H_v MV-algebras, I

Mahmood Bakhshi

Abstract. The aim of this paper is to introduce the concept of $H_v MV$ -algebras as a common generalization of MV-algebras and hyper MV-algebras. After giving some basic properties and related results, the concepts of $H_v MV$ -subalgebras, $H_v MV$ -ideals and weak $H_v MV$ -ideals are introduced and some of their properties and the connections between them are obtained.

1. Introduction

In 1958, Chang [1], introduced the concept of an MV-algebra as an algebraic proof of completeness theorem for \aleph_0 -valued Łukasiewicz propositional calculus, see also [2]. Many mathematicians have worked on MV-algebras and obtained significant results. Mundici [6] proved that MV-algebras and abelian ℓ -groups with strong unit are categorically equivalent.

The hyperstructure theory (called also multialgebras) was introduced in 1934 by Marty [5]. Around the 40's, several authors worked on hypergroups, especially in France and in the United States, but also in Italy, Russia and Japan. Recently, Ghorbani et al. [4] applied the hyperstructures to MV-algebras and introduced the concept of hyper MV-algebras. Now hyperstructures have many applications to several sectors of both pure and applied sciences such as: geometry, hypergraphs, binary relations, lattices, fuzzy set and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence and probabilities.

 H_v -structures were introduced by Vougiouklis in [7] as a generalization of the well-known algebraic hyperstructures (hypergroup, hyperring, hypermodule and so on). The reader will find in [8] some basic definitions and theorems about H_v -structures. A survey of some basic definitions, results and applications one can find in [3] and [8].

In this paper, in order to obtain a suitable generalization of MV-algebras and hyper MV-algebras which may be equivalent (categorically) to a certain subclass of the class of H_v -groups, the concept of H_v MV-algebra is introduced and some related results are obtained. In particular, weak H_v MV-ideals generated by a subset are characterized.

²⁰¹⁰ Mathematics Subject Classification: 03B50, 06D35.Keywords: MV-algebra, H_vMV -algebra, H_vMV -ideal.

2. Preliminaries

In this section we present some basic definitions and results.

Definition 2.1. An MV-algebra is an algebra (M; +, *, 0) of type (2,1,0) satisfying the following axioms:

(MV1) + is associative, (MV2) + is commutative, (MV3) x + 0 = x, (MV4) $(x^*)^* = x$, (MV5) $x + 0^* = 0^*$, (MV6) $(x^* + y)^* + y = (y^* + x)^* + x$.

On any MV-algebra M we can define a partial ordering \leq by putting $x \leq y$ if and only if $x^* + y = 0^*$.

Definition 2.2. A hyper MV- algebra is a nonempty set H endowed with a binary hyperoperation ' \oplus ', a unary operation '*' and a constant '0' satisfying the following conditions: $\forall x, y, z \in M$,

 $\begin{array}{ll} (\mathsf{HMV1}) & x \oplus (y \oplus z) = (x \oplus y) \oplus z, \\ (\mathsf{HMV2}) & x \oplus y = y \oplus x, \\ (\mathsf{HMV3}) & (x^*)^* = x, \\ (\mathsf{HMV4}) & (x^* \oplus y)^* \oplus y = (y^* \oplus x)^* \oplus x, \\ (\mathsf{HMV5}) & 0^* \in x \oplus 0^*, \\ (\mathsf{HMV6}) & 0^* \in x \oplus x^*, \\ (\mathsf{HMV7}) & x \ll y \text{ and } y \ll x \text{ imply } x = y, \text{ where } x \ll y \text{ is defined as } 0^* \in x^* \oplus y. \end{array}$

For $A, B \subseteq H$, $A \ll B$ is defined as $a \ll b$ for some $a \in A$ and $b \in B$.

Proposition 2.3. In any hyper MV-algebra H for all $x, y \in H$ we have

0 ≪ x ≪ 0*,
x ≪ x,
x ≪ y implies that y* ≪ x*,
x ≪ x ⊕ y,

- 5. $0 \oplus 0 = \{0\},\$
- 6. $x \in x \oplus 0$.

Definition 2.4. A nonempty subset *I* of hyper MV-algebra *H* is called a

• hyper MV-ideal if

 (I_0) $x \ll y$ and $y \in I$ imply $x \in I$,

- $(I_1) \quad x \oplus y \subseteq I \text{ for all } x, y \in I,$
- weak hyper MV-ideal if (I_0) holds and

 $(I_2) \quad x \oplus y \ll I \text{ for all } x, y \in I.$

Obviously, every hyper MV-ideal is a weak hyper MV-ideal.

