(v), for some u € a* &b and v € b @ a*. This implies that
u*,v* € kerf C1I,ie.,a®b*NI+#0, whence a ©b* C I. Since, be I,s0a €]
and hence, z = f(a) € f(I).

Let now z,y € f(I). Then, there exist a,b € I such that f(a) = x and f(b) = y.
From a @ b C I it follows that « @ y C f(I), proving f(I) is an H,MV-ideal of
K. O

Definition 4.12. Let A be a nonempty subset of H. The smallest (weak) H,MV-
ideal of H containing A is called the (weak)H,MV-ideal generated by A and is
denoted by (A) (by (A),, respectively).



H,MV-algebras, I 17

It is clear that
(A)D{reH: 2 =2(--((a1@az)® ) Day, forsomen € N,ay,...,a, € A}.

Theorem 4.13. Assume that |z @ y| < oo, for all x,y € H, < is transitive and
monotone, and t @y € R(H) ={a € H:|z®a|=1VYz € H} for all z,y € R(H).
Then

Ay ={zecH: 2= (a1 Pa) ®---) D an, for somen € N,aq,...,a, € A}
for any nonempty subset A of H contained in R(H).
Proof. Assume that

B={zcH:z2=2(--(a1Pa2)®--)Pay, forsomen N, ay,...,a, € A}.

Obviously, A C B. Now, let x,y € H be such that + < y and y € B. Since,
[x®y| < oo,s0y X (- ((a1Bag)®- -+ )®ay, for some n € Nand ay,as,...,a, € A.
This implies that 0* € y* & ((--- (a1 ®az) ®---) D ay). On the other hand, z <y
implies that y* < =*, whence

0" e{0t=y"a(-(m@a)®-)@an) 22" & (- (a1 B az) &) B an),

which gives 0* € 2* @ (- ((a1 D az) D--- ) Bay),ie,z 2 (- ((a1Da2)®- - )Day).
Thus, z € B.
Now, let z,y € B. Then,

xj(~~~(a1@a2)@~~)@an and yj(~-(b1@b2)®~-)®bm
for some n,m € N, ay,...,an,,b1,...,b, € A. Since, =< is monotone,

z®y = z®((---(b1®b) D) D bp)

= (@ @)@ ) Ban) & (- (@ b) @) Dby

and hence there exists v € z @ y such that
x@((~~(a1@a2)®~~)@an)
(@ @a)s ) @a) (- (heb)e: ) @b
("'((("'(al@az)@"')@an)@bl>@“')@bm

because < is transitive. The equality holds for ANB # ), and |A| = 1 = | B| imply
A = B. Thus u € B and so z @ y < B. Therefore, B is a weak H,MV-ideal of H.
Obviously, B is the least weak H,MV-ideal of H containing A. O

u

I TA

Let H,MVI (WH,MV1) denotes the set of all H,MV-ideals (weak H,MV-ideals)
of H. Then, H,MVI (WH,MVI ) together with the set inclusion, as a partial
ordering, is a poset in which for all A; CH,MVI ; A A; = A4; and \/ 4; = (A;).
So, we have
Theorem 4.14. (H,MVI ,C) is a complete lattice, and if WH,MVI is closed with

respect to the intersection, H,MVI is a complete sublattice of the complete lattice
(WH,MVI ,C). 0
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