3. H_v MV-algebras

Definition 3.1. An $H_v MV$ -algebra is a nonempty set H endowed with a binary hyperoperation ' \oplus ', a unary operation '*' and a constant '0' satisfying the following conditions:

 $\begin{array}{ll} (\mathsf{H}_v\mathsf{MV1}) & x \oplus (y \oplus z) \cap (x \oplus y) \oplus z \neq \emptyset, & (\text{weak associativity}) \\ (\mathsf{H}_v\mathsf{MV2}) & x \oplus y \cap y \oplus x \neq \emptyset, & (\text{weak commutativity}) \\ (\mathsf{H}_v\mathsf{MV3}) & (x^*)^* = x, & \\ (\mathsf{H}_v\mathsf{MV4}) & (x^* \oplus y)^* \oplus y \cap (y^* \oplus x)^* \oplus x \neq \emptyset, & \\ (\mathsf{H}_v\mathsf{MV5}) & 0^* \in x \oplus 0^* \cap 0^* \oplus x, & \\ (\mathsf{H}_v\mathsf{MV6}) & 0^* \in x \oplus x^* \cap x^* \oplus x, & \\ (\mathsf{H}_v\mathsf{MV7}) & x \in x \oplus 0 \cap 0 \oplus x, & \\ (\mathsf{H}_v\mathsf{MV8}) & 0^* \in x^* \oplus y \cap y \oplus x^* \text{ and } 0^* \in y^* \oplus x \cap x \oplus y^* \text{ imply } x = y. & \end{array}$

Remark 3.2. On any H_v MV-algebra H, we can define a binary relation ' \preceq ' by

 $x \preceq y \Leftrightarrow 0^* \in x^* \oplus y \cap y \oplus x^*.$

Hence, the condition $(H_v MV8)$ can be redefined as follows:

$$x \leq y$$
 and $y \leq x$ imply $x = y$

Let A and B be nonempty subsets of H. By $A \leq B$ we mean that there exist $a \in A$ and $b \in B$ such that $a \leq b$. For $A \subseteq H$, we denote the set $\{a^* : a \in A\}$ by A^* , and 0^* by 1.

Obviously, every hyper MV-algebra is an H_vMV -algebra but the converse is not true. We say H_vMV -algebra H is *proper* if it is not a hyper MV-algebra.

Example 3.3. Let $H = \{0, a, 1\}$ and the operations \oplus and * be defined as follows:

\oplus	0	a	1
0	$\{0\}$	{a}	$\{0,a,1\}$
\mathbf{a}	$\{0,a\}$	$\{1\}$	$\{0,1\}$
1	$_{\{0,1\}}$	$\{0, a, 1\}$	$\{0, \mathrm{a}, 1\}$
*	1	a	0

Then $(H; \oplus, *, 0)$ is a proper $\mathsf{H}_v \mathsf{MV}$ -algebra.

Example 3.4. Similarly, $H = \{0, a, b, 1\}$ with the operations \oplus and * defined by

\oplus	0	a	b	1
0	${0,a}$	$\{0, a, b\}$	$\{0, a, b\}$	$\{0,a,b,1\}$
\mathbf{a}	$\scriptstyle \{0,a,b,1\}$	$_{\{0,b\}}$	$\{0,1\}$	${a,b,1}$
b	${a,b}$	$_{\{0,a,b,1\}}$	$\{0\}$	$\{0, a, b, 1\}$
1	$_{\{0,a,1\}}$	$_{\{0,a,b,1\}}$	$\{1\}$	$\{0,a,b,1\}$
*	1	b	a	0

is a proper $H_v MV$ -algebra.

M. Bakhshi

Proposition 3.5. In any H_vMV -algebra H for $x, y \in H$ and $A, B \subseteq H$ the following hold:

- 1. $x \leq x, A \leq A$, 2. $0 \leq x \leq 1, 0 \leq A \leq 1$, 3. $x \leq y$ implies $y^* \leq x^*$, 4. $A \leq B$ implies $B^* \leq A^*$, 5. $A \leq B$ implies that $0^* \in (A^* \oplus B) \cap (B \oplus A^*)$, 6. $(x^*)^* = x$ and $(A^*)^* = A$, 7. $0^* \in (A \oplus A^*) \cap (A^* \oplus A)$, 8. $A \cap B \neq \emptyset$ implies that $A \leq B$, 9. $(A \cap B)^* = A^* \cap B^*$, 10. $(A \oplus B) \cap (B \oplus A) \neq \emptyset$,
- 11. $A \oplus (B \oplus C) \cap (A \oplus B) \oplus C \neq \emptyset$,
- 12. $(A^* \oplus B)^* \oplus B \cap (B^* \oplus A)^* \oplus A \neq \emptyset.$

The following example shows that the relation \leq is not transitive.

Example 3.6. In the H_v MV-algebra $(H; \oplus, *, 0)$, where $H = \{0, a, b, c, 1\}$ and the operations are defined by

\oplus	0	a	b	С	1
0	$\{0\}$	$\{0,a\}$	$\{0,b\}$	$\{0, c\}$	$\{0,a,b,c,1\}$
a	$\{0,a\}$	$\{0,a\}$	$\{0,a,b,c,1\}$	$\scriptstyle \{0,a,b,c,1\}$	$\{0,a,b,c,1\}$
b	$\{0,b\}$	$\{0, a, b, c, 1\}$	$\{0,a,b,c,1\}$	$_{\{0,a,b,c\}}$	$\{0,a,b,c,1\}$
с	$_{\{0,c\}}$	$\{0, a, b, c, 1\}$	$\{0, a, b, c\}$	$\scriptstyle \{0,a,b,c,1\}$	$\{0,a,b,c,1\}$
1	$\{0,a,b,c,1\}$	$\{0,a,b,c,1\}$	$\{0,a,b,c,1\}$	$\{0,a,b,c,1\}$	$\{0,a,b,c,1\}$
*	1	b	а	с	0

we have $a \leq b$ and $b \leq c$ while $a \not\leq c$, because $0^* \notin \{0, a, b, c\} = a^* \oplus c$.

Now let $x \odot y = (x^* \oplus y^*)^*$.

Theorem 3.7. In any H_vMV -algebra H for all $x, y, z \in H$ and all nonempty subsets A and B of H we have:

- (1) $x \odot (y \odot z) \cap (x \odot y) \odot z \neq \emptyset$,
- (2) $x \odot y \cap y \odot x \neq \emptyset$,
- (3) $0 \in x \odot 0 \cap 0 \odot x$,
- (4) $0 \in x \odot x^* \cap x^* \odot x$,
- (5) $x \in x \odot 1 \cap 1 \odot x$,
- (6) $1 \in x \odot y^* \cap y^* \odot x$ and $1 \in y \odot x^* \cap x^* \odot y$ imply x = y,
- $(7) \quad (A \oplus B)^* = A^* \odot B^*,$
- $(8) \quad (A \odot B)^* = A^* \oplus B^*,$
- (9) $x \in x \oplus x$ if and only if $x^* \in x^* \odot x^*$,

(10) $x \in x \odot x$ if and only if $x^* \in x^* \oplus x^*$.

Proof. It is enough to observe that for $x, y, z \in H$,

$$\begin{aligned} x \odot (y \odot z) &= \bigcup \{ x \odot t : t \in (y^* \oplus z^*)^* \} \\ &= \bigcup \{ (x^* \oplus t^*)^* : t \in (y^* \oplus z^*)^* \} \\ &= \bigcup \{ (x^* \oplus t^*)^* : t^* \in y^* \oplus z^* \} \\ &= \bigcup \{ a^* : a \in x^* \oplus t^* : t^* \in y^* \oplus z^* \} \\ &= \bigcup \{ a^* : a \in x^* \oplus (y^* \oplus z^*) \} \end{aligned}$$

and similarly

$$(x \odot y) \odot z = \bigcup \{a^* : a \in (x^* \oplus y^*) \oplus z^*\}.$$

This proves (1).

The proofs of (2) - (6) follow from $(H_v MV2)$ and $(H_v MV5)-(H_v MV7)$. The proofs of (7) - (10) follow from the definition.

On H we also define two binary hyperoperations ' \lor ' and ' \land ' as

 $x \lor y = (x \odot y^*) \oplus y, \quad x \land y = (x \oplus y^*) \odot y = (x^* \lor y^*)^*.$

Theorem 3.8. In any $H_v MV$ -algebra H, the following hold:

- (1) $(x \wedge y)^* = x^* \vee y^*, \ (x \vee y)^* = x^* \wedge y^*,$
- (2) $(x \lor y) \cap (y \lor x) \neq \emptyset, \ (x \land y) \cap (y \land x) \neq \emptyset,$
- (3) $x \in (x \lor x) \cap (x \land x)$,
- $(4) \quad 0 \in (x \land 0) \cap (0 \land x),$
- $(5) \quad 1 \in (x \lor 1) \cap (1 \lor x),$
- (6) $x \in (x \lor 0) \cap (0 \lor x)$,
- (7) $x \in (x \wedge 1) \cap (1 \wedge x)$,
- (8) $x \preceq y$ implies $y \in x \lor y$ and $x \in x \land y$,
- (9) $x \in y \odot x$ implies $1 \in y \lor x^*$,
- (10) $x \in y \oplus x$ implies $0 \in y \land x^*$,
- (11) If $x \in x \oplus x$, then $0 \in x \land x^*$,
- (12) If $x \in x \odot x$, then $1 \in x \lor x^*$.

Proof. (1). Let $x, y \in H$. Then,

$$x^* \vee y^* = (x^* \odot y) \oplus y^* = (x \oplus y^*)^* \oplus y^* = ((x \oplus y^*) \odot y)^* = (x \land y)^*.$$

Similarly, the second equality is proved. (2). It follows from $(H_v MV4)$. (3). From $0 \in x \odot x^*$ it follows that $x \in 0 \oplus x \subseteq (x \odot x^*) \oplus x = x \lor x$. From $0^* \in x \oplus x^*$ it follows that

$$x=(x^*)^*\in (0\oplus x^*)^*\subseteq ((x\oplus x^*)^*\oplus x^*)^*=(x\oplus x^*)\odot x=x\wedge x.$$

(4). From $1 = 0^* \in x \oplus 0^*$ it follows that $0 \in 1 \odot 0 \subseteq (x \oplus 0^*) \odot 0 = x \land 0$. Similarly, from $x^* \in 0 \oplus x^*$ it follows that $0 \in x^* \odot x \subseteq (0 \oplus x^*) \odot x = 0 \land x$. Thus, $0 \in (x \land 0) \cap (0 \land x)$.

(9). If $x \in y \odot x$, then $1 = 0^* \in x \oplus x^* \subseteq (y \odot x) \oplus x^* = y \lor x^*$. (10). If $x \in y \oplus x$, then $0 \in x \odot x^* \subseteq (y \oplus x) \odot x^* = y \land x^*$. The proofs of the other cases are easy.

Proposition 3.9. Let $x \in H$. Then

- (1) $0 \in x \wedge x^*$ if and only if $x \oplus x \preceq x$ if and only if $x^* \preceq x^* \odot x^*$,
- (2) $1 \in x \lor x^*$ if and only if $x^* \oplus x^* \prec x^*$ if and only if $x \prec x \odot x$.

4. Homomorphisms, subalgebras and $H_v MV$ -ideals

In this section, homomorphisms, $H_v MV$ -subalgebras, weak $H_v MV$ -ideals and $H_v MV$ -ideals are introduced and some their properties are obtained.

Definition 4.1. Let $(H; \oplus, *, 0_H)$ and $(K; \otimes, *, 0_K)$ be $\mathsf{H}_v\mathsf{MV}$ -algebras and let $f: H \longrightarrow K$ be a function satisfying the following conditions:

- (1) $f(0_H) = 0_K$,
- (2) $f(x^*) = f(x)^*$,
- (3) $f(x^*) \preceq f(x)^*$,
- (4) $f(x \oplus y) = f(x) \otimes f(y)$,
- (5) $f(x \oplus y) \subseteq f(x) \otimes f(y)$.

f is called a *homomorphism* if it satisfies (1), (2) and (4), and it is called a *weak* homomorphism if it satisfies (1), (3) and (5). Clearly, f(1) = 1 if f is a homomorphism. Note that (1) is not a consequence of (2) and (4).

Example 4.2. The set $H = \{0, a, 1\}$ with the operations defined by the table

\oplus	0	a	1
0	$\{0\}$	$\{0,a\}$	$\{0,1\}$
\mathbf{a}	$\{0,a\}$	$_{\{0,a,1\}}$	${a,1}$
1	$_{\{0,1\}}$	${a,1}$	$\{1\}$
*	1	a	0

is an $H_v MV$ -algebra. The function $f : H \longrightarrow H$ such that f(0) = 1, f(1) = 0 and f(a) = a satisfies (2) and (4) but not (1).

Further, for simplicity, we will use the same symbols for operations in H and K.

Theorem 4.3. Let $f : H \longrightarrow K$ be a homomorphism.

- (1) f is one-to-one if and only if $kerf = \{0\}$.
- (2) f is an isomorphism if and only if there exists a homomorphism f^{-1} from K onto H such that $ff^{-1} = 1_K$ and $f^{-1}f = 1_H$.

Proof. We prove only (1). Assume that f is one-to-one and $x \in kerf$. Then, f(x) = 0 = f(0) whence x = 0, i.e., $kerf = \{0\}$. Conversely, assume that $kerf = \{0\}$ and f(x) = f(y), for $x, y \in H$. Then,

$$0^* \in f(x)^* \oplus f(y) \cap f(y) \oplus f(x)^* = f(x^* \oplus y) \cap f(y \oplus x^*)$$

whence $f(s) = 0^* = f(t)$, for some $t \in x^* \oplus y$ and $s \in y \oplus x^*$. Hence, $f(s^*) = f(t^*) = 0$, i.e., $s^*, t^* \in kerf = \{0\}$ and so $0^* = s \in y \oplus x^*$ and $0^* = t \in x^* \oplus y$ whence $x \leq y$. Similarly, we can show that $y \leq x$. Thus, x = y, i.e., f is one-to-one.

Proposition 4.4. A nonempty subset S of H is an H_v MV-subalgebra of H if and only if $0 \in S$ and $x^* \oplus y \subseteq S$ for all $x, y \in S$.

Definition 4.5. A nonempty subset I of H such that $x \leq y$ and $y \in I$ imply $x \in I$ is called

an $\mathsf{H}_v\mathsf{MV}$ -*ideal* if $x \oplus y \subseteq I$, for all $x, y \in I$, and a *weak* $\mathsf{H}_v\mathsf{MV}$ -*ideal* if $x \oplus y \preceq I$, for all $x, y \in I$.

From Proposition 3.5 (8) it follows that every $\mathsf{H}_v\mathsf{MV}\text{-}\mathrm{ideal}$ is a weak $\mathsf{H}_v\mathsf{MV}\text{-}\mathrm{ideal}$.

Theorem 4.6. A nonempty subset I of H is a weak $H_v MV$ -ideal if and only if $x \leq y$ and $y \in I$ imply $x \in I$ and for all $x, y \in I$ we have $(x \oplus y) \cap I \neq \emptyset$. \Box

Theorem 4.7. If I is an $H_v MV$ -ideal of an $H_v MV$ -algebra H in which $x \leq x \lor y$ holds for all $x, y \in H$, then $0 \in I$, and $a \odot b^* \subseteq I$ together with $b \in I$ imply $a \in I$.

Proof. If I is an $\mathsf{H}_v\mathsf{MV}$ -idealm then obviously, $0 \in I$. Now, let $a \odot b^* \subseteq I$ and $b \in I$. Then, $a \preceq a \lor b = (a \odot b^*) \oplus b \subseteq I$, whence $a \in I$. \Box

Definition 4.8. A nonempty subset A of H is called S_{\odot} -reflexive if $x \odot y \cap A \neq \emptyset$ implies that $x \odot y \subseteq A$. Similarly, A is called S_{\oplus} -reflexive if $x \oplus y \cap A \neq \emptyset$ implies that $x \oplus y \subseteq A$.

Theorem 4.9. If in an H_vMV -algebra H for all $x, y \in H$ we have $x \wedge y \preceq x \preceq x \vee y$, then each its S_{\odot} -reflexive and S_{\oplus} -reflexive subset is an H_vMV -ideal of H. *Proof.* Let $x, y \in H$ be such that $x \leq y$ and $y \in I$. Then, $0^* \in x^* \oplus y$ and so $0 \in x \odot y^*$, whence $(x \odot y^*) \cap I \neq \emptyset$. Since, I is S_{\odot} -reflexive, $x \odot y^* \subseteq I$ and so $x \in I$. Thus, $x \leq y$ and $y \in I$ imply $x \in I$. Now, let $x, y \in I$. Then, $(x \oplus y) \odot y^* = x \land y^* \leq x$ and hence, $c \leq x \in I$, where $c \in x \land y^*$. This implies that $c \in I$ and so $(x \oplus y) \odot y^* \cap I \neq \emptyset$. Hence, there exists $a \in x \oplus y$ such that $a \odot y^* \cap I \neq \emptyset$ combining $y \in I$ we get $a \in I$, i.e., $x \oplus y \cap I \neq \emptyset$, whence $x \oplus y \subseteq I$. Thus, I is an H_v MV-ideal of H.

Corollary 4.10. In a hyper MV-algebra, every S_{\odot} -reflexive and S_{\oplus} -reflexive subset I that $x \leq y$ and $y \in I$ imply $x \in I$ is a hyper MV-ideal.

Theorem 4.11. Let $f : H \longrightarrow K$ be a homomorphism. Then

- (1) kerf is a weak $H_v MV$ -ideal of H.
- (2) If I is an $H_v MV$ -ideal of K, $f^{-1}(I)$ is an $H_v MV$ -ideal of H.
- (3) Assume that x ≤ x ∨ y holds for all x, y ∈ H. If f is onto and I is an S_☉-reflexive H_vMV-ideal of H containing ker f, then f(I) is an H_vMV-ideal of K.

Proof. (1). Let $x, y \in H$ be such that $x \leq y$ and $y \in kerf$. Then, $0^* \in (x^* \oplus y) \cap (y \oplus x^*)$ and f(y) = 0. Thus

$$0^* = f(0^*) \in f(x^* \oplus y) \cap f(y \oplus x^*) = f(x)^* \oplus 0 \cap 0 \oplus f(x)^*,$$

which implies that $f(x) \leq 0$. Hence, f(x) = 0, i.e., $x \in kerf$.

Now, let $x, y \in kerf$. Then, $0 \in 0 \oplus 0 = f(x) \oplus f(y) = f(x \oplus y)$ and so f(t) = 0, for some $t \in x \oplus y$. This implies that $(x \oplus y) \cap kerf \neq \emptyset$ and so by Theorem 4.6, kerf is a weak $\mathsf{H}_v\mathsf{MV}$ -ideal of H.

(2) It is easy.

(3) Assume that f is onto and I is an $H_v MV$ -ideal of H. Let $x \leq y$ and $y \in f(I)$. Then, $0^* \in x^* \oplus y \cap y \oplus x^*$ and y = f(b), for some $b \in I$. Since, f is onto, there exists $a \in H$ such that f(a) = x. Hence,

$$0^* \in f(a^*) \oplus f(b) \cap f(b) \oplus f(a^*) = f(a^* \oplus b) \cap f(b \oplus a^*),$$

whence $f(u) = 0^* = f(v)$, for some $u \in a^* \oplus b$ and $v \in b \oplus a^*$. This implies that $u^*, v^* \in kerf \subseteq I$, i.e., $a \odot b^* \cap I \neq \emptyset$, whence $a \odot b^* \subseteq I$. Since, $b \in I$, so $a \in I$ and hence, $x = f(a) \in f(I)$.

Let now $x, y \in f(I)$. Then, there exist $a, b \in I$ such that f(a) = x and f(b) = y. From $a \oplus b \subseteq I$ it follows that $x \oplus y \subseteq f(I)$, proving f(I) is an $\mathsf{H}_v\mathsf{MV}$ -ideal of K.

Definition 4.12. Let A be a nonempty subset of H. The smallest (weak) H_vMV ideal of H containing A is called the (weak) H_vMV -*ideal generated* by A and is denoted by $\langle A \rangle$ (by $\langle A \rangle_w$ respectively). It is clear that

 $\langle A \rangle \supseteq \{ x \in H : x \preceq (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n, \text{ for some } n \in \mathbb{N}, a_1, \dots, a_n \in A \}.$

Theorem 4.13. Assume that $|x \oplus y| < \infty$, for all $x, y \in H$, \leq is transitive and monotone, and $x \oplus y \in R(H) = \{a \in H : |z \oplus a| = 1 \forall z \in H\}$ for all $x, y \in R(H)$. Then

 $\langle A \rangle_w = \{ x \in H : x \preceq (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n, \text{ for some } n \in \mathbb{N}, a_1, \dots, a_n \in A \}$

for any nonempty subset A of H contained in R(H).

Proof. Assume that

 $B = \{x \in H : x \preceq (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n, \text{ for some } n \in \mathbb{N}, a_1, \dots, a_n \in A\}.$

Obviously, $A \subseteq B$. Now, let $x, y \in H$ be such that $x \preceq y$ and $y \in B$. Since, $|x \oplus y| < \infty$, so $y \preceq (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n$ for some $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in A$. This implies that $0^* \in y^* \oplus ((\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n))$. On the other hand, $x \preceq y$ implies that $y^* \preceq x^*$, whence

 $0^* \in \{0^*\} = y^* \oplus (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n) \preceq x^* \oplus (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n),$ which gives $0^* \in x^* \oplus (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n)$, i.e., $x \preceq (\cdots ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n)$. Thus, $x \in B$.

Now, let $x, y \in B$. Then,

$$x \preceq (\cdots (a_1 \oplus a_2) \oplus \cdots) \oplus a_n \quad \text{and} \quad y \preceq (\cdots (b_1 \oplus b_2) \oplus \cdots) \oplus b_m$$

for some $n, m \in \mathbb{N}, a_1, \ldots, a_n, b_1, \ldots, b_m \in A$. Since, \leq is monotone,

$$\begin{array}{rcl} x \oplus y & \preceq & x \oplus ((\cdots (b_1 \oplus b_2) \oplus \cdots) \oplus b_m) \\ & \preceq & ((\cdots (a_1 \oplus a_2) \oplus \cdots) \oplus a_n) \oplus ((\cdots (b_1 \oplus b_2) \oplus \cdots) \oplus b_m) \end{array}$$

and hence there exists $u \in x \oplus y$ such that

$$u \leq x \oplus ((\cdots (a_1 \oplus a_2) \oplus \cdots) \oplus a_n) \\ \leq ((\cdots (a_1 \oplus a_2) \oplus \cdots) \oplus a_n) \oplus ((\cdots (b_1 \oplus b_2) \oplus \cdots) \oplus b_m) \\ = (\cdots (((\cdots (a_1 \oplus a_2) \oplus \cdots) \oplus a_n) \oplus b_1) \oplus \cdots) \oplus b_m$$

because \leq is transitive. The equality holds for $A \cap B \neq \emptyset$, and |A| = 1 = |B| imply A = B. Thus $u \in B$ and so $x \oplus y \leq B$. Therefore, B is a weak $\mathsf{H}_v \mathsf{MV}$ -ideal of H. Obviously, B is the least weak $\mathsf{H}_v \mathsf{MV}$ -ideal of H containing A.

Let $\mathsf{H}_v\mathsf{MVI}$ ($\mathsf{WH}_v\mathsf{MVI}$) denotes the set of all $\mathsf{H}_v\mathsf{MV}$ -ideals (weak $\mathsf{H}_v\mathsf{MV}$ -ideals) of H. Then, $\mathsf{H}_v\mathsf{MVI}$ ($\mathsf{WH}_v\mathsf{MVI}$) together with the set inclusion, as a partial ordering, is a poset in which for all $A_i \subseteq \mathsf{H}_v\mathsf{MVI}$, $\bigwedge A_i = \bigcap A_i$ and $\bigvee A_i = \langle A_i \rangle$. So, we have

Theorem 4.14. $(H_v MVI, \subseteq)$ is a complete lattice, and if $WH_v MVI$ is closed with respect to the intersection, $H_v MVI$ is a complete sublattice of the complete lattice $(WH_v MVI, \subseteq)$.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467 - 490.
- [2] C. C. Chang, A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74 - 80.
- [3] **B. Davvaz**, A brief survey of the theory of H_v -structures, Proc. 8th International Congress on Algebraic Hyperstructures and Appl., Spanidis Press, (2003), 39 70.
- [4] Sh. Ghorbani, A. Hassankhani, E. Eslami, Hyper MV-algebras, Set-Valued Math. Appl. 1 (2008), 205 - 222.
- [5] F. Marty, Sur une generalization de la notion de groups, 8th Congress Math. Scandinaves, Stockhholm, (1934), 45 - 49.
- [6] D. Mundici, Interpretation of AFC*-algebras in Lukasiewicz sentential calsulus, J. Func. Anal. 65 (1986), 15 - 63.
- T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. of the 4th Int. Congress on Algebraic Hyperstructures and Appl., World Sientific, (1991), 203 - 211.
- [8] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, 1994.

Received December, 19, 2013 Department of Mathematics, Univesity of Bojnord, Bojnord, Iran E-mail: bakhshi@ub.ac.ir